INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adj«:ent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has foi lowed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International 300 N. ZEEB RD„ ANN ARBOR, Ml 48106 8129028

K a d u n c , D o n a l d A l b e r t

COMPUTER MODEL OF COMBUSTION AND RADIATION PROCESSES IN REFUSE DERIVED FUEL FIRED STOKER BOILERS

The Ohio State University Ph.D. 1981

University Microfiîms Intern etionel m N. Zeeb Road, Ann Arbor, Ml 48106

Copyright 1981 by Kadunc, Donald Albert All Rights Reserved PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark__

1. Glossy photographs or pages.

2. Colored illustrations, paper or print.

3. Photographs with dark background i/"

4. Illustrations are poor copy

5. Pages with black marks, not original copy.

6. Print shows through as there is text on both sides of page.

7. Indistinct, broken or small print on several pages 1/^

8. Print exceeds margin requirements _j ____

9. Tightly bound copy with print lost in spine ____

10. Computer printout pages with indistinct print i /

11. Page(s) ______■ lacking when material received, and not available from school or author.

12. Page(s) seem to be missing in numbering only as text follows.

13. Two pages num bered ______. Text follows.

14. Curling and wrinkled p a g es ______

15. Other______:______

University Microfilms International COMPUTER MODEL OF COMBUSTION M D RADIATION PROCESSES IN REFUSE DERIVED FUEL FIRED STOKER BOILERS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By Donald Albert Kadunc, B.S.M.E., M.Sc., M.B.A,

* * * * *

The Ohio State University

1981

Reading Committee; Approved by:

Helmuth W, Engelman

Robert H, Essenhigh isn-r- — -- ^ U Donald R, Houser Department of Mechanical Engineering James E, A. John T o Mom

11 ACKNOWLEDGMENTS

I would like to thank-my wife, Barb, for all these years and son, Michael for his curiosity, I want to thank my parents, Albert and Barbara Kadunc, for helping in the beginning, I want to thank my long-term adviser, Charles

F, Sepsy, and my current adviser, Robert H, Essenhigh, for their assistance in my academic career. Finally, I would like to thank Leslie Oswald Akers, Monica Merriman, and

Kathy Howard for putting this work together.

111 VTTA

July 2, 1944 Born - , Ohio

EDUCATION 1967 B.S. Mechanical Engineering; The Ohio State University, Columbus, Ohio. 1968 M. Sc. Industrial Engineering; The Ohio State University, Columbus, Ohio. 1971 M.Sc. Mechanical Engineering; The Ohio State University, Columbus, Ohio. 1974 Master of Business Administration; The Ohio State University, Columbus, Ohio.

WORK RECORD 1968-72 Industrial Engineer, Western Elec­ tric Company, Columbus, Ohio. 1972-74 Assistant Professor, Electrical En­ gineering, The Ohio Institute of Technology, Columbus, Ohio. 1974-78 Senior Mechanical Engineer, Rockwell International, Columbus, Ohio. 1978-Present Consulting Engineer, Alden E. Stilson & Associates, Columbus, Ohio.

IT TABLE OF CONTENTS

Acknowledgments iii

Vita. iT -•V • List of Tables vi

List of Figures vii

1. Introduction 1

2. Energy and Refuse 6

3. Refuse Incineration 17

4. Related Research 32f

5. Combustion Model ^3

6 . Results and Discussion 97

7. Conclusions and Further Work 156

3. References

9. Appendices

A. Fuels 167

B. Resource Recovery Activities 172

C. Derivation of Radiation Intensity 185

D. Derivation of One-dimensional Flux Equation

B. Derivation of Surface Flux ^93

F.. Derivation of One-dimensional Equa- ' tions for a Stirred Reactor

G. Index of Computer Output 100

10. Bibliography 31 A- LIST OF TABLES

Page

1. Projected Refuse Properties and Statistics lif

2. Projected Refuse Compositions (%) 15

3.. Effect of Frequency Factor 10Ô

4. Effect of Activation Energy

5. Frequency Factor vs. Activation Energy i12

6 .. . Furnance Temperature Profiles 115

7. Frequency Factor vs. Excess Air 119

8 . Fuel Leaving Slice vs. Bypass 126

9. Bypass vs. Heat Utilization Rate 133

10. Heat Utilization vs. Stirred Reactor Height 137

11. Heat Utilization Rate vs. Bypass and Stirred IZfif Reactor Height

12. Blackening vs. Heat Utilization and Burnout 147

VI LIST OF FIGURES

Page

1. Boiler with Reciprocating Stoker 22

2. Boiler with "Martin" or Reverse Acting 24 Grate Stoker

3. Boiler with "Duesseldorf" or Barrel 26 Type Stoker

4. Boiler with Multiple Traveling Grata Stoker _2g

5. Boiler with Spreader Stoker 29

GV Plant Site 31

7. Boiler Section 33

8. • Modified Bragg Model 37

9. Physical Model. ' if6

10. Typical Section Through Furnace 33

11. One-dimensional Radiative Transfer 57

12. Radiation Balance Through a Slice 58

13. Bed Representation as a Specular Reflecting y2 Surface

14. Emissivity Curves for Mixtures

15. Slice Representation 86

16. Absorption by Slice 88

17. Typical Run Format 102 7 Ü LIST OF FIGURES (cont)

18. Typical Output Profiles 105

19. ff vs E^ Temperature Profiles 115

20. ff vs E^ Combustion Profiles 116

21. ff vs E_ Heat Absorption Profiles 117

22. Excess Air Temperature Profiles 120

23. Excess Air Combustion Profiles 121

24. Excess Air Heat Absorption Profiles 122

25. Bypass Factor Temperature Profiles 128

26. Bypass Factor Combustion Profiles 130

27. Bypass Factor Heat Absorption Profiles 131

28. Reactivity vs Bypass 135

29. Stirred Reactor Height Temperature Profiles 139

30. Stirred Reactor Height Combustion Profiles 14O

31. Stirred Reactor Height Heat Absorption Profiles 141

32. Blackening Factor Temperature Profiles 145

33. Blackening Factor Combustion Profiles 148

34. Blackening Factor Heat Absorption Profiles 149

33. Transient Temperature Profiles 151

36. Profiles of Combustion vs Temperature 152

37. Burnup Profiles 154 CHAPTER 1

INTRODUCTION

This dissertation is primarily concerned with the development of a computer model of the combustion process in the furnace region of a fossil fuel fired boiler. The actual model developed is for a stoker fired refuse burning boiler that the City of Columbus, Ohio, will be using in its new Municipal Electric Plant, scheduled to be operational in 1982. However, the computer model is flexible and can be modified without a great deal of ef­ fort to represent both stoker and suspension fired furn­ aces. The model can also be modified to study the burn­ ing characteristics of any solid, liquid or gaseous fossil fuel.

The computer program was developed to model the

Columbus boilers to determine if the design was sound prior to putting the units on line. The computer model was used to study the effects of a number of variables on the burning characteristics of the refuse fuel in the

1 2'

boiler furnace. It was hoped that this would give know­

ledge to trouble shoot the actual boilers when they went

into operation.

The Columbus boilers are a new design for the burn­

ing of refuse fuel. Rather than the usual method of mass

burning of refuse, the Columbus boilers burn shredded re­

fuse that is blown into a well stirred section of the

furnace above the stoker grate. The refuse is burned

partially in suspension prior to dropping to the grate.

There is very little mass inventory on the grate. The

system allows a much faster response time and higher ef­

ficiency than mass burn boiler systems. This design was

felt to be necessary since the boilers were to be used to

produce steam and electricity in a "stand-alone", 90 megawatt municipal power plant. Since this was a new ap­

proach to the burning of refuse, it was felt that a com­

puter program could provide valuable information on the

operation of the boilers prior to their actual introduc­

tion into service.

The model is a slice, model with a long stirred reac­

tor slice followed by a series of smaller slices in the

plug flow region. The terms are described in Chapter 5.

Seat transfer to the walls is primarily by radiation with 3 a minor contribution by convection. Heat transfer from slice to slice is by convection and radiation. The transparency of the gas to radiation is modeled using a gray gas approximation with 5^0 and CO2 absorption, and an additional factor of gas blackening due to partially burned fuel. The computer model generates the H2O and

CO2 concentrations in each slice and determines the radi­ ation characteristics from thisinformation. The para­ meter of gas blackening is one of the variables that the computer was designed to study.

The computer model incorporates more than twenty different parameters including: the physical dimensions of boiler length, width, height and stirred reactor height; the incoming air quantity, oxygen content and temperature; the fuel quantity, the fuel Btu value, the composition of the fuel including ash, moisture, carbon, oxygen and hydrogen; the fuel reactivity factors of frequency factor and activation energy; the water satura­ tion temperature in the wall tubes; bypass factor, excess air, stirring factor, and gas blackening factor.

The. physical boiler dimensions of the Columbus plant were used, as was the fuel, specification and temperature parameters of the Columbus plant. This research con- 4 centrated on the study of six parameters: frequency factor, activation energy, stirred reactor height, excess air, bypass, and gas blackening. The other factors were set by the design of the system and the com­ position of the refuse generated in the City.

The output of the computer program provides the oxygen, fuel, water, and carbon dioxide content of each slice. It provides the slice temperature, heat utiliza­ tion rate, heat generation rate and heat transfer rate to the walls. It also provides a slice by, slice analysis of all parameters and computed quantities throughout the boiler.

The results of the computer program show that the bypass flow determines the combustion characteristics in the first two to four slices, and the combination of fre­ quency factor and activation energy determine the burnout characteristics in later slices. Increases in excess air lead to worse boiler efficiency, while increases in gas blackening lead to better heat transfer to the boiler walls. Finally, large stirred reactor sections reduce the boiler efficiency. 5 These results, as they relate to the Columbus boil­ ers, indicate that the proposed system should operate satisfactorily.. Solutions to burning problems in the boilers should concentrate on the turbulent mixing that is. designed into the boiler system. If poor burning oc­ curs, the overfire air rate could be adjusted upward.

Also, a minimum of excess air should be strived for. The computer results indicate that the boiler should operate at its design efficiency when properly adjusted. CHAPTER 2

ENERGY AND REFUSE

2.1 THE ENERGY PROBLEM

The energy problem in the is centered around our reliance on oil. as our major energy source. Oil is convenient, portable and versatile and, until recently, it was a cheap source of energy. Nearly half our energy needs are provided by oil.

Unfortunately, our increasing reliance on oil has caused the United States to become a net importer of oil over the years» Currently, more than 40 per cent of our oil is im­ ported. In the past ten years, we have lost control of both the price and quantity of imported oil. Rapid price increases and quantity restrictions placed on imported oil by foreign governments have caused major economic dislocations in our society.

6 7 The solution to our economic problems caused by oil takes two paths. First, we must conserve energy. Second, we must develop alternate forms of energy to replace oil.

Energy conservation is currently being practiced, and the concentration is centered around saving electricity, heat, and gasoline. These activities are well known and will not be discussed further.

2.2 ENERGY SOURCES

Of all energy sources, oil, natural gas, and coal account for over 90 per cent. The 1980 energy use was 78 quadrillion

Btus (78 Quads) as estimated by the United States Energy In- 1 formation Administration. It estimates this usage will rise to 108 Quads by the year 2000.

2.2.1 Oil

In 1980, domestic oil consumption was 20.5 Quads and imported oil consumption was 15.2 Quads. , In the year 2000, domestic and imported oil usage is expected to be. 20.5 Quads and 13.1 Quads, respectively.^ This reflects the change to alternate energy sources. It also shows the slight shift away from a reliance on imported oil as an energy source. After the year 2000, oil will decline as an energy source signif­

icantly. The United States Bureau of Mines estimates domestic 8 sources of oil will be seriously depleted by the year 2000, and imported sources will be depleted a decade or two later.

2.2*2 Natural Gas

m 1980, natural gas consumption was 20.5 Quads, and this consumption is expected to decline to 17 Quads by the year 2000.^ The United States has only enough reserves to last through a third of the next century.

2.2.3 Coal

Coal will become our major source of energy over the next 20 years. The 1980 usage of 15.8 Quads will increase to

34.4.. Quads by the year 2000. The United States has proven reserves of coal to last more than 200 years. However, this source of energy is also a major source for air pollution.

This pollution problem must be solved in order to take ad­ vantage of coal as an abundant source of energy.

2.2.4 Nuclear

Only 2.9 Quads of energy were produced using nuclear fuel in 1980. By the year 2000, nuclear fuel will be pro­ ducing 11.3 Quads of energyThus, nuclear energy is our fastest growing source of energy. The United States has about a quarter of the world's reserves of Uranium. These reserves should last through the middle of the next century. 9

Nearly all of the nuclear energy produced in' the

United States is by light water fission reactors. The supply of nuclear fuel could be increased 70 times by converting to breeder reactors. However, the politics associated with nuclear reactors as energy sources in the United States pre­ cludes this change to breeder reactors at present. The poten­ tial is present for nuclear fission to be the major source of energy for. hundreds of years.

Nuclear fusion offers the potential for limitless amounts of energy, but there are enormous technological problems that must be solved. Fusion reactors are not ex­ pected to become operational until sometime next century, if at all..

2.2.5 Other Energy Sources

Other energy sources accounted for 3.1 Quads in 1980.

This is expected to increase to 11.7 Quads by the year 2000.

These sources take many forms.^

A major potential source is solar energy. The technology for heating homes is developing quickly. Solar electrical generation stations are being planned. While cur­ rent usage is small, the sun drenches the United States with 10

500 times more energy than we now consume.. Solar energy will

become a major source of energy during the next century.

Geothermal energy could supply as much as 18.5 Quads

by the year 2020.^ This source results primarily from the ra­ dioactive decay of rocks. Hot water and steam can be produced

from this source.

Synthetic fuels are crude-oil substitutes. These syn­ thetic fuels can be made from coal, oil shale, tar sands, wood and other plant distillates. Reserves of synthetic fuel bases

are large enough to eventually replace crude-oil as a source of fuel for mobile equipment.

Other minor sources of energy include hydroelectric

and tidal power. Refuse, also, is a minor source of energy.

2.3 REFUSE

Refuse is only a supplementary fuel. It will always only offer a minor source for energy. If all the trash currently

collected were converted to electricity, it would free less than 1/2 million barrels of oil a day for other uses.

Our research centers around the use of refuse as a fuel.

This fuel can be used to generate steam and electricity. The 11 generation of heat and power using refuse is part of the solu­ tion to our energy needs, but, more importantly, it offers a solution to the problem of disposal of solid wastes.

2.3.1 Refuse Quantities

Neissen estimates in 1980 145 million tons of refuse will be collected. This is approximately 2/3 of the refuse generated. The collection rate in the year 2000 is ex­ pected to rise to 270 million tons. The waste generated in

1980 on a per capita per day basis is estimated at 5.8 lbs. By the year 2000, it is expected to rise to 9.2 lbs.

Only in the urban centers of the United States does meaningful, reliable refuse collection take place. In rural areas, people are responsible for their own refuse disposal.

Household and commercial refuse account for the major portions of the total refuse collected.

2.3.2 Disposal

Refuse is not an asset. The object of handling refuse is to dispose of it in a safe manner and at the lowest possible cost. The procedure can be divided into three categories: collection, processing, and actual disposal. 12 Collection trucks, generally packer types, are used for residential collection. Cargo trailer trucks are used for commercial and industrial collection. In large cities, the packer trucks go to a transfer station where the refuse is loaded into large transfer trailer trucks and then taken to the final disposal site.

Certain processing operations are sometimes added to make the disposal operation more efficient. The refuse is often shredded to make it more uniform in composition. The refuse is sometimes compacted to allow increased transfer trailer truck payloads. On occasion, high density baling is used to make landfill building blocks.

The actual disposal is generally at a landfill. The refuse is dumped, spread and then covered. Unshredded refuse must be covered daily. Shredded refuse often is only covered when the final reclamation takes place. Baled refuse is stacked like bricks and is covered when final reclamation takes place.

2.3,3 Recycling

Some recycling of refuse is being undertaken. It gen­ erally includes the collection of paper, glass, aluminum, and ferrous metals. This tends to be a non-profit operation. Re­ 13 covery I in New Orleans is the only major recycling plant in the United States, It is a government sponsored project. It has been losing money, and it does not appear that it will ever be profitable.

2,3.4 Refuse Fuel

Refuse can be used as a fuel in an incinerator. In­ cineration of refuse with heat recovery can be more economical than landfilling. The economics are very dependent on both the refuse supply and the customer for the heat recovered.

Table l/^^ shows projected refuse properties through the year 2000. These are national averages that vary geo­ graphically.. It can be seen that the current heating value of refuse is a little higher than 4,600 Btu/lb with a seasonal peak of about 4,800 Btu/lb. Eaw heating value of refuse is slightly less than half that of bituminous coal. Refuse has higher ash and moisture content than coal which accounts for part of this difference. The heating value is currently high enough to be a useful fuel, and, as the Table shows, the heating value is expected to increase in the future.

The increase in heating value of the refuse fuel in the future is due to a change in composition of the refuse as is shown in Table 2^^\ The percentages of paper and plastics TAOIE I

r n o j e c r e p repu sk rROPeancs an d sta tistics

1970 1411 I4IA 19»* 2009 Semi Non Seint Non Seiiil Non ieinl Non Semi Noô Semi ' Non Rcluic Pfopcrlle* & SCB-r Sea- Sea- Seg- Sea­ Sca- Ç ei- Sea- Sea- Sea- Sea Sea­ Se# Sea­ Se»- 5*9 Sea­ SlallH lci *ong| lonal Ipnal •onal sonal ional ipnal IMial ï'oiial ional lonal sonal Ipnaf sonal IW al IPOal *o«a| sonal

Healing Value (IIIIV,U)ii/ll>t tilT tib ) ttt» *<21 *»)0 t*9) *719 *6*0 *112 *111 (710 «2 7 10*0 *»)< 4»*» )*07 9271 9161

I'cfpeiil inoli|ure w ? 27.g 2».) 2J.2 27.1 2».< 2».» 2».» 2<,9 22.1 2*.0 21.7 20.» 22.1 24 1 19 » 1 1 1 22.9 I'eiceuI volaille caiboii 20.* 20.0 20.1 20.1 '?•* I» .l l*.9 19.» | 9 . | 1» 7 20.( 22.0 21.» 21.1 21.1 21.0 22.9 Percciil Bill coiileiil 21.1 20.» l» .l 22.1 20.7 19.» 22.9 21.» 20.» 21.» 22.0 20.» 2 2 * 11.1 20.0 !» 2 l» .< 17.7

I'CICCIII Bill (f MCludliiB glati, niclali) }.S».) » .l S.S J.2 9.1 » » » . | *.» J .2 ».o * 9 1.2 ».o 4.» 9 9 » 2 9.0 |‘cr-capliB gfomlli iniililpllcr 1.0 1.0 1.0 1.0» 1.01 1.0» 1.19 III 1 II 1 ) 2 l.»2 111 1.12 I.JI 1.10 1,26 1.7* 1.72 Nalluual populallom- growjlt

riioiecTiio nEFuse compositions W »

Trmr T n m r T m n r m f f ■ T 9 91T “« o i r icm t HoA ia*in| Non iem l Non Semi Non Semi Non îen d Non Sca- Sca- Sea* Sea* Sea- Sea- Sca- Sea- Sea Sea- Sea Sea- Sea- Sea- Sea- S ta - S«a- Sea- llelma Cttlc|;orv ionaf lonal tonal tonal tonal tonal tonal tonal tonal tunal tonal tonal tonal tonal tonal ignal fonal tonal

O lati ■ l . l l . l 7.6 9.1 !.* 7.9 9 .9 9.2 1 .7 10.1 . 9 .0 9 .3 1 .9 1.4 l . l 7.6 ? 2 Melul 1.7 l . l 7.» l . l 1.2 7.6 9 .0 1.4 7.1 9.4 1.7 l . l 9.0 1.4 7 .9 7.4 6 .9 * 1 Paiier 7 t.2 » . l 32.6 39.1 31.1 33.3 40.1 37.6 33.2 41.3 31.4 36.1 41.0 41.7 39.1 49.7 46.0 41.1

PlalllC* l . l l . l 1.0 l . l l . l l . l 1.9 l . l 1.7 3 1 2.7 2.1 3.3 1.1 3.1 4.3 4 2 3.1

I.eallicr.roLlicr I.S l . t l . l 1.» l . l 1.3 1.3 1.4 l . l l . l 1 4 l . l 1.3 1.4 l . l 1.6 l . l 1.4

Tcxllle» 2.0 1.» l . l 2.0 1.9 l . l 2,1 2.0 1.9 2.1 3 .0 1.9 2,1 2.3 3 2 2 1 2.6 2.3

Wood . 2.7 2.1 2.1 2.3 2.1 2.2 2.2 3.0 1.9 2.0 l . l 1.7 1.6 1.3 1.4 1.1 1.3 1.2

I'uud VliXitei 21.1 19.» 11.2 20.2 11.7 17.4 17.9 16.6 11.» 16.2 11.0 14.1 14.0 l l . l 12.3 12.1 11-4 10.7

MItccMmicuiit l . t 1.7 1.6 1.7 1.6 1.3 l . l 1.4 l . l 1.4 1.3 1.2 1.2 l . l II 1.0 . 1,0 0 .9

Yard Wa;iç; 1 ) 1 20.7 24.1 20=4 ^ 1 . 7 11.2 19.4 24.7 12,9 19.3 34.1 12.3 II.1 31.0 ILL- 17.6 J 2 . J Tplai ÏOO.O joA.O 100.0 100.0 ioo.o 100.0 100.0 100.0 100.0 100.0 100.0 100.0 IOO.O 100.0 MO.O 00,0 100.0 ■PutcciiliiKci ilwwn ara ou au “at-tllicafdeil* liatlt.

VJl 16 rise significantly. Metals and glass percentages decline which accounts for the decline in ash percentage. Food and yard wastes decline which contribute to the decline in the moisture content of the refuse.

2.3.5 City of Columbus Refuse

This research deals with modeling the City of

Columbus, Ohio incineration plant currently under construc­ tion. The design-basis refuse composition for Columbus, Ohio f 31 has been estimated by A.E. Stilson & Associates and is given in Appendix A.

The Columbus refuse disposal operation consists of city-wide collection using packer trucks. These trucks deliver refuse to three processing -transfer stations. The refuse is shredded and loaded into compactor type transfer trailers. The refuse is now landfilled, but when the inciner­ ation plant is complete, it will be taken to the plant to be used as fuel to produce steam for electrical generation. CHAPTER 3

REFUSE INCINERATION

3 .1 INCINERATION PRACTICES

Waste heat recovery in the United States has been prac­ ticed since the early 1900’s. However, the practice faded in the 1930's. In the 1960's Germany built several water wall incinerators. These led to a resurgence of interest in incin— 23 eration in .

3.1,1 Refractory Incinerators

The (Southwest) incinerator had operated since 1962. It produced steam that was utilized for in-plant equipment. It has been closed due to air pollution regula­ tions. The Merrick, New York incinerator produces steam for 23 in-plant use.

17 18 The Miami, Florida incinerator at 20th Street produced steam for in-plant use and for sale to a nearby hospital. It 23 has been closed due to pollution regulations.

3.1.2. Water Wall Incinerators

Water wall incinerators are the current practice.

Braintree, Massachusetts, sells its steam produced from its incinerator to nearby industries. The Norfolk Navy Yard generates steam from its incinerator for use at its own facility. The Norfolk Naval Ship Yard in Portsmouth, Vir­ ginia, also generates steam from its incinerator for use at its own facility. Oceanside, New York's incinerator plant uses its steam for in-plant heat and power and also to 23 desalinate water.

3,1.3 Suspension Firing

Supplementary fuel for use in suspension fired boilers is being used in a number of places. Rochester, New York

(Kodak Park) burns a small fraction of pulverized refuse fuel in an oil fired furnace to produce steam. The refuse is ob­ tained from the Kodak Plant nearby, and the steam is sold back to Eastman Kodak for use in its plant's heating and man­ ufacturing systems. The City of St. Louis, Missouri has con­ ducted a demonstration project using refuse derived fuel as a ten per cent supplement to pulverized coal in the Union 19 Electric's Meramec Plant. A new project is being built jointly between the City of St. Louis and the Union Electric

Company. It will produce a fuel supplement for the Labadie 23 power station of Union Electric.

3.1.4 Canadian Practices

Canada has water wall incinerators producing steam.

The Hamilton, Ontario (600 ton/day) plant produces steam for in-plant use. The Montreal, Quebec (1200 ton/day) plant pro­ duces steam for in-plant use and for heating of nearby munici­ pal buildings and for snow melting. The Quebec, Quebec (1000 23 ton/day) plant sells steam to a local paper company.

3.1.5 Federal Projects

Projects sponsored by the Federal Government are re­ ported by the National Center For Resource Recovery. Appendix

is a listing of these projects and their status as of

May, 1979.

3.2 RESEARCH SCOPE

The research undertaken in this paper is applicable to many types of boiler installations.

This is proven technology for the burning, of refuse. The computer program which is the major reason for this work can 20 be adapted to any of the stoker fired systems described in this chapter. Geometrical considerations may make certain configurations more difficult to model than others, but with the proper constraints the problems of modeling specific boil­ ers can be surmounted. The Refuse and Coal Fired Municipal

Electric Plant of the City of Columbus, Ohio, forms the basis of the physical model of this study.

3.3 STOKER FIRED BOILERS

Many factors go into the selection of a stoker fired, com­ bustion system to be used with refuse fuel. Refuse is a low density fuel, so capacity is very dependent on the grate's ability to handle large volume flows efficiently. Refuse is not a clean fuel and handling of the residues of combustion is a major consideration. Refuse is not a very dependable fuel in terms of thermal properties. This leads to a number of considerations. Wide radiation swings cause thermal shocks which, especially where refractory is used, can lead to crack­

ing. Plants using refuse as a source of heat or electricity must be able to stabilize the heat supply. The air supply in terms of quantity, distribution, temperature and turbulence must be regulated. The height of the fuel layer on the grate

as well as the grate retention time must be adjustable accord­

ing to the fuel properties. The grate and control system must work in conjunction to control flue gas temperature allowing 21 smooth operation and minimizing tube damage. From an environ­ mental standpoint/ complete burnout should take place, the

production of flyash should be minimized, and temperature must

be controlled carefully to reduce NO^ emissions. The grate re­

sidue should be cooled prior to leaving the combustion area.

Observation of the combustion zone can be important if the op­

erator is a major factor in the control scheme. The refuse

feed must be positive and dependable. Finally, serviceability

and replaceability of wearing parts is important to the over­

all operation of a plant.

3.3.1 Grate Systems

Various grate types are in current operation. This is

a review of the major systems in operation. Most are a result

of. European technology.

Von Roll System

The Von Roll Company of Zurich, Switzerland builds a

reciprocating stepped-down pallet type grate system. (See

Figure No. 1.) Bulk refuse is transferred from a charging

hopper via a vibrating metal pan conveyor and vertical chute

to a reciprocating grate stoker. The vibrating conveyor has

two purposes. It is used to control the rate of fuel feed, and.

it spreads the fuel out to allow uniform distribution of fuel

on the grate. Single-grate stages stacked upon one another 22

«uijia

jrdΠZl

RG, i BOILER WITH RECIPROCATING STOKER 2 3 move in an alternating pattern that causes the fuel bed to move down the grate. The pushing action provides a stoking effect. The refuse dropping down the stages tends to break up and roll, aiding in even burning. However, with deep fuel beds, this breaking and rolling action is quite limited.

Sometimes, stoking is done manually to loosen the fuel bed.

The grate loading tends to be low, undergrate pressures high and slot, air velocities high. The relative motion of the grate stages tends to make this a self-cleaning design. A large amount of air turbulence causes the flyash quantity to be relatively large.

Martin System

The Josef Martin Company of Munich, Germany, builds a reverse action grate system (see Figure No. 2) Bulk refuse is transferred from a charging hopper via a vibrating metal pan conveyor and vertical chute to the reverse action grate stoker. Underfire air is zoned to allow specific dis­ tribution patterns along the grate which promotes complete burning. The wide, short, reverse action grate consists of many heavily inclined grate stages moving up and down. The grate stages push uphill in a reverse direction to the flow causing a stoking action. This also tends to pull the fire down under the bottom refuse layer causing more rapid burn- 2 4

/

u-

FIG. 2 • BOILER WITH “ MARTIN” OR REVERSE GRATE STOKER 2 5 out.. The grate tends to be a self-cleaning design due to the

relative motions of the grate stages.

Düsseldorf System

The City of. Düsseldorf, Germany, designed a roller grate drum system (see Figure No, 3 ) . The bulk refuse is transferred from a charging hopper via a vibrating conveyor to the drum section. Six to eight rotary drums form the grate.

The. drums are about 5 to 7 feet in diameter and 10 to 15 feet long. Each drum rotates in the discharge direction. The

rotating action of each drum subjects the refuse to continuous tumbling and agitation. The drum speed and underfire air flow to each drum is individually adjustable. The head end cylinder rotates the fastest, and the speed is reduced in each

succeeding cylinder. The drum faces are serrated and are

formed by many single grate bars.

Step Tilting Grate System

A step tilting grate or rocker-action grate has been developed by Seghers Engineering, The grate is formed from

stages of rocking and sliding plates. These plates are con­

trolled individually through hydraulic action and separate hy­

draulic drives. The movement of the grate allows good cir­

culating movement of the refuse. ,26

i EG G G GG

FÎG.0 BOILER WITH " DUESSELDORP" OR BARREL TYPE STOKER 2 7 Traveling Grate Stoker

This type of boiler has been popular in America. (See

Figure 4) . Babcock & Wilcox and Combustion Engineering were both instrumental in the design. Bulk refuse is trans­ ferred from the charging hopper to a feed belt _ This allows a continuous flow of feed to the boiler and the belt is adjust­ able for rate control. From the belt, the refuse proceeds along three to four combustion grates. The grates provide drying, burning and burn out. The drop between grates pro­ motes tumbling and total circulation of the refuse. Air can be controlled individually under each grate. Grate speeds are individually controlled. Air velocities through the grates tend to be low thus limiting the amount of dust.

Spreader Stoker System

Detroit Stoker Company of Detroit, Michigan, man­ ufactures a spreader stoker system. (See Figure 5) . The system is designed to handle only shredded refuse. The nominal size of the refuse is less than four inches. This system is the type used at the City of Columbus Refuse Plant.

In this system, refuse is fed pneumatically into the boiler and is spread over the full grate surface. Much of the refuse is burned in suspension before hitting the grate; the rest is deposited on the grate. The fresh fuel is laid on top of burning fuel. This promotes good combustion. The grate moves 2 8

X

A

FIS. 4 -BOILER WITH MULITIPLE TRAVELING GRATE STOKER 2 9

fnr

!

m a Ghiribütar Swia#:^ ZcaA Ammdy W o W iiP

U.JL======nr==#- *J t*« . 4«] *

# # / y S , v:i Sccuts/ar II 'I I _■ •I ' llifatsriad i L ^ ^ i y p :: &üf7&3d Ca Hccpsr Czswf *.::; lOOflfGffta Coi ?s«ds5

i; ?!8snm ritCsiBcn Caoüer mqedma m Lines iJ taaic J Prasars / Over fire jjjXiiV ■Air ran jj'

F1Ô.5 aOILER.WITH SPREADER STOKER 3 0 at a slow rate allowing the ash to be removed at one end. This system does not have large quantities of refuse in the boiler at any one time. This allows the boiler to have a much faster response time than other stoker boilers, which makes it more suitable for the production of electricity than the other boilers.

Common Features

All boilers discussed have similar combustion control systems. They all have variable speed fans allowing the excess air to be varied. They have provisions for regulating the ratio of overfire air to underfire air. Heat rates can be varied by changing fuel flows. Finally, all have sufficent controls to-meet environmental requirements.

3.4 CITY OF COLÜMBÜS SYSTEM

The City of Columbus Power Plant (See Figure 6) is de­ signed to generate 90 MW of electricity. It has six spreader stoker boilers that burn shredded refuse as the primary fuel.

The boilers burn coal as an auxiliary fuel. Each boiler can burn 500 tons of refuse a day. By the year 2000, the City ex­ pects to be burning an average of 2000 tons of refuse a day at the plant. 31

FIGURE 6 PLANT SITE 3 2 Figure 7 shows a cross section of one of the boilers.

The grate area is nearly square and the walls are vertical.

This box shape is easier to model on the computer than shapes of the other boilers discussed previously. Refuse is blown into the furnace through four air-swept spouts. The refuse enters the furnace about tan feet above the grate.

The first thirteen feet above the grate comprise the stirred reactor section of the furnace. About 150 high velo­ city air jets provide overfire air to this region. The over­ fire air is about 30 per cent of the total combustion air. The overfire air serves two purposes. First, it provides needed oxygen for complete combustion. Second, it produces a highly turbulent region above the grate which promotes good fuel-air mixing behavior. This region is commonly called a stirred re­ actor .

Auxiliary coal can be added to the furnace through four spreader stoker style feeders. The system has the capability of burning 100 per cent coal mixtures if necessary. However,

80 per cent refuse with 20 per cent coal will be expected. If the system functions as anticipated, no auxiliary coal will be used. N0Ü03S W31I08 Z 3UnDld

% ujs»v;

W'HVTOS ir T T jT ON vis aocid ■ 1 ^ 1*^ I ' i

|:.:i!iih i>OlM f* •j;L I .- I**'! :t ■ **- 1M •

i! ■ ;■ Ur * ■ i ■ ■ ' ■■ * ■ CHAPTER 4

RELATED RESEARCH

4 a 1 INTRODUCTION

This chapter deals only with research that is directly

related to the research in this paper. The Bibliography con­ tains an extensive listing of work done in the field. This

research is involved with the extension of work done .by

Essenhigh, Bueters, et. al. Their work was a building process

incorporating original ideas and the ideas of previous re­

searchers .

4.2 EARLY WORK

In the late GO'S, Essenhighbegan a program to de­

velop the information necessary to be able to design an incin­

erator for optimum performance from first principles. Optimum

performance was defined as reliable operation with:

1.) Minimum particulate and objectionable gaseous

emissions.

3 4 3 5 2.) Minimum use of supplementary fuel

3.) Minimum construction cost.

4_) Minimum maintenance.

4.2.1 The refuse fuel was categorized into groups based on

its principal components. Analysis lead to the con­

clusion that the refuse groups could be treated as a

common base fuel with varying amounts of moisture

and ash added. The base fuel could be approximated

by cellulose.

4.2.2 The incinerator was divided into two reaction zones.

Zone I was the solid bed and Zone II. was the over bed

region. The principal processes in the solid bed

zone were pyrolysis, gasification, and combustion.

The principal processes in the overbed region were

flame holding and final burn up. Our current

research deals with the overbed region only. The

overbed region was modeled as a perfectly stirred

reactor section followed by a plug flow section, a

la Bragg.

4.3 OVERBED ZONE

The overbed zone was studied by Essenhigh through a num­

ber of experiments. The aim of the research was to determine 3 6 the factors that would promote overbed burn up of carbon-bear­ ing volatiles.'

4.3.1 Biswas y Kuo, Essenhigh

It was found that adequate overbed mixing promotes ignition and flame holding. These two factors give rise to complete combustion in a furnace. The mixing or stirring method used was opposed vortices. Experiments with smoke

(from burning computer cards) as a fuel established that the counter vortex does operate as an effective flame holder.

4.3.2 Rao, KuOf Essenhigh' ’

A cold model study using a helium-tracer concluded that the over bed zone was divided into two regions as the

Bragg model suggested. A counter vortex flow pattern was used. It was found that for this study, the stirred region was 40 to 70 per cent as effective in actual mixing ability as a perfectly stirred region. This distinction lead to the region being called a well stirred region.

The final model description is shown in Figure 8. A mixing delay section is added to a perfectly stirred section..

This was the representation chosen to represent the well stirred region. To the plug flow region was added a dead flow region, indicating incomplete utilization of the combustion Experiments have shown this to be a real M.s.n. physical boundary. Dead Flow Region

zzzyzz/!zz^ Dy-Paaa Flcyf »- Outlet

Even though experiments have been shown that this lu not a true physical boundry, this boundry has been used to schematically represent a constant mixing delay time in the U.Q.U.

Mixing delay section

FIG. 8 SCHEMATIC REPRESENTATION OF MODIFIED DRAOQ MODEL WITH MIXING- DELAY, BY-PASS, AND DEAD FLOW REGIONS

-o 3 8 volume. Bypass was added to model a fraction of the com­ bustible mixture joining the reaction zone somewhat downstream

(or even passing through the chamber unreacted).

4.3.3 Kuo, Kuwata, Shi eh, Essenhigh

Computer cards were burned in a countervortex com- buster. The major result underscored the dominant need for adequate mixing and back mixing to ensure that the overbed region provides for complete burnout. A pseudo first order reaction was assumed.

4.3.4 Biswas, Essenhigh

This experiment with computer cards in a counter­ vortex reactor indicated that the reaction was second order rather than pseudo first order as previously thought. The data obtained allowed an estimate to be made for the Arrhenius parameters. The activation energy was determined to be 15.5 g kcal/mole and the frequency factor was 6.06 x 10 g/gsec.

Temperature and oxygen profiles through the stirred reactor section were nearly uniform. This is consistant with the region which is a Bragg stirred reactor. The combustion was quite complete. fl2) 39 4.3.5 Shiehr Essenhigh' ‘

A. countervortex test incinerator using computer cards was used to study the effect of stirring on the com­

bustion behavior. Two levels of overfire air rates were used.

A higher apparent frequency factor was obtained with a higher overfire air rate. This was attributed to the larger stirring factor associated with the higher overfire air rate. The

activation energy was computed to be 20.1 kcal/mole. The frequency factor was estimated as 155,000 g/g-sec.

A comparison of this experiment with that in Section

4.3.4 indicates a possible bracketing of the activation energy

and frequency factor. The values obtained in Section 4.3.4 were the result of very: fast combustion taking place in the in­

cinerator. The values obtained in this experiment were the

result of slower combustion in the incinerator.

4.4 OVERFIRE AIR JETS

A detailed study of mixing behavior was not at­

tempted in the current research. Follow on research, however,

could benefit from the findings of Engdahl^^^' concerning

the jet penetration of overfire air jets. The jet spread was

about one-tenth the penetration. The jet penetration for a

given diameter was found to be proportional to the mass flow 40 rate. The practical jet length was determined as the point at

which the jet velocity had dropped to 1,000 fpm. Recent con­

versations with Sngdahl indicate that the original data has

proven to give accurate representations of jet penetrations.

4.5 RADIATION

Sottel^^^) provides the basis for much of the work

involved with gas radiation. Of specific importance is how

Reuters applied the approach of Hottel to the modeling of a

furnace.

4.5.1 Bueters

In an actual furnace there are many radiating

species within the gas. Two of these are CO^ and S^O which, are

the main combustion products, Reuters determined that it

would be unreasonable to attempt to determine the emissivities

of species other than 00^ and H^O. These species include

soot, fuel, gases, etc. He defined a term he called the

blackening factor to account for the emissivity contribution

of these other species. On the basis of a gray gas ap­

proximation, the total emissivity (ê) is equal to the Hottel

emissivity (sg) plus the emissivity of the other components

• ( less the interaction ( . 41

This can be rewritten as:

(2) L - c = L - S q -3 + ^0% * Cl £q ) (1 - £.3)

The blackening factor was defined as;

(3) * 1/ (1 - ' ^q) and > 1

4.5.2 Beuters, Cogoli, HabeltC^^^

A radiation slice model of a tangentially fired furnace was developed. The combustion zone was modeled as a uniform "block" heat release zone. No attempt was made to model .the actual combustion process. Experiments were run on a full size furnace using both gas and oil as the fuel. The data from these experiments allowed estimates to be made for the blackening factor for each fuel; The established value is between 1.13 and 1.22 for gas firing and between 1.4 and 1.55 for oil firing.

The method of solution of the slice model was that of a Newton-Raphson technique described in Hottel 4 2 4.5.3 Lowe, Wall, Me Stawart^^^^

A radiation model of a tangentially fired furnace was developed. The method used was to divide the furnace into a series of cubes. The model included combusting and non­ combusting zones. Recirculation flow was also included, A model consisting of cubes could be applied to the Columbus incinerators. This type of model should be considered for future work.

4.6 BED STUDIES

A number of studies have been made concerning the fuel bed. While the studies do not have a direct bearing on the current research, they do provide information that would be useful to future work. A possible advancement of the present work would be to add the bed model described by Essenhigh to the overbed model described in the present research. CHAPTER 5

COMBUSTION MODEL

5.1 INTRODUCTION

This chapter is a description of the model derived to represent the combustion phenomenon that takes place within a stoker fired boiler. A modeling process is divided into three areas: physical model, theoretical model, and computer model.

The physical model is a simplified description of the boiler and the combustion process within the boiler. The aim of simplification is to allow the boiler to be mathematically

described. The hope is that the physical model contains the

essential details so that the results of the modeling process will be an accurate representation of the real boiler that one

is modeling.

The theoretical model is a conversion of the physical

model to analytical equations that allow for quantitative

results. This theoretical model relies on the basic funda­ k k mentals of the areas of thermodynamics, combustion, and heat transfer. The theoretical model is a statement of the funda­ mental laws and principles that govern the actual combustion process within the boiler. It often must be further simplified if a solution is to be obtained in closed form.

Again, it is hoped that the' simplifications do not render the results non-representative of the actual system that is being modeled.

The computer model is a description of the boiler and combustion process within the boiler that uses the information contained in the physical and theoretical models. It has a great advantage over the other models in that it allows solution of less restrictive models of the real system. While a physical model need not be restrictive, its main purpose is to reduce the real world to a point where it can be described mathematically. The theoretical model, to be solvable in closed form, must often be simplified. The results obtained are often not representative of the original system. The computer model can handle iterative procedures which allow for the solution of complex representations of the real system. 5.2 PHYSICAL MODEL 45

5.2.1 The physical model is a description of the City

of Columbus Boiler shown in Figure 7. The model

is of the lower portion of the boiler from the

top of the grate to the upper buckstay below the

chin of the boiler. This area is nearly

rectangular and is modeled as such. The model is

shown in Figure 9.

While the tube walls of the actual furnace are

ribbed, they are modeled as flat surfaces. The

slight change in depth of the furnace due to the

lower front wall is not considered. There is

some refractory in the furnace, but it is slight

and will be disregarded in favor of a continuous

water wall assumption. The model will be a jsim­

pie rectangular parallelepiped of length, width,

and height to closely match the actual furnace.

The simplifications thus far are not thought to

materially affect the results. 4 5

BURNOUT ■ ZONE

STIRRED • REACTOR

DELAY AREAS B m m n BYPASS ZONE! ZZZ3 PERFECTLY STIRRED ZONE

FIGURE 9 PHYSICAL MODEL 4 7 5.2.2 The physical modeling principle is based on 24 Bragg's analysis for efficient combustion. It is

characterized by a stirred back mix zone followed

by a plug flow zone.

Within the actual boiler, there are three major

combustion zones. They are the fuel bed zone,

stirred combustion zone, and the burnout zone.

5.2.3 In the fuel bed zone, moisture is driven off,

pyrolysis takes place, and some partial burning

occurs. This solid zone accounts for about 15

per cent of the heat production in the boiler and

is a region of gas production. This region will

be assimilated into a stirred combustion zone,

and the actual fuel bed will not be modeled.

This simplification is made since the zone is

thin, and its function as a gas generator can be

included in the stirred combustion zone. Since

the heat generation and reactions will be ac­

counted for, this simplification will only af­

fect the region near the bed and inaccuracies

will be localized. 48 5.2.4 The stirred combustion zone is the area immedi­

ately above the grate and, in our model, is

characterized as zero dlaenslonal#. This arises

from the fact that an array of high velocity

overfire air mixing jets pierce this region

causing turbulent mixing in the actual boiler

(see Figure 7). This region is first modeled as

perfectly stirred. This allows us to assume a

homogenous region with zero dimensional flow and

uniform temperature.

5.2.5 The perfectly stirred reactor zone assumption

was modified with the addition of a delay 9 function and a bypass flow. The delay function

was used to account for a number of effects.

These were associated with heating delays in and

near the bed that were eliminated when the bed

was eliminated and the heating time associated

with the incoming fuel and air streams. A linear

delay •ftmctio.n. was. 'originally used, hut was ..dis-

çarded i n •favor'of •a single factor, bypass.

The bypass flow characterized by a bypass factor

was added for two reasons. First, the burning

rate equations, described later, were based on an 49' average residence time. Average residence times,

were required to be able to mathematically model

the boiler. Second, the assumption of total mix­

ing was too strong of an assumption.

The region cannot be considered perfectly mixed. '

There is much heterogeneity. Air flowing through ■

the grate is stratified due to uneven bed porosi- ,

ty. The heterogenous bed also produces an uneven

distribution of fuel products. Overfire air is

used for mixing, but it enters the boiler as a

stratified stream. Fuel, also enters as a sepa­

rate stream. Fuel, in addition, enters as a sol­

id and can be carried along with the flow before

it is pyrolyzed.

Within the stirred reactor zone there is a resi­

dence time distribution for fuel. Some fuel may

be in the region for a very short period of time

and have almost no chance to react within the

zone. This fuel in essence bypasses the zone;

hence, the concept of the name bypass factor.

Other fuel might remain in the region far longer

than the average residence time. 50

To take the above effects into account, a simple

residence time function was added and called the

bypass factor. The model was formulated so that

some fuel was in the slice for zero seconds and

the rest of the fuel was in for a new average

time greater than the original average. The

weighted average of all fuel equaled the original

average residence time.

5.2.6 ' The burnout zone is represented as a plug flow

region* This zone is divided into a series of

slices* Each slice is modeled as a well stir­

red reactor* All of the slices in this zone

are 1*5 foot high* This series of slices is

used to approximate the one dimensional flow

that is a characteristic of this region* As

one decreases the thickness of a slice while

at the same time increasing the number of the

slices the approximation becomes more exact*

The 1*5 foot high dimension was chosen as a

compromise* This value gives a fairly close

mesh while limiting the number of slices to a

number that would be manageable mathematically* 51 As the flow approaches the chin of the boiler,

the flow would not be one dimensional and the

slice lengths would change? so, the model is not

meant to represent this region.

5.2.7 The air is characterized as oxygen and nitrogen

of standard composition. Recirculation flow

could be modeled by changing this representa­

tion. Air of standard composition is chosen

since it represents the Columbus System. The

fuel is characterized as being primarily

cellulose. Water and ash are also introduced

with the fuel. This mixture is consistant with

the analyses of refuse composition in actual

practice.

5.2.8 Gas radiation is characterized by banded radia­

tion of heteropolar molecules of gases and

vapors. These molecules include 2^0, CO^/ HCl,

SOj, CO, NH^, NO^, alcohols, flyash, and hydro­

carbons. Gases like 0^, and 2^ do not

radiate appreciably in the range of temperatures

found in industrial furnaces. The total radia­

tion is proportional to the partial pressures of

each gas, and 2^0 and CO^ are orders of magnitude 52 more concentrated in the furnace than other

gases. Only the emissivities of H2O and CO2 will

be considered directly in our analysis.

The hydrocarbons from the fuel can have a large

contribution to the radiation characteristics of

the boiler. The fuel cracking process produces

hydrocarbon gases, vapors and especially solids

in the form of soot. These hydrocarbons have a

significant effect on the total emissivity of the

radiating gas. In an attempt to take the hydro­

carbons and other species into account for radia­

tion purposes, a factor was used to darken the

gas. The factor was appropriately called the

blackening factor - a name coined by Beuters.

5.2.9 For radiation purposes, the gas is treated as

gray with CO2 and S2O the only radiating con­

stituents. Its fractional attenuation is con­

stant and independent of wave length even in non­

equilibrium systems. The walls will be assumed

to be nearly black Lambert gray surfaces.

The water walls of the furnace were assumed to be

of uniform temperature corresponding to the sat- 53 □ration temperature of the water in the boiler

tubes at the pressure of the boiler drum.

The end effects of radiation of the furnace at

the bed and at the chin were handled in the fol­

lowing manner. The bed was assumed to be a per­

fect reflector. The furnace exit was assumed to

not neck down, and the slice model was continued

approximately six slices past the point of inter­

est and then connected to an infinite sink at

uniform temperature.

5.2.10 Many of the assumptions made to describe the fur­

nace will be discussed further after,the computer

model is formulated.

5.3 THEORETICAL MODEL

A radiation, combustion model of the furnace is developed in the following discussion. A number of assumptions were made prior to developing the model.

1. .All work terms that may appear in a conservation

of energy equation were considered insignificant

compared to heat terms and were ignored. 3k 2. The velocity through any horizontal plane in the

furnace was assumed to be constant►

3. Conduction heat transfer was assumed, to be minor

compared to radiation heat transfer and was dis-»

regarded,.

4. Convection heat transfer was assumed to be sig­

nificant only due to its contribution as part of

the bulk fluid transfer through the furnace.

Convective heat transfer to the wall was consid­

ered to be minor when compared to radiation heat

transfer,.

3. The system is in steady state equilibrium.

5,3,1 A conservation of energy equation is the basis of

solution of the model. Figure 10 shows a typical

volume element in the furnace. The energy

equation for this element can be written as:

.d(C T) A: dq (4) = A..q------?q dy dy 55

MCpT + (9r .d(C T) M- dy dy 3ÿ-

dy qAdy

FIGURE 10

TYPICAL SECTION

THROUGH FURNACE 56 Before this equation can be applied, the equa­

tions governing the radiation flux and com­

bustion rate must be obtained.

5.3.2 The radiation to the wall and along the direction

of flow are governed by the same equations. Only

the boundary conditions are different. In the 22 manner of Sparrow and Cess , we can develop an

equation for the radiation flux in an absorbing,

emitting, and scattering medium. The analysis is

one-dimensional. Shape factors will be added

later in the analysis too the - one-dimensional rad­

iation transfer to account for the geometry.

Figure 11 shows a medium bounded by two infinite

plates. The monochromatic intensity of the radi­

ation within the medium, I^ (x, 6 ), can be

divided into a positive component, I (x, 8 )/

and a negative component, ” (x, 9 ). We make

the assumption that scattering is uniform in all

directions (isotropic) and the frequency is con­

stant (coherent) . Figure 12 shows a beam of rad­

iation from a wall. 57

Surface 1 Surface 2

\

\ \ M

N\ \ \ \ N

FIGURE 11

ONE-DIMENSIONAL

RADIATIVE TRANSFER 58

Surface 1 Surface 2 K dz \

dw

FIGURE 12

RADIATION BALANC

THROUGH A SLICE 59 AS the beam passes through the thickness dx its

magnitude is changed due. to three factors: the

intensity will increase due to the emission with­

in dx, absorption and scattering within dx will

cause attenuation, and scattering from other in­

cident beams will increase the intensity.

The emission in the direction of the beam can be

given as:

(5) t C0s (9)

where k^ is the monochromatic absorption coef­

ficient and is the black-body emissive

power. Since e^^ is temperature dependent, it

is a function of location within the medium.

The attenuation due to absorption and scattering

in the direction of the beam is given as; .

\ XcosIsJ 60 where is the monochromatic extinction coef­

ficient .

The total scattered energy per unit surface area

caused by all incident radiation is:

where is the monochromatic scattering coef­

ficient, is the angle of an individual inci-

dent beam, and dw is the solid angle of the beam.

The solid angle can be converted to two polar

angles. The integral can be changed to a double

integral and the first integral evaluated as

giving the result;

C8) sin(*)

or

(9) _ ■ 6f where G;^ (x) is the total incident energy per

unit ' area, within the medium. The change in

intensity, due to incident scattering, in the

direction of the beam is;

is (10) £fTC0s(9)

The equation of transfer may be written for the

element shown in Figure 12 using Equations 5, 6 ,

and 1 0 .

^ " T C0S(3) ~ COSC 3) “ ~ ZfrCOsC 9)

The same equation can be found for I^ (x, 9 ) .

Through the use of variation of parameters, we

can obtain the following equations for and 62

(13) Ii(t^,u) = I%(t^^,.)e

: ? y r O 63 The derivation is in Appendix C.

The total monochromatic radiation flux is ob­

tained by integrating the intensity function

I ( t, «u) about the sphere. This may be ex-

pressed in terms of the positive and negative in­

tensity functions as

(1« qp\(tx) = 2%/ijl “ - S’/" -'0 -'0

We may now substitute equations 12 and 13 into

equation 14 to obtain the following equation for

the radiation flux.

(15) qj.^ = u da

an

d u d z' 64 This function may be integrated over all wave­

lengths to yield:

By differentiation, equation IS can be put into

the form required in equation 4.

The bracketed term in equation 17 may be evalu­

ated by differentiating equation 15. For the

derivation see Aaoendix D, The result is:

(18) ^ = 2. r r f dll •'0 *

«/Q0 - - 65 We may write the total incident energy in

terms of the positive and negative intensities,

and rr ,using equations 8 and 9 and not-

ing that^ cos 4)

(19)

,u')dn»

o equa-

(20) G,(tT?

* 2 Cz) + V n r âa ds J q u 65 We may write the total incident energy in

terms of the positive and negative intensities,

and ,using equations 3 and 9 and not­

ing that-sin d* equals du' where u* = cos $

(19) = 2.v/ Tj^(tj^,ô)sin(0)• d

= ) àu<

= 2 )

Equations 12 and 13 may be substituted into equa­

tion 19 giving the following equation:

(20) G^(tt) = 2^ri;^(0,ii)s-V^dii J 0

+ 2 ”^ I%(t^,-3)e-(ta\-tx)/2 a.

e-

the exponential integral notation developed in

Appendix D.

(21) = Z i r f 1^(0,n) du JQ

JQ

V a | ) d 2

Equations 11, 18, and 21 could be used in the

energy equation. However, no solution to the

problem under the constraints of the furnace geo­

metry would be possible.

5.3.3 To obtain a useful solution to the furnace prob­

lem, simplifying assumptions must be made. We

will assume that the gas is gray. This is an ac­

cepted simplification even for simple gas 22 structures. For furnace gases of relatively un­

known composition and including suspended solid

soot particles, this approximation is a necss- 67 sit y if a reasonable problem is to be solved.

Using this approximation, Equations 15, 18 and 21

yield:

(22) q (t) =2^/" 1^(0,u) u dii -'O •

- 2/r^ n dtL

+ ^gG(z)')E2(t-z) ds

- + ^gG(z)) 2 2 (z -t) dz

(23) ,vl) -du

4- 2 i^ I"(t^ 5 -u) du

+ 2 ^^‘^(|e^(s) + |gG(z))S^ (| t-z[ ) dt

(2W S ( t) = 2 »-/ dm VQ + 2^/* Z"(t,-u) e"^ *'g"t)/u

+ + |gG(z))S^ ( [t-z| ) dz Jo " 6 8 Since we know so little about the gas, it is not

possible to determine what the scattering coef­

ficient would be. The medium is expected to con­

tain soot particles. If we assume that these

particles act as black bodies, their presence

tends to reduce any effects of scatter. Since

soot is expected to be present, and since we have

no way of estimating scatter, we will assume the

scattering coefficient s is zero. This elimin­

ates Equation 24 and Equations 22 and 23 become:

(2$) OpCt) = 2 I'^COjU) e"^^^ u'-dn

- 2 ^ U'-dn

+ 2 / dz

- 2 / e-jj(z)2-,(2- t ) dz

(26) = 2 du

r^o + 2jT e^(z)E^ ( |t-z I ) dz - 4e^(t) 69 5.3.4 The boundaries of the space must now be defined.

There are three areas of interest; the furnace

walls, the refuse bed, and the furnace exit.

The furnace walls are made up of carbon steel

tube sheets.. The steel is expected to be oxi­

dized. A well accepted practice is to treat the

surface as gray and diffuse. The intensities in

Equations 25 and 26 are now independent of angle,

and these equations can be transformed into the

following equations:

C2 7 ) q^(t) = t3

+2^ dz - 2 Jdz

(2S) - 0 = = 2Hg(S2C« + ZzCtg-t)) 70 The derivation is in Appendix E. Also, from Ap­

pendix E, we have the beat flux at the surface

as:

(29) qj.g = Bgd^(tg)) - zj^ dz

where

+ 2(1- L) (30) Eg = 1-2(1- «g)E^(tg)

It should be noted that the surface temperature

is constant and is taken as the temperature of

the boiling fluid in the tubes that make up the

wall.

Analysis of the refuse bed is a problem worthy of

its own paper. The bed essentially forms a

boundary where there is little net heat transfer.

The furnace radiates onto the bed and the bed ra­

diates back to the furnace volume. Conduction

and convection are in opposite directions 71 through the bed. Gasification absorbs energy and aids in limiting the heat transfer through the bed to the grate. First we assume there is no net heat transfer through the grate, and then we eliminate the fuel, bed and replace the bed with a plane specularly reflecting surface. Figure 13 is a representation of this change.

The mirrorlike surface at the grate produces a symmetrical field about the grate. Once one ac­ counts for the apparent radiation from the mirror image, the bed no longer enters as a boundary condition and can be ignored. As is seen in

Figure 13, point A radiates to point C in both a direct path, A-C, and a reflected path, A-B-C.

The reflected path can be represented by the path

A ’-C originating in the mirror image. Point A’ has coordinates (x, -y) while point A's coordin­ ates are (x, y).

The furnace exit is modeled as a black body to eliminate a complicated geometry problem. The actual furnace chin provides a partial roof which can be considered as a dark gray surface. Below the chin in the two dimensional flow region. 72

T.w

/B /

FIGURE 13 BED REPRESENTATION AS

A SPECULAR REFLECTING SURFACE 73 which is not being modeled, is a layer of furnace

gas that increases the apparent grayness of the

surface. The other portion of the exit is the

gas passage with the boiler roof above. As with

the boiler chin, the boiler roof and gas passage

provide a dark gray surface. The length of the

gas passage is such that it alone provides a gray

sink. Taking these factors into account, the

exit end condition is modeled as a black surface.

Equation 29 can be written for one-dimensional

flow to the exit "surface" as

5.3.5 In order to complete the analysis of the radia­

tion exchange between the gas and the surfaces,

the geometry of the furnace must be taken into

account. The furnace has the approximate

dimensions of length, width and height in the

ratio of 1:1:2. When we take into account the

specular reflecting surface that replaces the

grate, these apparent dimensions become 1:1:4.

Hottel tabulates the average mean path length for 74 a surface/gas exchange. For the walls, the

average mean path length is .82 times the

shortest edge, and for the next exit face, the

average mean path length is .71 times the

shortest edge. In the development of the radia­

tion. equations a one-dimensional analysis was

used with a characteristic dimension

equals KL. The average mean path length is 1.76

times the distance between the parallel plates.

These values are strictly accurate for an

isothermal volume radiating to a surface

■ element. This distinction is ignored even though

the plug flow region has a varying temperature. A two dimensional radiation exchange model would

have to he formulated. Such a model has not heen

attempted and would require extensive computer

capacity and time. A combination of Hottel’s gas

slice-wall exchange model, Lowe’s cubic zone mod­

el and Sparrow’s angle factors in a combined mod- 15 18 22 would provide a starting place. * *

-5*3«6 Stirred reactor theory forms the basis for ana­

lyzing the gas within the furnace. A stirred

reactor is characterized by zero dimensional flow where fuel and air concentrations,temperature and pressure are all constant, the reactor is unifiDrm 75 throughout, the volume. For one-dimensional

radiation transfer characterized by a stirred

reactor, equations 27, 28, 29, 30 and 31 can be

written as;

(32) cy(t) =2(2gf«'3*)(3_(t)-2y(tg-t))

(33) = 2(Hg+«T^)(î^(t)- ^^(tg-t))

(34) = (Sg-«T^)(1-2Z^(tg))

t^(«l4_oT4) ^

(36) qpj. = (»T^-®r^)(i-233(tgy)) 76 5.3.7 Convection heat transfer to the walls was includ­

ed as part of the model. A standard convective

heat transfer equation was used. ^5

( 3 7 )

where

(38) E, = .036l£^r’/3(He‘|-P.s^3v(^-ri)

The equation is based on fully developed turbu­

lent flow beginning at the grate surface. This

is compatible with modeling the overbed zone as a

stirred reactor.

Convective heat transfer proved to be of little

importance in the actual system modeled and could

be ignored if so desired.

5.3.8 A phenomenological approach was taken to de­

scribe the heat generation by combustion of 77 refuse with air. This approach was chosen since the actual mechanistic reactions were not known.

It was felt that due to the complexity of the reactions involved, no realistic mechanistic ap­ proach could be formulated.

The burnup of fuel was modeled as a second order reaction proportionaüL to the concentration of fuel and oxygen concentrations. The fuel enter­ ing the furnace was modeled as composed of Car­ bon, Hydrogen, Oxygen, Water, and Ash. Air was assumed to be composed of oxygen (0) and nitrogen

(N) .

The fuel was assumed to decompose on the grate.

The ash was- assumed to remain on the grate.

Water (W) was assumed to vaporize, and the heat required to vaporize the water was assumed to come from the stirred reactor volume.

Carbon, Hydrogen and Fuel Oxygen where consti­ tuents that entered the rate equation as fuel

(?) ., It was assumed that as the fuel burned the proportions of these three elements would remain constant. It is unlikely that the above assump- 78 tion is correct. However, as was stated pre­

viously, the reaction mechanism is too complex to

model mechanisticly.

The rate of disappearance of fuel (C, H, Og) per

unit mass of the fuel can, in the manner of 26 Glassman, be defined as:

where ff is the frequency factor, 2g_ is the

activation energy, is the entering fuel ex­

cluding water and ash and 0^ is the entering

oxygen.

The rate of disappearance of fuel auid oxygen are

related by the stoichiometric burning ratio

(St). We may write:

(W) Fb = (4 1 ) 0^ = Og-O (42) St = Oy'Fjj

(43) F = Fg(l-a)

(44) 0 ='Og(l--o) 79 where and 0^ are the amount of fuel and oxygen

burned, and a and b are the fractions of fuel and

oxygen burned, respectively. Manipulation, of

equations 40 through 44 yields an equation for

the oxygen amount in terms of the fuel.

(45) 0=0^- (Fg-F)St

Equation 39 may now be expressed in terms of the

fuel only.

= ff SzpH; /ST)

For a stirred reactor, the temperature is assumed

to be constant and uniform. We may write the

heat generated in the stirred reactor as

(47) a = T p ff Ezp (S /ST)MSsdisZaHH. ( P g + O g + M ) - 80 where ?_ is the average fuel concentration in the

stirred reactor, Vg and p are the volume of

the stirred reactor, and density of the gas in

the stirred reactor, respectively, and where

A h is heat of combustion of fuel.

Equation 47 can be converted from a function of

time to a function of distance by the following

conversions:

(48) H = pAF

• (49) 7= dy/dt^

where M is the total mass flow, A is the area of

the flow path, V is the fluid velocity, and dy is

the distance above the fuel bed. For a stirred

reactor. Equation 46 becomes: 81 where P is an average fuel concentration. cL

S»3.9 The burning rate equation is based on perfectly

and completely mixed systems of fuel and air. No

provision is made for non-ideal mixing. To allow

for imperfect mixing, a bypass factor was used to

adjust the burning rate equation for a well

stirred mixture as opposed to a perfectly stirred

mixture. Within the stirred reactor the

residence time for fuel varies. Some fuel may be

in the region for a very short period of time and

have almost no chance to react within the zone.

This fuel, in essence, bypasses the zone; hence,

the concept of bypass. Other fuel may remain in

the stirred reactor far longer than the average

residence time.

Since the fuel and air enter the furnace in sepa­

rate streams, time is needed to remove the

stratification present from the incoming

streams. In addition, the fuel enters as a solid

and requires time to be pyrolyzed.

A model was formulated to take the above effects

into account. A simole residence time function 8 2 was added and called a bypass factor- By. The

model was formulated so that part of the fuel and

air was in the stirred reactor for zero seconds

and the rest was in the stirred reactor for a new

time period. The weighted average time of all

fuel and air in the stirred reactor was equal to

the original average residence time based on the

mass flow rates. Equations 46/ 47 and 50 become:

(51) -M" = (1-Hr) ff 2sp(-3/SI)---- 2-----2------0 0

‘?a(Og-(F^-F^)St) (52) q = (1-By) ff 3rptS/ST)-_; ^

F(0.-(F„-F.)St) . (53) = (,.By) ff f 83 5.4 COMPUTER MODEL

The computer model uses the concept of the stirred reactor to model both the stirred reactor region at the base of the furnace and the plug flow region above this region.

The plug flow region is modeled as a series of slices. Each slice is modeled as a stirred reactor. As the slices are made thinner and the number of slices increases, the slice model of the plug flow region approaches the continuum characterized by the plug flow volume. Stirred reactor equations developed in the theoretical portion of this chapter can be used for all portions of. the furnace.

5.4.1 The computer model, differs from the theoretical

model, in one major respect. The computer model

incorporates experimental emissivity values for

CO^/ mixtures compiled by Hadvig^^^^. A

chart of the data is presented in Figure 14. An

approximation of this chart is stored in the com­

puter.. The emissivities in the X and Y direc­

tions are calculated based on geometry, com­

pleteness of combustion and slice temperature.

Since we are using a gray gas approximation with

no scattering, we can set the absorptivity ( a ) / lOÛO aoo

600

5 400

300

200 ut H “ hH'l+î Tumpeioluie (uiiye ol 4 % inat.eiioi lOO r ao

6 0 *------»- I-I— - 002 003 004 006 000 Ol 0.2 I 2 3 4 5 6 7 . lalin.llllj

FIGURE 14 EMISSIVITY CURVES FOR CO^, MIXTURES

oo 85 equal to the emissivity ( e ) at. a given temper­

ature,

5.4.2 Formulation of the gas to gas radiation transfer

as part of the computer model merits discussion.

The numbering system is shown in Figure 15. The

slices that comprise the the real furnace volume

are numbered 1. to n and the slices that are part

of. the image formed by the reflecting plane are

numbered -1 to -n. Slice 1 is the stirred

reactor in the furnace that, measures 13 feet

high. The height can be varied.

We may write, for a gray gas that the radiation

emissive power from slice i is

(52l) 3^ =.9

where < is Hadvig's emissivity. The emission

is in both the positive and negative y direc­

tions. A similar equation can be written for ra­

diation emissive power to the wall noting the 86

Sink (n) ! Slice (n-1) 1

Slice (i)

Slice (2) I

. T. 7T

Slice (1)

Beflecting Plane

Slice (-1)

Slice (-2)

Slice (-i)

Slice (-H+1)

Sink C-n)

FIGURE 15

SLICE REPRESENTATION 87 difference in geometry. Due to geometry, the gas

to gas emissivity is different than the gas to

wall emissivity.

Figure 16 shows the radiation to a given slice i

from all other slices. Each slice absorbs a por­

tion of the radiation impinging upon it and

transmits a portion of the radiation. Assuming

linear attenuation, the amount a slice transmits

is given by:

and the amount a slice absorbs is given by;

(5S) (1- 88

Slice (1+3)

Slice (i+2)

Slice (i+1)

Slice (i)

Slice (i-1)

^i-2 Slice Ci-2)

1-3 Slice (i-3

FIGURE 16

ABSORPTION BY SLICE 89 which can be written as:

(57)

The radiation absorbed by slice 1 from slice j

can be written as:

(58) ' h i =

j-1 (59) Ej a (1-a^) for i j, i ^ 1

(60) Ej. for i = j-1

The total radiation from all other slices to

slice i is:

m °i,-a 90

where a. and a. are the sinks. These can ‘in *1 , -n be included in a simpler notation by counting the

sink as the last slice n. then becomes:

j=i-1 j=a =-i = j Z , =.ij ^

5.4.3 The computer model includes a modification to the

Hottel emissivities as presented by Hadvig. The

modification is the inclusion of a blackening

factor (?y) as coined by Bueters^^^). The

factor, as discussed previously, modifies the

COg, SgO, emissivities ( ) detailed by

Hottel. The gas emissivities ( « ^) become:

(S3) «i' = (R,- 1 + y / F ^ . - 91 5.4.3 For a black body wall, the radiative interchange

rate at the surface is given by:

For dark gray walls of emissivity e > .8, Hottel

suggests a modification to equation 64 to account

for the radiation reflected off the surface and

then eventually absorbed by the surface. If the

emissivity is high, Hottel suggests a multiplier

of (

This equation becomes:

CS5)

This accounts for some of the possible absorption

of the reflected radiation. Tg is assumed uni­

form in this equation. We introduce error when

using Tj^which varies from slice to slice. This 92 is unavoidable in the current research since the

increased complexity due to a rigorous treatment

of the wall/gas interchange is not warranted. It

is covered in Hottel for those who wish to pursue

the subject.

5.4.4 The computer program includes a routine to calcu­

late variable specific heats. The convective

flow due to mass flow through a slice i is given

by:

5.4.5 Slice energy balance can be written using equa­

tions 37, 52, 54, 62, 65 and 66. The equation

can be arranged in the following form:

(67) A3* + BT^. = C 93 When solving for ,all other slice temperatures are constant. A Newton-Raphson iterative solu­ tion technique is used. Its form is:

Equation 63 is solved for each slice, and then the new slice temperatures are used to determine a new set of temperature equations in the form of equation 67. The process is then repeated. The program stops executing when the difference in successive values of all temperatures is less than a set error criterion of *03 degrees. 94

5.5 NOMENCLATURE

A Plow Area

Area of Wall

By Bypaâs Factor

C Carbon I Cg Specific Heat @ Constant Pressure

Activation Energy

Slice Emissive Power

9 nth Exponential Integral

e-|3 Black Body Emissive Power

F Fuel Mass Plow, Dry & Inert Free

Fg Entering Fuel Mass Flow, Dry & Inert Free

F^ Blackening Factor

ff Frequency Factor

Q Total Incident Energy Flux

H Hydrogen

Incident Radiation to Surface

Eg Convective Ht Trans Coef.

Ah. Heat of Combustion

I Radiation Intensity

1^j Slice Numbers

kg Conductivity of Gas 95 L Characteristic Length

M Mass Flow Rate

ÎT Nitrogen

0 Oxygen Mass Flow

0 ^ Oxygen Mass Flow In Fuel

Og Entering Oxygen Mass Flow

P Perimeter

Pr Prandtl Number

q Heat Generation

Convective Ht Trans to Wall ”C q^. Gas to Gas Radiation Ht Trans, (q^.)

q^ Convection Ht Trans by Mass Flow

a-vr Total Ht Trans to Wall q^^ Radiation Ht Trans to Wall

H Gas Constant

Hg Surface Radiosity

He Reynolds Number

St Stoichiometric Air/Fuel Ratio

T Gas Temperature (T ) g , ' Wall Temperature t4 Time u. Direction Cosines (%i)

Stirred Reactor Volume

V Velocity 96 Water Mass Plow z Surface to Surface Direction

7 Plow Direction

a Absorptivity

a Absorptivity of Gas from Surface Radiation

B Extinction Coefficient

€ Emissivity

€ Emissivity of Gas O gg Emissivity of Surface s Scattering Coefficient k Absorption Coefficient

> Wavelength p Density a Stephan-Boltzmann Const. t Optical Distance t Optical Thickness 0 w Solid Angle

d j Directional Angles CHAPTER 6

RESULTS AND DISCUSSION

6.1 INTRODUCTION

Six parameters were studied to determine their effect on the combustion process within the furnace. The parameters were frequency factor, activation energy, air/fuel ratio, by­ pass factor, stirred reactor height, and blackening factor.

Pour of the parameters deal directly with the combustion process. The frequency factor and activation energy determine the reaction-rate velocity constant in the combustion rate equation (equation 53) for a given temperature. The air/fuel ratio enters into the rate equation as information to cal­ culate the air and fuel concentrations within that equation.

The bypass factor enters the rate equation as a stirring coef­ ficient.

97 98 The stirred reactor height provides a parameter to study the overall effect of geometry on the combustion process. The

blackening factor provides a parameter to study the influence of gas emissivity on the combustion process.

6 . 2 INPOT DATA

The target design used as the basis for the model calcula­

tion is a simplified representation of the Columbus, Ohio refuse incinerator# The physical dimensions used in the model are a close representation of the actual furnace dimensions.

In the actual furnace, the stirred reactor zone is expected

to have a height of about 13 feet on account of the location of

the overfire air ports. The model uses 13 feet as a base param­

eter# -The effect of the stirred reactor height was studied by

varying this dimension from zero to forty feet#

The plug flow region was represented by a series of slices,

each of which was 1#5 feet high# Nineteen of these were arrayed

to represent the furnace under the base conditions, with a stir-

redL-reactor height of 13 feet.

The fuel input rate used in the model was 50,000 lbs/hr which was the full load input rate capacity of raw refuse to 99 the Columhus boiler. The fuel composition v;as a simplified rep­ resentation of the refuse fuel described in Appendix A; it is idealized as

Fuel Characteristics

Carbon 2.6% by weight

Hydrogen k %

Oxygen 209^

H^O 20%

Ash 2 0 %

Heat of Combustion 5400 Btu/lb

None of the fuel parameters were varied in this study.

The air/fuel ratio was varied. The excess air quantity was altered from 2 3 % to 100%; this range encompasses the capability of the actual boiler. A base of 50% excess air was used.

The air and combustion gases were modeled as high temper­ ature air with variable parameters of specific, heat, con­ ductivity, Prandtl. number, and Reynolds number. These para­ meters were obtained as curve fitted data for air in the range of temperatures from 1,000 to 3,000 degrees F based on the gas temperature. 100

The range of frequency factors and activation energies was chosen to include the experimental values determined by Biswas

( 6.06 X 10^ sec'l, 29,000 Btu/lbmole)^^and Shieh (.155 % 10^ sec~T, 36,200 Btu/lbmole)(^^). These are the only data avail­ able which approximates refuse fuel. The frequency factor was varied between .125 x 10^ sec"^ and 64 x 10^sec“\ The range in the activation energies used was from 20,000 Btu/lbmole to

37,000 Btu/lbmole. No base value was used for frequency factor, but 32,000 Btu/lbmole was used for the activation energy.

The bypass factor range is between zero and 1,0 \\rith a base value of 0.3. No theoretical or experimental values have been established at this time which would limit this range.

The range of study of the blackening factor was from 1.0 to

3.0. Bueters was able to determine an experimental value for natural gas of about 1.2 and for oil of about 1.5. A base value of 2.0 was used for refuse, on the expectation that particulate matter in the gas stream will increase the flame emissivity above the value for oil.. 101 s.3 OUTPUT FORMAT

Before discussing the actual, results of the computer modeling study, an explanation of the format of the output is in order to aid the reader in following the discussion. All of the computer runs discussed are found in Appendix G. As an introduction to Appendix G, an index listing each run is pro­ vided. This index gives the numerical value used for that particular run of each of the six variables studied. Fol­ lowing the index, the runs are listed in order.

For example, Figure 17 is a typical run from Appendix G.

After the name and title, the run number appears in the upper, right hand corner in large numerals. This number is the run number referred to throughout the discussion.

Since the full printout gives extensive data on each slice but not in readable form, the reduced computer printout page is a summary page of the more important data contained in the full computer printout. /

0 *

.OOMAlO A . (lAOUllC SrUKEll MÜliER tU hdU SI |OI|, ANU llkAI IRAMSFER ANALYSIS RROCRAH nUN NUHDKn . 19 n S lIR R lIl RtALKlM III - Ù .O O * llYPASS PAC • O .ÏO AtflV BlUN tK&RCY • > 2 0 0 0 , fRCÜUEIlCY PAC • bOOQOOO.. RLAIKAHINC PAC - J . o o ' •) -*iur»u vtw~nuTurir^niF ii>r»üf iiHÉ— -iiiu— r ”c«ï~:*----sj— 7— ruti----- liuy et R— A,v w*i t---- f lOOA I. V V }» lUîTii-hiisîi?*. kiiiîiii )' '.f l i i m AO.'iCO I lî : ■l A3SU i; YU I: ilAiS V. I ■ 9AA.5SOI 1020. il i IISh ': OOA.Aaojl-nhil SS40 mm f O.AI A990S •ti

I 816i2A0 S^A18«6S0.2lf30 .. v,i. iiii r. f

V

R 103 Under the name and title are listed the values o£ five of .the

six variables studied. The stirred reactor height has units of

(ft), activation energy is in (Btu/lbmole), and frequency factor is (sec" ). Excess air, not listed,was held constant at 0,5 in runs 1 through 55, 62 through 99, and 106 and above. It was 1,0 in runs 56 through 6l and was 0.25 for runs 100 through 105.

The slice number listed on line three keys in the other

factors listed horizontally for each slice. The temperature is in degrees Sankine, the heat utilization as a ratio of heat

transferred to the wall divided by theoretical heat input, the

time in the slice and total time in the furnace are in seconds,

Water vapor, carbon dioxide, oxygen, and fuel leaving a slice

&re pounds. The heat generated in .a slice, and the radiation

and convection to the wall from the slice are in units of

Btu per hour,

6,4 RESULTS - GENERAL CHARACTERISTICS

The aspects of most general interest required from the

model, were the predictions of temperature and reactant-product

profiles along the flow path of the furnace. The results obtain­

ed, which vrill be described in detail in later sections of this 104 chapter, are generally in accordance with what one would expect in a furnace of this type. The temperature profiles match ex­ pectations; the fuel burnout and reaction products profiles are reasonable; however, the combustion efficiency.appears to be. slightly higher than expected. The thermal efficiency, never­ theless, is in the range that would be expected in such a boil­ er.

Figure 18 illustrates typical predictions; characteristi­ cally, two different types of temperature profiles are gener­ ated, Curve A shows a region of constant temperature through the stirred reactor region followed by a continuously decreas­ ing temperature profile. In Curve B the stirred reactor con­ stant temperature region is followed by a peaking temperature profile-(In each case the constant temperature is an artifact of the stirred reactor assumption that the properties through­ out its volume are uniform).

The data also revealed two types of combustion profiles.

As shown by Curve C of Figure 18 one type of combustion wqs characterized by a step function. This v/as due to complete combustion occurring ^within a single slice. The second type of combustion profile is sho?m by Curve D. In this case com­ bustion in the furnace takes place within a number of slices.

The types of profiles are due to differances in reaction rates. 105

C u r r a A 2SC 0

2 7 0 0

•2SC0

CO

,2200 50

2100 .

20

70

5 50 FIGURE 18 Typical Output Profiles

50

lorra

0

0 106 Two patteras of heat absorption occurred within the fur­ nace,.. Curre 2 of Figure 13 shows a continuously increasing

function with, a continuously decreasing slope. Curwe F begins with a function of constant slops within the stirred reactor

followed by a function sinilar to Curve S, ‘The difference is

due to the omission of a. stirred reactor in the furnace shown

as Curve E,

For runs where there is a fully developed combustion zone

above the grate, the results appear to be very good. There

were runs where combustion did not start within the stirred

reactor zone, but instead started within the plug flow region.

In a stoker fired boiler, the combustion normally starts at

the fuel bed. The results where the reaction begins above the

stirred reactor zone do not model any actual boiler. However,

in order to study the effect of an individual variable over a

large range, these results are useful for. analyses and the

outputs have been retained.

6.5 SFFECT OF FRSQUSNCT FACTOR

Changes in the frequency factor were studied in runs 8

through 13* The range was from 0,125 % lO^sec”^ (125k) to

4.0 X 10^ sec”"' (4M). The data from these runs is summerized 107 in Table 3. The frequency factor was increased by a factor of two for each successive run. All other, parameters were held at their base values.

Activation Energy = 32,000 Btu/lb mole (32k)

Excess Air = »5

Bypass. • = .3

Stirred Reactor Ht. = 13 feet

Blackening Factor = 2.0

For a frequency factor of 125k (Run 8) combustion did not take place within the furnace. The furnace height is taken as 40 feet measured from the grata. As is seen in Table 3, as the frequency factor increases, the combustion occurs lower in the furnace due to the increasing combustion rate. At 4M (Run

13), combustion is fully developed on the grate.

Under these base conditions, it was found that an in­ crease in frequency factor by about a factor of 20 to 30 would cause a change in combustion characteristic from a non-burning state to fully developed combustion state beginning within the stirred reactor zone. The other parameters alter this ratio as will be discussed later. , 108

TABLE 3

EFFECT OF FREQUENCY FACTOR

Frequency Combustion Run Factor Onset No. (000/sec) (ft.)

8 125 None

9 250 25

10 500 17.5

11 1,000 14.5

12 2,000 13

13 4,000 grate

NOTE: ■ Activation Energy 32.000 Btu/lb mole

Stirred Reactor St 13 ft.

Bypass Factor .3

Blackening Factor- 2.0

Excess Air .5 109

6.6 EFFECT OF ACTIVATION SNEEGY

The effect of this factor was investigated in runs 6, 22,

26,'31j 36, 106, and 10?-(see Table 4), with a range from 27k through 37k. The other parameters were held at their base values. The frequency factor was constant at 300k.

With an activation energy of 37k, no combustion occurred within the 40 foot furnace height. Combustion was fully de­ veloped on the grate only when the activation energy was re­ duced to 27k (see Table 4- ) •

Under the base conditions, it was found that a decrease in activation energy of 10k in the range of 27k to 3 7k would cause a change in combustion characteristic from a non-burning state to a fully developed combustion state beginning within the stirred reactor zone.

6.7 INTERACTION BSTTfSSN FKSQUSNCY FACTOR AND ACTIVATION

ENERGY

The range of values for frequency factors, and activation energies studied was chosen to inclade the experimental values of Biswas and Shieh . In this range, it is not 110

t a b l e 4

EFFECT OF ACTIVATION ENERGY

Activation Combustion R u n Energy Onset NO. (000 Btu/lb mole) • (ft)

27 Grate 28 13 30 14.5 32 17.5 34 22 36 30 37 None

NOTE: Frequency Factor 500 ,000/sec Stirred Reactor St 13 ft.. Bypass Factor .3 Blackening Factor 2.0 Excess Air .5 ni

possible to distinguish between the effect on combustion due

to frequency factor versus activation energy separately.

A study of Runs 3 through 13, Runs 20 through 40, and Run

106 shows a pattern of combustion. Table 5 is a summary. Gen­

erally, high activation energy and low frequency factor, com­

bined, have the effect of generating poor combustion, and low

activation energy combined with a high frequency factor has

the effect of promoting good combustion. Combustion slov/s _

as one moves from the upper left hand corner of Table 5 to the lower light hand corner.

Table 6 is a compilation of temperature and heat utiliza­

tion rate data from Runs 13, 23 and 40» The temperature dif­

ferences are small, as are the differences in heat utilization

rate.. If. these values were obtained experimentally, they would not be distinguishable as coming from different Runs.

This analysis indicates that it would be nearly impossible to

experimentally determine with any accuracy the separate co­

efficients of activation energy and frequency factor for a

mixed, fuel such as refuse. 112 Table 5 - Frequency Factor vs Activation Energy

orrr

30 32 34 36 Activation Energy x 10^ (Btu/lbmole) 113- TABLS 6

PHRNAC2 TEMPSSATT3RE PROFILES

Run 23 13 40

Activation Energy 28k 32k 36k

Frequency f actor 4M 3M

Heat Utilization Rate .424 .432 .431

Slice No. Temperatures (°5)

1 2434 2437 2437

2 2764 2772 2771

3 2710 2750 2746

4 2667 2701 2698

5 2629 2653 2656

10 2457 2472 2471

14 2338 2245 2344

19 2207 2210 2209

Note; Stirred Reactor Ht = 13ft

Bypass Factor = .3

Excess Air = .5

Blackening Factor = 2.0 nz f

Figures 19» 20, and 21 illustrate, respectively, how near­ ly identical the temperature, combustion, and heat absorption profiles are for Runs 13, 23, and 40. Many other runs could be grouped into similar patterns. Very different combinations of frequency factors and activation energies could all produce nearly identical results which implies that the profiles graph­ ed are somewhat insensitive to the reaction rates; evidently, they must be dominated by the heat transfer. It also means that determination of kinetic constants (E^ and ff) from exper­ imental data must be done with great care or the values can be subject to substantial error. 115

3 0 0 0

28001

2 7 0 0

2 6 0 0 -

2 4 0 0

2 3 0 0 -

(t 2100 52.000 2000- 28.000 30,000

1600-

RGURE 19 ff vs Ea

1100- Temperature Profiles

1000

EoSerKt (ft) 116

100

90 -

ao r

70

f f 2a — 2os. 15 ------4 3 1 0 ^ 32,000 S u s 23 1210° 2 3 , 0 0 0 2; « 2 0 3 40 ...... 3 2 1 0 ° 36,000

L - I 2t30 «• 0 1 #20 i 3 FIGURE 20 ff vs 1 0 - Combustion Profiles. 0 J.

^ Ô- e 12. 2r 24 zr 32 2S OS 2S 4Z SosrHt CS) ■ ■■ ■ - . 117-

100 FIGURE 21 ff vs Heat Absorption Profiles

■!fa10° 32,CGC

•1210^ 2 3 , 0 0 0

3210^ 36,000 118 6.8 EFFECT OF AIR/FDEL RATIO

The air/fuel ratio was analized by changing the excess air percentage (Suns 8-13, 36-61, and 100-105), Table 7 shows the effect of excess air on the combustion rate. The higher the per­ centage of excess air, the slower the combustion rate. This is primarily due to lower gas temperatures, as indicated by the fol­ lowing (there may also be an effect of reduced residence time),

Figure 22 shows the temperature profiles in the furnace for fully developed combustion with differing excess air ratios. Increasing excess air substantially reduces the max­ imum furnace temperature. The temperature profile is also flattened out as the excess air is increased. The most dra­ matic effect is the large reduction, in heat utilization rate due to increases in excess air.

To maintain the same boiler efficiency with high excess air ratios, the boiler would have to be higher or the tube section would have to be larger than a similar boiler using lower ratios of excess air. The practical implication is that boiler designs requiring large amounts- of excess air will tend

to be more costly than designs using small amounts. 119

TABLE. 7

PREQDENCY FACTOR VS EXCESS AIR

EXCESS AIR PERCENT

25 50 100

Frequency

Factor

(000/sec) 125 125 No

250 250 Combustion

500 500 500

1000 1000 1000

2000 2000 2000

* * * ■ 4000 4000

Full Combustion *** 8000

Note; Activation Energy 32k

Stirred Reactor Ht 13ft

Bypass Factor .3

Blackening Factor 2.0 120 2CC0

2SC01 UTI.RAT 2SCQ'-

27C0-

2SCQ- R U N ICS - 2S

25CQ- • I R U N 13 ~ .3 24C0

23C0-

22CQ- RUN 31 - T C 51CQ

2GCQ- Reactor Ht«. 15 ft 1SC0- Bypass .5 Freoueacy factor ü-xlO*^, Sors 105&13 1SCQ- '•(1/sec) g 3x10°, Sna ai 17CQ- Blackeaiag 2«0 16C0; ActiTatioa Energy 32x10-^ Bta/lb aola 15C0-

14CQ-

13C& FIGURE 2 2 Excess Air 12C0 Temperature Profiles 11CQ 1CÛ0 3. S- 5 12 1S_ 13_ 2r 24 27 20 3 3 3S 33 42

S c5sr~ H t (ft) 121

The effect of excess air on combustion efficiency is illus­ trated in Figure 23* 100 percent excess air (Run 61) produced more complete combustion than 30 percent excess air (Run 13).

The rate equation is governed in part by the oxygen concentra­ tion and temperature of the gas. Run 6l has a higher concentra^ tion of oxygen throughout the furnace than Run 13. This higher concentration would produce faster combustion other things be­ ing equal. However, the lower temperature in Run 6l offsets the oxygen differences and the two opposite effects do not totally cancel; the effect of higher oxygen concentration slightly over­ rides the effect due to lower temperature, and Run 6l with the higher percentage, of excess air burns more completely than Run

13.

When Runs 6l and 103 are compared, however, the effects, in the lower portion of the furnace are reversed; the effect of temperature dominates over that of oxygen concentration, and Run

103 with 23 percent excess air burns faster than Run 6l with 100 percent excess air. Nevertheless, in the upper portion of the furnace the effect of oxygen concentration again dominates over the effect of temperature and Run 6l with the higher percentage of excess air burns faster and has a more complete- burnout pro­ file, From an environmental standpoint high excess air is ben­ eficial. 122

100

FIGURE 23 Excess Air Combustion- Profiles 123

F ig u re 24 illustrates that as the ezcess air increases in a boiler the heat absorption rate decreases significantly. To increase the boi ler. operating efficiency^ excess air should be minimized. For this reason operators commonly cut back excess air as far as possible v;hile still meeting environmental stan­ dards. 12!f

100 FIGURE 24 Excess Air

9 0 -I Heat Absorption Profiles

Is. Air 30 S i m 1 5 ______5 0 % 5tm 6l 100% 7 0 S n a l O J ...... 2 5 %

So ■

50 -

=?30 -

020 4

210 -L

3; 6- 9- 12 1573, 2r 24 27 20 2 3 35 3S 42

(ft) ■ ■ 125 6.9 EFFECT OF BYPASS

Results of initial runs without a bypass factor showed that burnout took place essentially within only one slice.

Huns 1-4 demonstrate this behavior (see App* G) Once the thres­ hold is reached, the temperature rises rapidly due to com­ bustion. The high temperature causes a very high combustion rate, and the combustion takes place in only one slice. This is true even for the 1.5 foot slices in the plug flow region.

This result, is contrary to actual furnace behavior under, real operating conditions.

It was felt that mixing and residence time distribution were overriding influences on combustion. A bypass factor was added to the combustion equation.. This factor forced com­ bustion to take place over a larger volume within the furnace.

This is shows in Table 8 which presents- fuel pattern- profiles for various runs. In Run 4, without, bypass, all the com­ bustion takes place within the first slice. As is shown in the table, when bypass is increased, combustion takes place over a larger volume of the furnace. The combustion rate is slowed. As bypass is increased to .7, combustion is delayed until the second slice; as bypass is increased further to .9, combustion in the furnace stops. This trend shows that poor mixing, as modeled by high bypass, slows the 126 TASLB. 3

FUEL LEAVING SLICE VS BYPASS

lbs/hr Run 4 7 13 36 19 84 85

Bypass ^1 .3 •3 .3 •5 .7 .9 Slice

1 0 3000 9000 9000 15000 29996^ 30000

2 0 2642 2700 2700 7500 20997 ————

3 0 2392 1556 810 3750 14698 —

4 0 2204 1231 534 1875 10289

5 0. 2056 1047 536 1067 7202 ——

6 0 1937 925 471 838 5042

7 0 1338 837 426 710 3529 ——

8 0 1756 771 391 626 2470

9 0 1686 720 355 566 1729 —

IS 0 1423 553 280 399 750

19 0 1326 501 254 353 612 — Frequency

Factor IM IM 4M 8M 8M 8M 8M

Note: Stirred Reactor Ht; 13 ft Blackening Factor 2.0

Activation Energy 32k

Excess Air .5

!.. Complete combustion in slice

2. No combustion in slice

3. No combustion in furnace 127 combustion rate and can even prevent combustion from taking place.

Comparison of the various runs in Table 8 shows that, to maintain complete combustion, the effect of increasing bypass must be offset by increased frequency factor. Frequency factor, however, is presumed to be a property of the material, and it cannot be changed. For a constant frequency factor. Table 8 shows that an increase in the bypass vn.ll slow the combustion. The volume of the furnace that is influenced directly by bypass is indicated by the underlined quantities in the Table. As by­ pass increases, it has an effect on greater portions of the

furnace.

Figure 25 shows the effect of bypass on the temperature distribution within the furnace. Without bypass, the temper­ ature declines as the gases move up the furnace. At low by­ pass (.1) the temperature also declines as the gases move up the furnace, but the slope of the curve is less than the curve without bypass. The maximum temperature, also, decreases.

As the bypass is increased to .3, the temperature profile no longer is declining, A hump develops in the profile- As the bypass is increased further to .5, the hump becomes more pronounced and the temperature peaks higher up in the furnace. 123 5CC0

2 S C 0 ' RUN 4- — .0 2SC 0-

27CQ R U N 7 - .T

2SCC-

2S C 0- I _ RUN 13 - ;3 24CÜ-'

2 2 C 0 - 22CQ- RUN 19- â C 21G0'

Reactor St. 13 f.t I 2CCG-

1 7 C 0 ' rrequeacy Factor ■ U10® Sass W iiJflO® Ros 13 . 1€C 0: ( l / s e c ) 3x10® Rns 19 15CQ-

14C 0-

12CÜ- FIGURE 2 5 Bypass Factor 12fl0- Temperature Profiles 11CQ-

1CC0 3 S' S 12. IS _ 13_ 21- 24 27 3C 23 3S 3S 42 ScSerHt (ft) 129 Figure 26 shows that increases in bypass produce a reduc­ tion . in combustion efficiency. This effect of reduced com­ bustion efficiency is throughout the furnace even though by­ pass only directly effects the first few slices.

In addition to reducing combustion efficiency bypass has a detrimental effect on the heat absorption rate 7â.thin the furnace. This can be clearly seen in Figure 27 where the heat absorption rate drops significantly as the bypass increases.

It is thought that bypass is to some estent a controllable ' parameter. Overfire air can be introduced into the furnace at a sufficient velocity and in such a pattern as to promote bet­ ter m i x i n g within the furnace. This leads'directly to a stirred reactor design where violent mixing is promoted. The violent mixing speeds combustion and reduces bypass. 130

iOQ

90 - /

3 0 T

7 0

50

3530 2T O w Bypass

S a a L Q%

I 2n a 1-9 _____ 30% :3Q - 2n a SL ...... — 70% « ■tan, 3 6 — — 30% 1 F1GURE26' Bypass Combustion Profiles-

G »

3. S- 9 1Z 2T 24 27 on 23 2S 3S 42 "%. c.fî) .... 131

100 - FIGURE 27 Bypass

90 - Heat Absorption Profiles

0% 30 — Saa. it H n a 1 9 ------30% 70% 70 S u a 3ii — Son. 8 6 30%

60 -

50 -

-

S S30

ilO

S- s 12. -1S._13 2T 24 27- 20 33 2S 3S 42

=-^HL (a : ' ‘ 132

Table 9 shows that increases in bypass reduce the furnace

heat utilization rate. This reinforces the view that good

mixing is important to good furnace operation.. Overfire air

in the form of jets placed in a proper pattern can improve

mixing and reduce bypass.

6.10 INTERACTIONS BETWEEN BYPASS. FRSQÜ2MCY FACTOR AND

ACTIVATION ENERGY

A further analysis of Runs' 7, 13, and 19 in Table 8 shows

that the bypass factor only has an effect on the first few

slices.. It regulates the combustion rate only in the first

slice in Run 7, only in the first two slices in Run 13, and

only in the first four slices in Run 19. After- these slices,

the frequency factor and activation energy retard the maximum

burning rate in a. slice as is shown by the higher fuel concen­

tration in the latter slices than would be expected by bypass

alone.

To further understand the effects on combustion rate of

frequency factor and activation energy relative to the bypass

factor. Suns 86-92 were compiled. All runs were at 0.3 by­

pass. In runs 87 through 89, the frequency factor was in­

creased well above the expected range in order to produce a

combustion rate limited by bypass. Even in Run 39, with a 133

TABLE 9

BYPASS VS. HEAT UTILIZATION RATE

Run Bypass Heat Util. Rate Precuencv

4 0 .488 1 M

7 .1 .441 1 M

36 ,3 .439 3 M

13 .3 ,432 4 M

19 .5 .412 8 M

84 ,7 ,361 . 8 M

Noter Stirred Reactor Ht.. - 13 ft.

Blackening Factor - 2.0

Activation Energy - 32 K

Excess Air - .5 frequency factor' of 64M, only the first, four slices were af­ fected fay faypass flow. In runs 90 through 92, the. activation energy was reduced faelow the expected range. The most radical run studied was number 90 with, a frequency factor of 64M and an activation energy of 20k, both well outside the expected range. Even in this extreme case, where the Arrhenius ex­ pression was much larger than anticipated, only the first six slices were affected fay the faypass flow. Figure 28 shows a typical break point between the faypass and reactivity effects.

The curve for bypass alone was computed on the basis of the expected geometrical decay pattern of fuel in the boiler. The other curve was the actual result of run 19 showing the amount of fuel in the boiler at each slice. The difference in the two curves demonstrated that the burnout was affected by the frequency factor and.activation energy. . This was found for all runs. The drop in temperature in the later boiler slices was also a contributing factor since it was part of the rate ecuation.

With such fast combustion parameters, one would expect that mixing would dominate over kinetics even in the b u m out zone, but this is not the case. The reason is that the fuel term in the rate equation becomes so small that the rate equation is slowed to the extent that the combustion rate rater than the 135

2CC0- RGURE28 1SC0- Reactr/iiy vs Bypass 1SCQ-

17C0- Heactor 5fc. 13 ft_ 16C0 ■ Ac-ln.Tatlan Zasrgj 52x10-^ CBtn/l'a Bola) 1500- ïtequeacT Factor 3X10^ (1/sec; 1400- Bypass .5 Blaci&aning 2.0 1200 - foe ess Air .5

1200 -

1100 -

1000-

SCO-

« eoo- a § 7004 soon Actual

=00 - RUN 19 - â 400 Bypass Alone 200 '

200 *

100 -

G s 9 12 IS 18 21 24 27 20 23 26 29 ^2

= c 3 e f Ht. ( ft 1 136 miring dominates the Tournent. This is an important result since temperature is the only term in the rate equation that can he adjusted hy design; the only way to increase hurnout would he to increase the temperature in the upper part of the furnace. How­ ever, increasing the temperature to promote humout inherently increases the hoiler cost since refractory would have to he ad­ ded.to do this in the upper portion of the furnace, and the fur­ nace would have to he higher to allow for a heat, transfer sec­ tion above the refractory section. In this way the heat utili­ zation rate could he maintained. Increasing the temperature also increases emission problems,

6.11 EFFECTIVE OF STIRRED REACTOR HEIGHT

The boiler stirred reactor height was varied from zero to

40 feet. The absence of a stirred, reactor was modeled by re­ placing the stirred reactor with a. 1.5 foot plug flow slice.

Runs 8 through IS, Runs 41 through 55, and Runs 92 through 99 are various cases.

Table 10 shows that, as the stirred reactor height in­ creases, the boiler utilization rate decreases. It is seen for a frequency factor of 2M that there is a rise in heat utiliza­ tion when the combustion begins on the grate. In this case the zero, 7 ft,, and 13 ft., stirred reactors are not con- 137

TABLE 10

HEAT .UTILIZATION VS. STIRRED REACTOR HEIGHT

Utilization Rate For Reactor Frequency Factor Run Height (ft) 2 M 4 M

44, 45, 0 , 445- .456'

50, 51, 7 .418^ .451

12, 13, 13 ,377^ .432

55, 20 391 .400'

96, 30 329 *335'

99, 40 235 .235

NOTE; Activation Energy - 32 K

Blackening Factor - 2.0

Excess. Air - .5

Bypass Factor - .3

!.. Combustion not on the grate.

2. Extrapolated data. 138

tri bating very mucii to heat transfer in. the boiler. At a

frequency factor of 4 24 the rise, is not present,. In. this case / combustion is fully developed in the stirred reactor of each

furnace_. In this case, for the run without a stirred reactor

the combustion begins in the second slice. Heating of the in­

coming air and fuel quench combustion in the first slice.

Figure 29 shows the change in furnace temperature profile

as the stirred reactor height is increased. Increases in reactor height .cause the . heat to be generated in a larger

volume. This leads to lower furnace temperatures. The temp­

erature peak moves up the furnace as the stirred reactor

height is increased.

Figure 30 shovrs the effect the stirred reactor height has on combustion* % e n studied as a separate variable, in- • creasing the stirred reactor height causes the combustion to be sloted*. Larger stirred reactor volumes cause the fumace

temperature to drop and these lower temperatures lead to the

slower burning rates.

Figure 31 illustrates that larger stirred reactor vol­ umes reduce the furnace heat- absorption rate. Again, the

larger stirred reactor volumes produce lower overall fur- 139

LTiLRATE

C 2tcC ActiTaîion saargy 32. 10-^ 3tn/lb Qola I 2 C C Q ' Bypass .3 I 1 S C € - B l a c k a a l a g 2.0.

Zzcass Air .3 lacc- i Staqaaacy Factor lxfO°, 2na 99 • 1 7 C C - 2X10°, anas 55^96'' ISCQ; 4x10^, anas 13, 43&31

• 1 S C C H

1 4 C C -

T 3 C C 1 FIGURE 2 9 Stirred Reactor Height 12CQ- 11G0- Temperature Profiles

1 C C 0 - 3 S' 9 12 IS.^.13 2r 24 '27 20 33 SS 33 42

Scfla-Ht (5 ) 140

100

90 -

30 -

70

So • ►

S 50 0

H a n 15 — — ------13f t 1 Hon 45 — ------Oft §50 Ron 55 — ---- -20ft I S o n -96 ...... JOft lao S

10 .. FIGURE 30'Stirred Reactor Height

0 Combustion- Profiles:

3- S 1Z 2T 24 2T 33 03 2S 2S 42

(.ft} . HI

1QQ

90

Oft

80 Son 55 -• _ 20 ft Sea 96—- - 50 ft

70 FIGURE 31 Stirred' Reactor Height

60 Heat Absorption' Profiles'

g

= 10

0 T42

nace temperatures. These lower furnace temperatures reduce

the net amount of heat transfer to the walls, which- lowers

the heat absorption rate#

'iïhile the above statements are true, the final conclu­

ions are based on holding all parameters escept the stirred

reactor height constant.. This is not thought to be possi­ ble in an actual system. An interaction between the stir­

red reactor height and the bypass is thought to ezLst. In

Section G.12 this interaction is discussed. So, this anal­

ysis of the stirred reactor height should only be thought

of as providing trend behavior and not absolute behavior.

6 .12 INTSSACTION 32TT^2T 3??ASS' AND STISSZD REACTOR 2SIGHT

Increasing the- stirred reactor height while holding bypass constant reduces the heat utilization rate. Increasing the bypass while holding the stirred, reactor height constant reduces the heat utilization rate.. One could intuitively reason that bypass will be large in shorter stirred, reacter zones and approach zero as the stirred reactor height is in­ creased to infinity,. An attempt was made to study the com­ bined effect of bypass and stirred reactor height. An arbitrary ' relation was made between bypass and stirred 143

reactoc height.. This is shown in Table II. No presumption is

made that the correlation is realistic. It can be seen from,

the data that the effect of small bypass on the heat utiliza­

tion rate appears to partially reverse the effect of large

stirred reactor heights on the heat utilization rate. Evident­ ly, the tv/o parameters tend to cancel each other out,

6.13 EFFECT OF BLACKEtTING FACTOR

The principal effects of blackening are to change the tem­ perature profile in the furnace and to change the heat utiliza­

tion rate.

By increasing the emissivity, blackening causes better heat

transfer between the gas and the walls even though an increase in blackening causes a decrease in peak furnace temperatue, as is seen in Figure 32, It also causes a steeper decay in the

temperature profile.

Blackening does not change the location of the peak temper­

ature in the furnace; however, it does increase the heat utili­

zation rate as is shown by Table 12, This is due to better heat

transfer. However, blackening causes a lesseni:-...; in the combus­

tion rate. High blackening factor result in lower furnace tem­

peratures which cause slightly slower burnout of fuel; this

can show up as unburned fuel leaving the furnace. m

TABLE 11

HEAT UTILIZATION RATS

VS.

BYPASS AND STIRRED REACTOR HEIGHT

Stirred Reactor Heat. Utilization Run Bypass Height (ft) Rate______

103 » 9 0 —

109 .7 7 .398^

13, 19 .5 13 .379^ .412^

55 .3 20 .383

110 .1 30 .398

111 0 40 .403

NOTE: Activation Energy - 32 K

Blackening Factor - 2.0

Excess Air - .5 2 Frequency Factor - 4 M

1. Combustion not on grate,

2. Frequency factor — 8 M. 145 2CC0

2SC€-

22CO

27CQ-

26CC- • ' 2SC0- RUN 63 - 1.2 ! RUN 13-20 24CQ R U N 7 9 - & 0 ■ 22CO-

22C0 e 21C0 2zcess Air .. Slacksairs I 2CCC Reactor St. I 1SCC- Actiratib Saergj 32 . 10^ BtTi/ra aola ^ ■ 1SC0- rreoteacT Factor 2 10®, Hna o5 (1/sac) 4 icf", a n a s 1 3 & 7 9 ■ 17CQ- ieCQ;

15C0-

14C0

12CQ- RGURE32'Biack6ning Factor 12C0 Temperature’ Profiles 11C0;

1CCÛ 3. 3- 9 12 15. _ta 2T 24 27 20 22 23 29 42 Scfer HL ( ft ) 1 ifé

Figure 33 shows the effect of the blackeniag factor on the combustion profiles,. Blackening has little,if-any effect on combustion profiles, Sowswer, as is seen.in Figure 34, blackening has a large effect on the heat absorption ability of the furnace. High walues of blackening produce much high­ er heat absorution rates than low values of blackening, I should be noted that increases in blackening cause reduced furnace temperatures as is shown in Figure 32, This reduced temperature would reduce heat transfer to the walls causing" lower heat absorption rates,. But the opposite is actually occuring. So, the increase in emissivity caused by blacken­ ing- greatly overshadows the reduction in furnace temperatures due to blackening, and this produces the- large heat absorp­ tion. rate. 147

T a B L S 12

BLACKENING VS. SEAT UTILIZATIONAND BURNOUT

Run Number 69 74 13 79

Blackening 1.2 1.3 2 3

Eeat: Utilization .343 .391 .432 .463

Unfaurned Fuel, lbs. 414 461 301 333

NOTE: Frequency Factor - 4 M

Activation Energy - 32. K

Bypass Factor - .3

Excess Air — .5

Stirred Reactor Et,. - 13 rt 148

too

FIGURE 33 Blackening Factor Combustion Profiles

U» < a 1 149

too

Black 90

— 2 . 0

30 5 .0

70 FIGURE 34 Blackening Factor 50 Heat Absorption Profiles

50

<

= 10

0 150 6.IL Effect of Temperature

The combustion process is. highly dependent on. temperature*

The temperature of the gas enters the combustion equation as part of the exponential term of the Arrhenius rate constant.

In order to study the effect of temperature on the combustion efficiency, transient computer data profiles ':rere analized*

Runs, were made without bypass. The stirred reactor height was

13 feet, the frequency factor and activation energy were re­ spectively 250k and. 32k,. the blackening factor was 2.0, and the excess air was ,5 The transient temperature of the first ten slices is shown in Figure 33. The system is initially at a uniform temperature. As combustion proceeds the temperature increases and then decreases in the first six slices. How­ ever, in the seventh sJi.ce the temperature continues to rise to a steady state value. This slice becomes the principle combusting slice. It should be noted that the step slope between slices five and seven would be reduced by introducing a backmix flow into the system.. This will be done at a later date.

Transient combustion profiles of slices 5» 6, 7, and 8 are shown in Figure 36. Slice seven shows the typisal S shaped plot of combustion efficiency versus temperature.

Slices 5 and 6 show the beginnings of such a curve. However, peak combustipn rates were not obtained in these slices'and FIGURE 35' Transient . Temperature Profiles '

2SC0’

24CO

2201-

isca-

ITCCt

12CC-

3LXC2 îir a s z s 100 —~o

90 FIGURE 36 Profiles of

00 Combustion vs Temperature j Slice 7

?0

60

050 § Note; ( ) inillcatee the steady slice temperature

|jS0 o 5 ° 2 0 ti QlO Slice 5 Slice 8 o (6) (0) O VXI •••••• I i ( I I • I I I I I t I I • I ; 1,2 .3 ,4 ,5 ,6 .7 .8 .9 2.0 .i ..2 .3 ,4 .5 ,6 .7 ,8 .9 5.0 ,2 .3 ,4 ïliMPKlM'i'URt; (R), X 1 0 0 0 153 the curves are not fully developed. Note the offset of the

curves to the right as the slice number increases. This is because less fuel and ozygen is available in the later slices

causing the combustion rate to slou". The combustion rate is proportional to both fuel and oxygen.

As seen in Figure 36, slice 8 shows the effect of fuel

starvation on the combustion process. As slice 7 uses up all

the fuel there is such a small quantity of fuel present in

slice 8 that the combustion rate slows dramatically in this •

slice. In this case the combustion rate actually drops with

time even though the temperature is increasing. In slice 8

the effect of the lack of sufficient fuel overrides the effect

of increasing temperature and the combustion rate slows.

6,15 Fuel B u m u p Characteristics

'The fuel b u m u p was similar in all runs,. The fuel and

oxygen profiles for a typical run are shown in Figure 37. It

is seen that the oxygen profile is nearly flat. The slightly

decreasing profile of the oxygen will asymptotically approach

the value corresponding to the amount of excess air present

in the system. At the same time the fuel will asymptotically

approach zero as the furnace height- is: increased. The oxygen

profile can be considered constant. This leads to the con­

clusion that the fuel b u m u p is a pseudo-first-order reaction.

This can be taken as a quite general statement when asignifi-

caht amount of excess air is present. I5if

FIGURE 37 Burnup Profiles " 1200

22 1100

20 1000

18 900

800 16 700

12 600

500

8

6 300

200

2 100

0 8 10 11 12 13 1 if 15 î6 17 18 19 ao 21 SLICE ÎIÜKBSE 155

This can be taken as a quite general statement when a signifi­ cant amount of excess air is present. CHAPTER 7

CONCLDSIONS AND FURTHER WORK

7.1 From this research, we can make a number of conclusions.

Some of the conclusions are tentative based on limited

information. Theoretical conclusions are as follows;

7.1.1 The bypass factor is the dominant parameter controlling the combustion rate in the lower sections of the boiler.

Typically, the dominance of the bypass factor is only in the

first two to four slices with greater bypass influencing more

slices. Bypass may be controlled to some extent through in­

creases in turbulence in the furnace. Overfire air jets could

aid in mixing the fuel and air thus reducing bypass.

7.1.2 Activation energy and frequency factor dominate the com­

bustion process in the plug flow or burnout region. The

activation energy and frequency factor cause similar effects

within the range studied. A change of about 50 per cent in the

activation energy or a factor of about 30 times in the

156 157 frequency factor can swing the furnace from a non-combustion state to its maximum combustion rate. If both activation energy and frequency factor are fuel properties, they may be uncontrollable if a fuel such as refuse is specified.

7.1.3 For a given bypass factor, an increase in the boiler stirred reactor height causes a decrease in furnace ef­ ficiency. However, it is thought that both bypass and boiler stirred reactor height are related and interact together, and their combined effects may tend to cancel out.

7.1.4 Increases in the blackening factor tend to increase boiler efficiency by increasing emissivity which, in turn, promotes better heat transfer to the walls of the furnace.

However, blackening reduces the furnace temperature slowing combustion. Since blackening is thought to be caused in part by unburned fuel, as well as ash, blackening tends to limit burnout by quenching the combustion process. The effect ap­ pears small. While blackening is used as a constant in the current research program, it is thought to be related to the fuel quantity and would tend to decay along the path of the boiler due to this parameter. It is also thought to be related to the flyash quantity. Flyash quantities will in­ crease as the fuel decreases causing some counter effect on the blackening factor. 158 7.1.5 Excess air in the range studied has an adverse effect on the combustion process. The smaller the amount of excess air, the better the efficiency. A complicating factor is that air is used to promote mixing, and reductions could cause poor mixing and high bypass flows.

7.1.6 Radiation dominates the heat transfer process to the walls in the furnace region of the boiler, and future models could use a simpler representation by eliminating convection from the program. Radiation accounts for about 95 per cent of the heat transfer to the walls of the furnace.

7.2 From this research, we can make some practical observa­

tions about the shredded refuse (RDF) boilers such as

that of Columbus versus mass burning boilers.

7.2.1 RDF boilers can use greater percentages of overfire air than mass boilers. This is because less air is required through the grate since much of the fuel is burned in sus­ pension. The fuel is generally blown in to the boiler and violent mixing is promoted through overfire air jets. In a mass burn system, most of the air must be introduced under the grate. Some overfire air is used, but not as much as with the

RDF system. The effect of violent mixing in the RDF furnace 159 reduces bypass associated with stratification which this research program shows is beneficial.

7.2.2 Less excess air is required in an RDF boiler than in a mass burner. This is due to the small inventory of fuel on the

RDF grate versus the large fuel inventory on the mass burners grate. The small particle size of RDF fuel does not require large furnace residence times and suspension burning is pro­ moted. Large excess air amounts are generally required with a mass burner to prevent large amounts of unburned hydrocarbons in the bottom ash. Large furnace residence times of fuel re­ quire deep beds in the mass burn plants. This leads to stratification of fuel and air through the bed. The effect of larger excess air quantities is to reduce furnace heat utilization. The overall boiler cycle also suffers since more is lost up the stack.

7.2.3 Lower air flows and better boiler efficiency allows a designer to build an RDF boiler with lower, initial cost due to reduced size. However, this is offset by the cost of shred­ ding equipment required by the RDF boiler plant.

7.2.4 While not a direct result, of this work, RDF boilers are more controllable and a more predictable output can be ex­ pected. They also offer faster response times, which allows 160 better load following characteristics. These characteristics are important to electric generation plants burning refuse.

It.would be noted that the RDF boilers in the City of

Columbus power plant seem to be designed with a great

effort to promote proper mixing. Since the design para­

meters used in this research were from the Columbus

plant, and since the results of this research program

indicate good combustion, qualities using the design

parameters, it is believed that the plant should be

capable of burning RDF successfully and at. high effi­

ciency. If problems arise that cause unusually poor

combustion, then the overfire air jet mixing should be

the first area considered to find a solution.

7.3 Some areas warrant further research,

A. Determine the interactions of bypass and stirred

reactor height,experimentally,

B. The blackening factor could be made a function of

the fuel quantity and flyash quantity. 161

C» Back mixing could be added.

D. Equations could be added to model CO and SO2

emissions.

E. The grate combustion process could be added to

the program. This was modeled previously by

Essenhigh.

P. The model could be modified for suspension fired

furnaces.

G. A final step in the process of developing a model

would be to test, it against the actual boilers

that it is to represent. The City of Columbus

Plant will be operational in 1982. This plant

would be an excellent place to develop data. REFERENCES

1. Energyr A Special Report National Geographic, February,

1981, National Geographic Society, Washington, D.C.

2. W.R. Niessen, S. H. Chansky, "Nature of Refuse", Proceed­

ings of 1976 National Incinerator Conference, ASME, New

York, New York, 1970, pp. 1 - 24.

3. R. W. Loveless, "Summary Report, Phase I, Feasibility of

Refuse/Coal Fired Generating Facility; November 21,

1975, for Columbus, Ohio by Alden E. Stilson & Asso­

ciates .

4. "Resource Recovery Activities", National Center for Re­

source Recovery, Inc., 1211 Connecticut Avenue, N. W. ,

Washington, D.C., 20036, March, 1979.

5. G. Stabenow, "Survey of European Experience with High

Pressure Boiler Operation Burning Wastes and Fuel", Pro­

ceedings of 1966 National Incinerator Conference, AS ME,

New York, New York, 1966. 162 163 6. R. H. Essenhigh, "Eurning Rates in Incinerators, Part I,

A Simple Relation Between Total, Volumetric and Area Fir­

ing Rates; Part II, The Influence of Moisture on the Com­

bustion Intensity", Proceedings of 1968 National Incin­

erator Conference, ASMS, New York, New York, 1968, pp. 87

- 100.

7. R* H. Essenhigh and T. J. Kuo, "Combustion and Emission

Phenomena in Incinerators; Development of Physical and

Mathematical Models; Part I; Statement of the Problems",

Proceedings of 1970 National Incinerator Conference,

ASME, New York, New York, 1970, pp. 261 - 271.

8. B. K, Biswas, T. Kuo, and R. H. Essenhigh, "Studies On

Combustion Behavior and External Limits of Smoke Flames" ,

Proceedings of 1970 National Incinerator Conference,

ASME, New York, New York, 1970, pp. 304 - 313.

9. S. T. R. Rao, T. J. Kuo, and R. S.. Essenhigh, "Combustion

and Emission Phenomena in Incinerators; Characterization

of Stirring Factors by Cold Model Simulation", Proceed­

ings of 1970 National Incinerator Conference, ASME, New

York, New York, 1970, pp. 314 - 326. 164 10. T. J. Kuo, M. Kuwata, W. Shieh, and R. H. Essenhigh,

"Development of Physical and Mathematical Models of In­

cinerators, Part II Initial Testing of a Real System",

Proceedings of 1970 National Incinerator Conference,

ASME, New York, New York, 1970, pp. 327 - 330.

11. B. K. Biswas, R. H. Essenhigh, "The Problem of Smoke

Formation and Control", Paper No. 39f presented at A. I.

Chem. E. .70th National Meetings, Atlantic City,

Aug/Sept., 1971.

12. W. Shieh, R. H. Essenhigh, "Combustion of Computer Cards

in a Continuous Test Incinerator; A Comparison of Theory

and Experiment", Proceedings of 1972 National Incinera­

tor Conference, ASME, New York, New York, 1972, pp. 120 -

134.

13. R. B. Engdahl, W. C. Holton, "Overfire Air Jets", Trans.

ASME,1943, Volume 65, No. 7:, pp. 741 - 754.

14. R. B. Engdahl, "Design Data for Overfire Jets", Combus­

tion, March, 1944.

15. H. C. Hottel, A. F. Sarofim, "Radiative Transfer",

McGraw-Hill Book Company, New York, New York, 1967. 165 16. K. A. Bueters, "Combustion Products Emissivity by

Operator", Combustion, March, 1974.

17. K. A. Bueters, J. G. Cogoli, W. W. Habelt, "Performance

Prediction of Tangentially Fired Utility Furnaces by Com­

puter Model", 15th International Symposium on Combus­

tion, Tokyo, , August 25 - 31, 1974.

18. A. Lowe, T. F. . Wall, I. McC. Stewart, "A Zoned Heat

Transfer Model of a Large Tangentially Fired Pulverized

Coal Boiler", 15th International Symposium on Combus­

tion, Tokyo, Japan, August 25 - 31, 1974. .4

19. S. T. R. Rac, G. Gelernter, and R. H. Essenhigh, "Scale

Up of Combustion Pot Behavior by Dimensional Analysis",

Proceedings of 1968 National Incinerator Conference,

ASME, New York, New York, 1968, pp. 232 - 236.

20. M. Kuwata, T. J. Kuo and R. H. Essenhigh, "Burning Rates

and Operational Limits in a Solid Fuel Bed", Proceedings

of 1970 National Incinerator Conference, ASME, New York,

New York, 1970, pp. 272 - 287.

21. J. E. L. Rogers, A. P. Sarofim, and J. B. Howard, "Effect

■ of Underfire Air Rate on a Burning Simulated Refuse Bed", 166 Proceedings 1972 National Incinerator Conference, ASME,

New York,New York, pp. 135 - 144.

22. E.M. Sparrow, R.D. Cess, "Radiation Heat Transfer",

Brooks/Cole Publishing Company, Belmont, California,

1967. 23. R.J. Alvarez, P.E, Hofstra, "Study of Conversion of Solid

Waste to Energy in North America," Proceedings of 1976

National Waste Processing Conference,ASME, New York, N.Y.

24. S,L« Bragg, "Application of Reaction Rate Theory to Com­

bustion Chamber Analysis," Aeronautical Research Council

Paper No, 16170, C.E. 272, September 1953.

23. F . Kreith,"Principles of Heat Transfer," International

Textbook Company, Scranton, Pennsylvania, 1966

26, I, Glassman," Combustion," Academic Press, Neyr York,

n.y., 1977 APPENDIX A

FUELS

1. General: Quantities stated in this part which are designated "Performance Basis"

establish the plant's performance design.

2. Refuse: The source of refuse will be residential, commercial, and industrial waste

from the Franklin County area. Unsorted Refuse will be pulverized (some "white

goods" may be removed or pulverized on a scheduled basis). Magnetic materials

normally will be separated after pulverizing. Maximum particle size after pulver­

izing will be approximately 4" by 4" by 4". The combined length (obtained by adding

the circumference to the maximum length dimension) will be no greater than 2', and

the maximum length dimension will be no greater than 12" (e.g. 1x3x12, 2x3x

10, 1 X 3 X 3, 3 X 4 X 6). Large pliable items such as tennis shoes and rubber boots

may be unshredded. Other properties of the refuse are as follows;

a. Refuse

Approximate Percentage by Weight As Pulverized. Including Moisture Performance Type of Typical Expected Basis Material Proportions Range Proportions

Paper 47V3 33-62 47.3

Food Waste 12.3 2-22 12.3

Yard Waste 2.9 0-33 2.9'

Wood 3.3 1-5 3.3

Textiles 2.2 1- 4 2.2

Leather, Rubber 1.6 1-3 1.6

167 168

Plastics 1.5 1- 4 1.5 iVietai (Brass, Alum­ inum, etc.) 3.0 2-4 3.0 Glass 9.5 6-13 9.5 Miscellaneous 3.5 2-6 3.5

100.0 100.0

Ultimate Analysis for Refuse Fuel and Expected Variations; Per Cent By Weight. As Fired Performance Typical Expected Basis Constituent Analysis Range Analysis

Moisture 23.30 5-50 23.30 Carbon 26.50 17-37 26.50 Hydrogen 3.60 2-5 3.60 Sulfur . 0.11 0.07-0.15 0.11

Oxygen 21.30 15-29 21.30 Chlorine 0.03 0.06-0.10 0.03 Nitrogen 0.70 0.05-0.90 0.70 Non-Combustible Solids (Ash, Metals, etc.) 13.41 13-36 18.41

TOTAL 100.00 100.00 c. Heating Value:

Btu (HHV)per pound, as fired 4400 2300-7600 4400 d. Analysis For Non-Combustible Matter in Refuse Fuel: Per Cent By Weight

Performance T y p i c a l Expected Basis Constituent Analysis Range Analysis

P2O 5 1.5 1-2 1.5 169

SiOj 50.2 40-47 50.2 A1203 11.5 6-27 • 11.5

TIO2 0.9 O.i-1.5 - 0.9 8.1 3-22 8.1 CaO 13.2 9-16 13.2

M g O 1.3 1-2 1.5 1.5 1-3 1.5

K ^ Q 1.8 1-3 1.8 Na^O 8.8 3-19 . 8.8 SnO 0.1 .02-0.1 0.1 ZnO 0.4 0.2-2 0.4 CuO OJ 0,1-1 OJ PbO 0.2 0.1—0.6 0.2 3, Coal Fuel: Typical propertiesand performance basis propertiesof coal fuels are identical and are as follows: Coal fuel designation: Coal "K"» Coal "O'* Source: Eastern Ohio Kentucky Seam: Hazard No. 5A Ohio No. 5 or No. 7 or No. 6 Size: 1-W to 0" 1-%" to 0" Proximate Analysis, % by Weight as Fired: Moisture 8.00 8.00

Volatile Matter 34.20 34.90

Fixed Carbon 50.50 46.00 Ash - 7.30 11.10 TOTAL 100.00 100.00 Btu/Pound 12,800 12,100 . ♦ Basis for guaranteed efficiency. 1 7 0 Ultimate Analysis, % by Weight, as Fired: Dry:

Ash . 7 . 2 6 1 1 . 1 4

S 0.97 290 H. 4.70 4.52

71.32 66.00

H^O 8.00 8.00

N, L36 1.21

v^2 6.39 6.23

Total 100.00 100.00 Ash Analysis, % by Weight: Coal "K" Coal "O'*

SiO^ - 46.60 43.00 AI2O3 37.35 17.00 T1O 2 1.19 0.80

11.21 28.00

C a O 0.16 3.30 MgO 0.27 0.90

• Na^O 1.35 0.14

K,0 1.43 0.22 0.03 ^ 2 °5 Unaccounted For 0.16 T.64 ■

Total 100.00 100.00 Coal "K" Coal "O'* Temperature Reducing Reducing Oxidizing Relationship Atmos. Atmos.. Atmos. Initial deformation temperature, A5TM designation IT: 2600 F 2000 F 2310 F Softening temperature (1:1 spherical lump) 171 ASTM designation ST: 2650 F 2140 F 2440 F

Fluid temperature (1/16”) A5TM designation FM: 2700 F 2320 F 2550 F

4. Fuel Mixes; The steam generating system shall be suitable for the following fuel

mixes:

a. Coal only

b. Coal ”0" only

c. Refuse and Coal: 0-80% refuse, remainder Coal ”0 ” or Coal "K” (HHV basis).

5. Design Basis Densities:

Refuse: Loose - 10 Ib/ft^

Compressed - 25 lb/ft

Coal: Loose - 50 Ib/ft^ for volumes and capacities

55 Ib/ft^ for weights and loads

Compressed - 60 Ib/ft^ for volumes and capacities

70 Ib/ft^ for weights and loads APPENDIX B

RESOURCE RECOVERY ACTIVITIES

172 RESOUIirU RECOVERY ACTIVITIES

Reported C apital C o sti Key Reported Tipping Pee (Millions Participants Process Output C apacity (Per Ton) of StatusLocation C ontact

Akron, Ohio CltyiClaus,Pyle, Shredding} air Steam for urban 1000 TPD $1.50 Under Roy Ray Schomer,nurns & classlllcatlon; and Industrial construction} In OIr.of rinance rte llaveii| Ruhlln magnetic sépa­ heating and shakedown by 208 Municipal RIdg. Const.Co.; ra tlon;hurnlng coollng}ferrnus July I979}fully DIdg. Oabcock&Wllcox RDP In seinl- m etals operational by 166 S lllgh St. Co.Cboller suspenslon, Jan.1980 Akron,OII 44308 supplier)} stokcr-grate Tcledyne bolter National (operator)

Albany,N.Y. City ol Albany Sliredding} Rnpr ferrous 750 TPD $2.50 22 Construction 60% Patrick Mahoney and 10 nearby magnetic sepa- mctals) steam complete} opera­ Smitli&Mahoncy communities ratlon;burnlng for urban heating tional In late 1979 40 Steuben St. Smith & Mahoney In seml-suspenslon and cooling) or early 1980} Albany. N.Y. 12207 (designer/ stoker-grate nonfcrrous metals steam generating project mgr.) holler} nonferrous facility operational recovery from In 1981 bolter ash

Ames, Iowa City; Gibbs.lllll Daling waste Refuse derived 200 TPD None 6.19 Operational since Arnold Chaiitland, Durham & paper; shredding fuel for use by 30 Ti ll 1975 D irector Rlchardson.lnc. m agnetic utlllly}haled Dept.of Public (designer) separatlon;alr papcr}lerrous Works classlllcatlon} metals}alumlmim C ity Hall scrccnlng;othcr other non-ferrous 5th A Kcllog St. m echanical m etals Aincs.lowa 50010 separation nalllinore.MD Clty;EI'A Landgard Steam 600 TPD None CPA-7 Monsanto Envlro- Ed May proccss;shrcdding Slate of Md.-4 Chem Systems.Inc. naltlmore City pyrolysis,water C lty-12 tias withdrawn Pyrolysis Plant t|uenching Monsanlo-4 from I he project} 1800 Annapolis D ept, of plant temporarily llaltlinore.MD f'oinmerce, closed lor Installa­ 212)0 F.E.D.A.-3.I tion of air pollu­ tion control equip­ ment and other modillcatlons} startup scheduled In early 1979 (ciHiliniied)

R eported C apital Costs Key Repurled Tipping Fee (Millions of L otalloo Partlclpniils Pfoccts Output Capacity (Per Ton) SI Slattis C ontact

Ualtlinore CuuntyjMaryland Sltreddlng;alr RUl'iferrous 600-1500 TPO None 8.4 Operational; Kennetlt Cramer Coiutty.MD Environmental classification; inctalsiglass for recovering ferrous Teledyne NatT Service; m agnetic secondary metals and 117 Cliurcli Ln Tcledyne Nat l separation products; producing secon- Cockeysville.Md (designer/ aluminum dary shredded 21030 operator) and pciletlzed RDF glass and aluminum recovery to he operational in M ardi 1979 llridge;>ort Conn.Resources Shredding Eco Fuel II 1800 TPO Approx. 53 Construction Ed Kelly,Mgr Conn. Recovery m agnetic (powdered fuel) $12.00 com plete; Public Informa­ Authority; separation; for use in utility escalated startup has tion Occidental air classification boiler;icrrous begun to be Combustion Petroleum Corp. frotii flotation metals;non- operational Equipment Assoc. and Combustion ferrous metals; in 1979 555 Madison Ave. Equipment Assoc, glass New York,NY (designer/ 10022 operator)

Chicago,III C ity; Ral;ih M. Shredding; air ROF for use 1000 TPO None 19 In shakedown; Emil Nigro (Southwest Parsons Co. and classification by utility; began test Super visiitg Engr Supplementary Consoer,Town- m agnetic ferrous metals firing RPFt Rureau of Sanitation Fuel Processing send & Assoc, separation operating at Rin 70"t-City Facility) (designers) 50% capacity; Hall gradually to Clilcago,lll 60602 increase produc­ tion level

Chicago,III City; Metcalf W aterwall Steam for 1600 TPO None 23 0(>eratlonal (Same as previous (Northwest Eddy,lnc. combustion Urach Candy Co. since I97l;steain listing) Incinerator) (ileisnger) ferrous metals delivery expected to be on line in 1979

-o (continued)

Reported C apital C osts Key lleportcd Tipping Fee (Millions ol Location Participants Process Output Capacity (per Ton) ______S Status Contact

Columbus,Oil CItyi Alden E. Shredding; Electricity for 1200 TPD Not set at this 118 Equipment being purcliased Tliomas Delioe Stilson & Assoc, magnetic sepa- City customers tim e site preparation to begin D irector (designers) ratIon;burning of in Mardi l979;operational Dcpt.Pnbllc Srvs. shredded refuse In late 1981 90 W.flroad St. w/supplcinenta| Columbus,Otilo coal in scini- 43215 suspcnsion,stoker grate boiler to produce steam; generation of electricity from steam

Oade County, County; RIack ilydrasposal Steam for 3000 TPD $13.00 I6S Contracts signed between Deruils Carter Florida Clawson/Parsons (wet pulping); utility to County, PAW and Fla. Dep.County Exec. & Wiiitteinore, magnetic and produce elec- Power & Light; pollution Room 1401 lnc.(designer(l other mechanical tricity;glass; control bonds sold by state Dade Cty Crthse separation) aluminum; site preparation begim; 71 W.FIagler St ferrous metals shakedown expected In Mlaml,Fla 33130 in 1980 n e lro tl, City Shredding,air Steam and/ 3000 TPD Not set at I2J Negotiating w/Comhustion Michael Drinker Micliigaii classification; or electricity this tim e Engincering,lnc/Waste Environinenlal m agnetic for use by Resources Corp.prior to Protection separutioit D etroit contract sigiiiiig;sleam to A Maint.Dcpt. Edison;lerrous he purdiascd by Detroit City of Detroit m etals Edison;envirunmenlal CIty-Coiuity DIdg. Impact statement being ftoom 513 prepared Detroit,Mich 48226

Oululli,Mliu> Western Lake Sliredding; RDI ;ferrous 400 TPD of $1.25 Under construction; 3uhn Klaers Superior San. m agnetic inetals;steain MSW;340 TPD operatonal in May 1979 Western Lake District (opcr.) sépara tion;air for healing and of 30% solids Superior Sanitary Consoer,Town­ classification; cooiing ol plant sewage sludge D istrict send A Assoc, secondary and to rim process 27th Ave. West (engineer) shrcrkllng; eijuijiment A The W aterfront iluidizcd bed incineration ol It OF and sludge -o VJl (conllmieiJ)

Reported Capital Costs Key Reported TippiuK Fee (Millions of Location Participants Process Output Capacity (per ton) ______S) Status C ontact

Cast City of Brockton Sliredding; Eco-Fuel II 550 TPD being varying 10-12 O perational since 1977; (Same as Bridgewater, and nearby air classlll- for Industrial processed municipal plant lias served as pilot Oridgcport,Conn.) Mass. townS|Coiiibus- catlon;magnetic boiler ferrous contracts operation to ;iroduce por­ llun equipment separatlon;other m etals tions of RDF for processing Assoc.f East inccltanical to Eco-Fuel II Bridgewater separation Assoc.

Franklin.OII City;Black Hydraposal/ Paper fibers; 150 TPD (50 57.50 3.2 Production plant n. Eichliolz Clawson Co. Fibreclalin ferrous metals; TPD being 0|icrating since 1971 City Manager (designer/ proprietary aluminum processed) City of Franklin operator) processes using P.O. Box 132 wet pulping Franklin,OII 45005 and magnetic sépara tlon;lieavy media;jigglng; electrostatic precipitation

Hampton, Va. City,NASA Mass burning Steam lor use 200 TPD None 9.5 Construction completed; Frank II Miller Langley by NASA Langley delivery of boilers DIr.Public Wks Rcsearcti Center Research Center expected in early 1979 Hampton, Va U.S. Air Force 23669 at Langley Fid. 3.M. Kenilh Co. (designer/builder)

Harrisburg,Pa CilyjCannett Waterwall Steam (or 720 TPD Ranges from 8.3 Operational since Paul W.Bricker Fleming,Cor ddry combustion; utility-owned $IO.g0-$ll.8O Oct.l972|Steain sale Canne tt,Fleming, and Carpenter,Inc. bidky waste district lieatin to utility began Dec. Corddry and (designer) sliredding system and for I978;sludge drying Carpenter ,lnc. (steam driven); city-owned facility to be completed P.O.Box 1963 m agnetic sludge drying by Fall 1979 llarrisburg.PA separation; systeni|(crroiis sewage sludge m etals burning

-o CTv (coalliiued)

R eported Capital Costs Key Reported Tipping Fee (Millions of Location Participants Process Outpnt C apacity (per ton) $1____ Status Contact ltcinpstead,N.Y. Town;! leiiipslead tlydrapasal(wet) Etcctrlcily from 2000 TPD About $16.00 73 In shakedown Peter Alevra Resource pulping); utility-owned (t)0 TPil) Project Manager Recovery Corp. magnetic and turbine generators; Parons & (Oiv.of Uiack meciianical coior-sorted Wtiitlemore Clawson/ separation; glass;aiuniimun; Contractor Corp. Parsons & burning ol RDF ferrous mctals 200 Partr Avenue Wiiitteinore, product In air New York,NY liic.Mowncr/ swept spout 10017 operator) spreader stoker boilers

Lane County, CountyiAliis- Siircdding;air UDFilerruus 500 TPD None 2.1® In siiakudown;operalional Mike Turner Ciiaiiners classification; m etals In March 1979 Adm.Aitalysl Corp.(dcsigner){ m agnetic lane County Solid Western Waste separation Waste Mgt.Div. Corp.(operator) Environmental M gt.Dept. 125 E.Stii Ave. Eugene,Ore.9740l

Madison.Wis C ity and M L. Sliredding; RDF for use by 400 TPD None 2.5 Under construction; Gary Doley Smith Envir­ magnetic sepa­ Madison Cas St (maxX200 startup sciieduled in Oiv.of Engineering onmental ration of com­ Electric Co. TPD being early 1979 Room 115 designer); bustibles and m agnetic processed) City-County Rldg. Madison Cas & non-com­ nictais Madison,Wis 53709 Electric Co. bustibles; (uni' user) secondary sliredding air swept

Milwaukee, City;(lo Sliredding air ROF for use 1600 TPD $11.64 18 In siiakcdown,partially George Malian Wis. expand to classification; by utility; operationai;test-firing D irector surrounding magnetic and bimdled paper RDF Tecimoiogy A Milwaukee Cty. oilier meciianical and corrugated; Operations areas); separation magnetic metals; Ainericotogy Div. Amcricology Oiv. aluminum Am erican C an Co. of American Can aluminum American Lane Co.(owner/ Creenwich.Cuim. o;>eratur)i 06830 Oeciilel,lnc. (designer) (coniiniied)

Reported Capital Costs Key R eported Tipping Fee (millions ol Participants Process Output C apacity (per ton) ______$) StatusLocation C ontact

Monroe County, County(owner|( Shredding, ROF lor use by 2000 TPO S4.50 50.4* Construction 95% complete Howard Christensen New York Raytheon Scrv. air classl- ullllty;lerrous startup scheduled lor OIr. Solid Waste Co.(dcslgner) llcatlon;magnetlc inatals;non- Sjiring 1979 Oept.Public Works otiier mechanical lerrous metals; llOCollax St. separatlon;(roth mixed glass Rucliester, N.Y. llotatlorr 14606

Nashville, Term Nashville Thermal Thermal com- Steam lor urban 400 TPO Approx.$8.00 24.5 Operational since 1974; Milton E.KIrkpatrIck Transler Corp.; bust Ion heating & cooling 7 days per recently upgraded two Exe.V.P. & Ceri.Mgr. I.e. Tlioniasson tc week hollers to 530 1'PO capacity Nashville Hiermal Assoc.,lnc. each Transler Corp. (designer) 110 First Ave.South Naslrvllle, Tenn 37201

Newark,N.]. City; Combustion Slueddlngtalr Eco-Fuel lor 3000 TPOdn Varying 70 (lor Final contract signed (Same as Uridgeport Equipment Assoc, classlllcatlon; use by utility 1000 TPO municipal TPD 1977; site preparation Conn. and Occidental magnetic and lerrons metals; modules;lo contracts (Initially began In Dec. 1978; to Petroleum Corp. other separation aluminum serve Newark's 1000 TPD be operational In late (designers and 700 TPO and w /a cost 1980 operators) surrounding o l $25 community) million Including luel user conversion)

New Orleans, Clly;W asle Sliredding;alr Ferrous metals 700 TPO $11.70 9.1* Slireddlng/landlllling Pat KoloskI, La. Management classlllcatlon; aluminum and operational;recovering D irector lnc.(owncr/ magnetic and other non-lerrous icrrous;ulumlnurn,other Dept.Sanitatloii operator); other mechanical inetals;glass noiilerrous metals;glass C ity Hall National separation In shakedown New Orleans,LA C enter lor 70112 Resource Rccovcry,lnc. (designer/ Iniplementer)

Niagara Falls, Hooker Energy Sliredding; Electricity lor 2200 TPO Noet set at 65 Under construction; to Jim Green N.Y. Corp.d looker magnetic sepa­ use by company this tim e be operational In 1980; Manager Chemicals it ration tburning complexilerroiis $20 million worth ol Public Relations Plastics Cor;>.) shredded reluse m ctals equipmcnton order or on Hooker Energy (owner/ site Corporation operator) 4646 Royal Ave. -O Niagara Falls,N.Y. 00 14301 (conlimie

Reported C apital Costs Key Iteported Tipping Fee (Millions of Lucalloii Participants Process O utput C apacity (per ton) S) Status C ontact

I'inellas County; Mass burning Electricity; 2000 TPD $I0-I2(est) 80 Negotiations rinder way Don F.Acenbrack, Counly,Fla Florida Power ferrous metals. for fuli-service contract D irector Corp. aluminum and with UOP,lnc.;projected Solid Waste other non- to begin o;ieration by 1982 Dept Public Wks ferrous metals and Energy recovered after Pinellas County burning 31) Haven St. Clearwater,Fla. 33)16

I’oiiipuiio Ucacli, Waste Stiredding;air Methane gas; 30-100 TPD None 3.6 In shakedown Peter 3. Ware, r ia . Management, classlficallon; ferrous mctals Proi.Manager Inc.iU.S.Dept. magnetic and Waste Mgmt. ol Fncrgy; oilier mechanical Inc. 3acobs separation; 900 dorle Blvd. Engineering Co. anaerobic Oak llrook,ILL (designer) digestion of air classifed light fraction with sewage sludge

San niego County; Sliredding air Pyrolytic;uil; 200 TPD None EPA-ll.8 Demonstration plant; 3olui S. Iturkc, County,Calif.* Occidental classification; ferrous and County-2 operations suspended Dep.Director Petroleum Corp. magnetic and nonferrous O ccidental after IntinI testing Solid Waste (designer/ otiier mechan­ inetalsiglass Petroleum-8.7 furtiier possible funding Dept. Sanitation operator) ical separation; and modifications being and Flood Control frotii flotation; considered )))) Overland Pyrolysis Avenue Sait Mego.Calll. 9212) (continued)

Reported C apital C osts Key R eported Tipping Fee (millions of Location Participants Process Output C apacity (per ton) S) Status C ontact

Saugus,Mass Twelve communi­ V'ater-wall Steam for 1200 TPD (two Fees vary with 30 Operational since 1973 Joseph Ferrante ties Including - combustion; electrical boilers w/ contracts and Whcelabrator- Saugus and m agnetic generation and £00 TPD w aste type Frye.lnc. p art of separation industrial capacity Liberty Lane nor them use; ferrous each Hampton, N IL RostonilinSCO m etals 03842 (owner/ operator)

Tacoma.Waslt. Cily(uwner Slueddlng;alf RDFiferrous 300 TPD In city; 2.3 In shakedown operational Dill Larson operator); classification; m etals $5.£0; In early 1979 Project Manager Roeliig Eng. m agnetic Outside city; Refuse Utility (designer) separation $9.00 818 Yakima Ave. Suite 201 Tacoma.Wash 98403

Wilmington. Delaware Slireddingiair Ferrous metals; 1000 TPD Nut set at 31 9 from Contract signed Aug. 1978 Pasquale S. Canzano Dei.» Solid Waste classslflcatlon; non-ferrous municipal this tim e EPA,OSWi with Raytlieon Service Co.; Chief Engineer AutliorltytEPA . magnetic and mctals;glass solid waste 16 from EPA, design of facility is imder- Delaware Solid Raytheon Service otiter mechanical RDF;huintis CO processed Water Prog. way;ground breaking Waste Authority Co./designer) separation; with 350 TPO £ from State expected in S ept.1979 P.O. Dox 981 froth flotation; of 20% solids m atching Dover, Dcl.l990l aerobic digestion digested grants; sewage sludge remainder from the Aulhortiy through sale of revenue bonds

CO O (continued) .

Tlie lollowInK localities arc either operating or constructing small modular combustion units to produce steam from mass combustion ol municipal solid waster

Reported Reported Capacity Capital Costs Location Manulacturer (TPn) (Millions o l $) Status Contact

Auburn, Main Consumai 130 3.2 Design contract, liinded by Leo La Rodiclle, DOE, signudjenergy user and Director operator contracts being Public Works negotiated. Aidiurn City Hall 43 Spring SIreet Auburn, Maine 04210 iiiytlieviiie. Ark. Consumai 7) . N/A Temporarily siiut down lor Tom Little to be processed installation ol additional Mayor units C ity Hall Ulytheville, Ark 72313

Crossvilie, Tenn. Smokalrol £0 N/A In sliakedown; undergoing Ed Kinisey modilicalions City Manager P.O.Drawer 328 Crossvilie, Tenn. 38533

Dyersburg, Teim. Consumai 100 Final design phase; David W. Lanier scheduled startup In niid- Mayor 1980 P.O. Box 10 Dycrsbiirg, Tenn.38024

Ccnesee Townsliip, Consumai 100 1.9 Construction £0% complete Hanamiuiiliaiya Marur Miciiigan to begin operations in iuly Tuwnsidp ol Genesee 1979 7244 N. Genesee Rd. Genesee, Micldgan 48437

Groveion, N.H. Environmental 30 N/A O perational since 1973 Ricii Coville Control Products Groveion Paper Miil,lnc. Groveion, N.H. 03382

Lewisburg, Tenn. CICO £0 N/A Under construction; to be 3ames I.. Muss, 3r. in operation in August 1979 City Manager 303 Ellington Pkway Route I Lewisburg, Tenn 37091

CD (ccMklioued)

R eported Re|iorteil Capacity Capital Costs location Manulacturer ' (TPD)______(Millions of $) Status C ontact

North Little Rock, Consumât 100 I.4S Operational since lack Atkins Ark. Septem ber 1977 Dir. of Sanitation 1120 Sycamore Street North Little Rock.Afk 72114

Salem ,Va Consumât 100 1.9 O perational In 1979 William Paxlon.lr. City Manager P.O. Itox 869 Salen, Va. 241)3

Siluain Springs, Consumât 20 Operational since Al Varwig Ark. September 197) D irector Sanitation Department 410 North Droaiiway Slloam Springs,Ark. 72761

OO ru (continued)

II) addition to tlie systems listed above, projects are underway to recover methane-containing gas mixtures Irom sanitary iandliiis which can lie purified to pipeline quality)

Output Reported Cas Prochiced Capital Costs Location Key Participants (Million Ft /Pay) (Millions o( $) Status Contact

Axusa.Calil Azusa Land Reclamation Low ntU gas N/A Began ojicra lions in Ralph Ride Co.(whoiiy owned April I97S Soulhwcsteri) Portland Cement subsidiary of the Company Soutliwestcrn Portland 3033 Wilshire Blvd. Cement Company) Los Angeles,Call(. 90010

Mountain View, C ity o( Mountain View High UTU gas|6 N/A Pilot pianttin sliakedown Max Dlanchet California EPA) Pacific Pacific Gas & Eiec.Co. Gas & Electric Co. 243 Market Street San Francisco, Calif 94106

Palos Verdes, Los Angeles High DTU gas! N/A Operational Frederick Rice California County Sanitation 1.2 Reserve Synthetic Fuels,Inc. District! Reserve 7730 Signal Parkway Syntlictic Fuels,lnc. Signal Hill, Calif 90806 (joint venture of fteservc Oil & Gas Co. and NitC,lnc.)

Staten Island, New York City N/A Entering demonstration Anilioiiy Giuliani Mew York Resource Recovery pliase of project! pre­ Brooklyn Union Gas Co.,Inc. ((’resit Kills Landfill) Task Force! Drooklyn liminary testing of gas 193 M ontague S treet Union Gas Co., Inc.! com pleted Brooklyn, N.Y. 11201 Leonard S. Wcgman,lnc.! New York State Energy Rcsearcii and Development Aulitority

Sun Valley, California City of Los Angeles Low DTU gas! 2.23 Under construction! Mike Miller (Slieldon-Arleta Departments of Public 2.8 operational In July 1979 Sanitary Engineer landfill Cas Works and Water & L.A. Bureau of Sanitation Recovery Project) Power Room 1410, City flail East Los Angeles, Calif 90012

OO (coiillnued)

Tlie following slale and local governmeiiU are In advanced negotiations or in llic "request lor Proposal" (lirPI stage, i.e., RFP's liave been issued - or are reportedly imminent - but contracts liave not been signed.

Central South Centrai Conn. New York, N.Y. ilonoluiu, Hawaii St. Paui, Minnesota Teller son County, KY Tulso, Oklnlioma Montgomery County, Oliio

COST INFORMATION AS REPOIlTEn» a Construction (Including $) million lor extensions to existing steam distribution system) $11 millioni engineerllng and construction supervision $i.S million; Interest during construction$i.S million; contingency, start up and land costs $1.3 million; lees, underwriting and issuance costs $2.0 million; debt service reserve fund requirement $4.3 million. h Construction and engineering $3.6 million; land $98,000; miscellaneous equipment $163,000; plant start-up in pall 1973 $322,000. c Total revenues (including bond, proceeds and Investment income) $34,386,040. Total expenditures: $33,386,040, consisting ol the following: project development $3.026,438; bond issue expenses $1,391,413; construction $39,349,771; special capital reserve $3,022,388; debt service $3,393,810 (including main iaciiity and six transler stations). d Includes design and construction. Funding through C.O. bonds. e Land acquisition, site preparation and recovery plant $143 million; electrical power generating facility $20 million.

I Including incineration g Cost ol Pliase II ol the project. Including construction ol the resource recovery facility alone and hi-plant equipment, liuilt in conjunction with Phase I wiiici: includes cetttral receiving, transler station and transler equipment widcl: cost approximately $2.2 million. h For the processing plant.

I Total funding authorized by county legislature; $30.4 million, including an $18.3 million grant-in-aid Irom New York State D.n.C. funding under the Enviroiunental Quality Bond Act. Includes $28.4 million lor constructioi: ol the resource recovery facility. Construction ol Russell Station ROF handling facility is estimated at $8 million. Balance ol funds will be spent for engineering, startup, mobile cqul|>inent, etc. j Includes Reduction Module (including landiill) $3.8 million and Recovery Module $3.3 million. k Not including slireddcr whicit was already on-site. ^

I Total project costs - $31 million, including $20 millio:: for sludge module.

■Partially funded by the U.S. CPA APPEITDIX C

Derivation of the Hadiation Intensity Fimctioa Equation 11 can be written in the following form

(C-1) 003(9)5^ +

We can define the optical thickness of the medinm as -L

'0 and an optical distance within the medium as

(0 3 )

The derivative of equation C-3 is

(C-Zf) dt^ = Bj^ds

Next we dé fine a direction cosine as

(C-5) U = C0s(9)

By dividing equation C-1 by we obtain

(C-6) cos(9)g^^ -r = ;^(k^e,^j^Cx) +

We may now changa variables and equation C-6 becomes 185 186

(C-7) uji +

The same equation may be obtained for

(C-8) U.'gr * l l = where u is positive for and negative for The bound- conditions for equations C-7 and C-8 are

- , = lj(0,u) © t>_ = 0

i ; ( t^, u) = S

The above are the intensities leaving the surfaces 1 and 2 of Figure 11 respectively.

Equations C-7 and C-8 are first order linear differ­ ential equations with constant coefficients. The solutions to the homogeneous equations are

(C-9) 1+^ .

(C-10) 1%^ =

To find the particular solution to equation C-7 we replace constant with a variable 7. Substituting we have

(C-11) lig = 187 Substituting equations C-11 and C-12 into equation C-7 we bave

(c-13) =

We canrearrange this equation as follows

Si (C-H) iV = (t) + ^

Equation C-14 can nov/ be integrated using a dummy vari­ able z in place of t. This will eliminate confusion when the homogeneous and particular solutions are combined.

(C-I5) 7 = 4. ^(z)) 6 ^ / ’" f

The total solution is

(C-16)

Substitution yields iSC-17) I: = A^e-t/7 4. i^U

may be solved for using the boundary condition for at t.= 0 .

= 1 ^ 0 ,u)

(C-18) A, = 1^(0,a) 188 Substituting, the total solution is

((>19) it =

Equation C-19 is the same as equation 12 in Chapter 5*

Equation 13 may be derived in the same manor. APPENDIX D

Differentiation of the One-diaensional Radiation Fliiz

The radiation flus equation, equation 15, may he written

(D-1 ) s. Z ^ f 1^(0,u ) u du J 0

in dz

1

The terms underlined in equation D-1 are e:cponential integrals of the form

(D-2) S (s) = du ^ Jo where

(D-3) ='jT'u“-2(-1/u)e-^" du = -jT’u*^“- ’’-2e-=^’^an

= “V i \ Differentiation of the first and third terms in equation

D-1 is straight forward*

139 190 (D-« 2=/" I,(0,u)T|-(ue"*^/’^) da = -2»/" 1^(0, du J q /O and

(D-5) - 2 « ^ I^(tgj^^,-u)‘^ ( e “^^oX"''X^/^ u) du «/Q X

= ~ 2 ,^ J ' du

Differentiation of the second term of equation d-1 may he done hy parts.

+ ^ - ^ ( z ) ) E 2 (t^-z) dz

= 2 r + ;g^\(z))E 2 (t;,-z)) dz ' '0

_ , s, ......

- 2(|^e^,v(0) + 2^

On the right side of equation D-6 the exponential integral is the only term under the integral containing t^. It may he differentiated using equation D-3* 2^ in-'the/second term is equal to one. The third term vanishes. The result is

't\ k\ Si (D-7) - 2jT + ^^(z))S^(t^-z) dz 191 The fOTirtii term of equation D-1 may be differentiated by parts♦

k\ S y dt.\ / 4- \ ^ \ T? / 4. 4. \ -0-^ \

On the right side of eqnation D-8 the exponential integral is the only teimi under the integral containing tj^* It may be differentiated using equation D-3* The second term vanishes and S^in the third term is equal to one# "The result is ■

(r>-9) - 2^°^(5^e-i,x(2) + i^-j,(z))E,(z-t^) dz

Equations D-i, D-3, D-7, and D-9 may be added together and the negative ■ taken to give the following equation, on the next page* 192

(D-10) du «'O

«/ 0

+ p^-^(z))S^(3-t^) dz \

The third and fourth terms in equation D-10 can he com­ bined under one limit by noting that tj^ minus z is always positive. To indicate this the absolute value of the term is taken. The equation becomes

(D-11) -dq^h/dt^ = du “ JQ

+ 2:/" I%(tgi,-u) e-(toi-t\)/u

® + 4B ^ \ ^ 2 ))E,(|t^-z| ) dz

Equation D-11 is the same as equation 13 in Chapter 5* A P P M D I Z E

Derivation of Surface Flnz

The sTirface intensities in equations 25 and 26 may he written for gray, diffuse surfaces as follows

(2-1) l\0,a) =

(E-2) I"(tg,u) = Hj/»

'JJhere H is the surface radlosity. Equations 25 and

26 may he written in the following form.

(S-3) q^(t) = 2P^E^(t) - ZPgE^Ct^-t)

+ 2jT e,j^(z)E^(tQ-2;)d2

;2.jf ‘^e^(z)S2(z-t)dz

da (E-Zf) = 2H^E^(t) + 252E^(t^-t)

+ 2 e^(z)E^ ( it-2 I) dz - 4.e^(t)

Equation E-5 may he evaluated at surface 1 hy setting

t equal to zero.

193 194

(E-5) q^(0) : a, - aCHjEjCtg) dz)

This equation is the difference between the radiation leaving the surface and the radiation incident to the surface# The radiation incident to the surface can be espessed as follows

CS-6) = 2E^E^(tg) + zJ^°e^(iz)E^(z) dz

The radiosity may be expressed as

(S-7)

(2-8) = 6^e^^ + 2(l-«^)(E22y(tg)

+J^ °e:^(z)2 2 <^z) dz)

(2-9) (1- )E^

(2-10) E^ = «2®t2 + 2(l-«^)(E^E^(t^)

f t + J ^ °e^(z)E^(tQ-z) dz)

We may make use of symmetry of the furnace lyith respect to the walls#

(E-11) E^ = = Eg

(E-12) = €g 195 (E-15) = ^ 2 = ^ 1

Also, for a gray gas and a gray surface may wzrita

CE-H)

(E^15) e^s= »Ts

Equation E-5 may now "be rewritten*

(E-16) dz

R_ can be rewritten*J. V Vswü# I* ^ s ‘s 4- 2(1- Ç / dz (E-17) Hg = 1 * 2(1-

It must be noted that ^ could be a function of temp­

erature* However, we will assume that it is constant

within the range of interest. Equations E-5 and 2-4-

may be written as

(2-18) q^(t) = 22g(2^(t) - E^(t^-t))

+ 2 ^ ^ 0T ^ ^ ( t - 2 ) dz

- 2 j f ^ ° i T ^ ( z - t ) dz 196 dq (E-19) = 2Bg(S^.(t) +

These are the same equations as equations 27 and 28 in the theoretical section of Chapter 5* • APPENDIX F

Derivation of OiLe-»d±mepslonal Radiation SanatiOTis for a Stirred Peactor For a stirred reactor the temperature is constant and may he taken out of the integral in equations 2? and 31 in Chapter 5*

(F-1) q^(t) = 22g(Z.(t)-S^(tg-tn

+ 2CT^(j^^E^Ct-zldz - j^^°E2(z-t)dz)

dq (F-2) = aSgCSjCtj+EjCtg-t))

+2«T^( r''°E,(|t-zl)dz - 2)

(F-3) = Rg(l-2iy(tgn - 2 « T ^ P ° E2 (z) dz where /** t «.o ' 4 ' ^ 2 ( 1 - O s t V o % ( z ) dz. (F-lf) Rg = l-2U-‘gJ33ttg)

(F-5) o.j^ = «T^Cl-EEjCtgy)) - dz

197 198 The ezponential integrals may be evaluated using the identity

(F-6) I E^(z) dz = (z) = - ^n'+l

We:have t (F-7) S^Ct-z) dz = S^Ct) - E^(0) = S-(t) - 1/2

(F-8) I ^°E^(z-t) dz = E^(0) - E^(tg-t)

= 1/2 - S^Ct^-t)

(F-9) j^''°E^(| t-z|) dz = E^Ct) - E^(tg-t)

(F-10) J ^ ° E ^ i z ) dz = E^CO) - E^(tg) = 1/2 - E^(t^)

Substitution of equations F-7 through F-10 in equations

F-1 through F-5 yields

= aSgCEjCto-SjCtg-t))

= 2(Eg+«T''') (Eg(t)-E^(tg-t) ) 199

(F-12) = 2Sg(E2(t)+2^

+ - z)

= 2(Ej+«T^)(E2(t)-E2

+4(5gE2(tg-t) - »T^)

(F-13) q^s = EgCl-SEjCtg)) - EST^d/E-SjCtg)) where « « i f + (l-< )«T^ - 2(l- ‘ )E,(t.)3l'^‘ (F-14.) E, = -^— 2------s _ J _ _ 2 ---- ® 1 - 2(1- »s)%(ta)

'.(«lf-«l4 i .

- i-aci-'g^s^ct^} '

(F-15) q ^ = «1^(1-2 33 (4^^) -■ 2«l4(1/2 - 3 3 (4^^))

_ («^4 . 8T^)(l-2Ej(4gj,))

Equations F-11 through F-15 are the same as equations

3 2 through 3 6 in the theoretical section of Chapter 5* APPENDIX G

INDEX OF COMPUTER OUTPUT

Boiler Activation Frequency Stirred Energy Factor Run Reactor Btu/lb mole 1/sec Bypass Blackening Excess No. Ht. Ft. (000) (000) Factor Factor Air i 13 32 125 .0 2.0 .5 2 13' 32 250 .0 2.0 .5 3 13 32 500 .0 2.0 .5 4 13 32 1000 .0 2.0 .5 5 13 32 250 .1 2.0 ,5 6 13 32 500 .1 2.0 .5 7 13 32 1000 .1 2.0 .5 8 13 32 125 .3 2.0 .5 9 . 13 32 250 .3 2.0 .5 10 13 32 500 .3 2.0 .5 11 13 32 1000 .3 2.0 .5 12 13 32 2000 .3 2.0 .5 13 13 32 4000 .3 2.0 .5 14 13 32 250 .5 2.0 .5 15 13 32 500 .5 2.0 .5 16 13 32 1000 .5 2.0 .5 17 13 32 2000 .5 2.0 .5 18 13 32 4000 .5 2.0 .5 19 13 32 8000 .5 2.0 .5 20 13 28 125 .3 2.0 .5 21 13 28 250 .3 2.0 .5 22 13 28 500 .3 2.0 .5 23 13 28 1000 .3 2.0 .5 24 13 30 125 ,3 2.0 .5 25 13 30 250 .3 2.0 .5 26 13 30 500 .3 2.0 .5 27 13 30 1000 .3 2.0 .5 28 13 30 ' 2000 .3 2.0 .5 29 13 30 4000 .3 2.0 .5 30 13 34 250 .3 2.0 .5 31 13 34 500 .3 2.0 .5 32 13 34 1000 .3 2.0 .5 33 13 34 2000 .3 2.0 .5 34 13 34 4000 .3 2-0 .5 35 13 36 250 .3 2.0 .5 36 13 36 500 .3 2.0 .5 37 13 36 1000 .3 2.0' .5 38 13 36 2000 .3 2.0 .5 39 13 36 4000 .3 2.0 .5 40 13 36 8000 .3 2.0 .5 • 200 201 Boiler • Activation Frequency Stirred Energy Factor Run Reactor Btu/lb mole 1/sec Bypass Blackening Excess No. Ht. Ft. (000) (000) Factor Factor Air

41 1.5 32 250 .3 2.0 .5 42 1.5 32 500 .3 2.0 .5 43 1.5 32 1000 .3 2.0 .5 44 1.5 32 2000 .3 2.0 .5 45 1.5 32 4000 .3 2.0 .5 46 1.5 32 8000 .3 ' 2.0 .5 47 7 32 250 .3 2.0 .5 48 7 32 500 .3 2.0 .5 49 7 32 1000 .3 2.0 .5 50 7 32 2000 .3 2.0 .5 51 7 32 4000 .3 2.0 .5 52 20 32 250 .3 2.0 .5 53 20 32 500 .3 2.0 .5 54 20 32 1000 .3 2.0 .5 55 20 32 2000 .3 2.0 .5 56 , 13 32 250 • .3 2.0 1.0 57 13, 32 500 .3 2.0 1.0 58 13 32 1000 .3 2.0 1.0 59 13 32 2000 .3 2.0 1.0 60 13 32 4000 .3 2-0 1.0 61 13 32 8000 .3 2.0 1.0 62 13 32 500 .3 1.0 .5 63 13 32 2000 .3 1.0 .5 64 13 32 2000 .3 1.1 .5 65 13 32 250 .3 1.2 .5 66 13 32 500 ,3 1.2 .5 67 13 32 1000 .3 1.2 .5 68 13 32 2000 .3 1.2 .5 69 13 32 4000 .3 1.2 .5 70 ■ 13 32 250 .3 1.5 .5 71 13 32 500 .3 1.5 .5 72 13 32 1000 .3 1.5 .5 73 13 32 2000 .3 1.5 .5 74 13 32 4000 .3 1.5 .5 75 13 32 250 .3 3,0 .5 76 13 32 500 .3 3.0 .5 77 13 32 1000 .3 3.0 .5 78 13 32 2000 .3 3.0 .5 79 13 32 4000 .3 3.0 .5 80 13 32 500 .7 2.0 .5 81 13 32 1000 .7 2.0 .5 82 13 32 2000 .7 2.0 .5 83 13 32 4000 .7 2.0 .5 84 13 ■ 32 8000 .7 2.0 .5 85 13 32 8000 .9 2.0 .5 202 Boiler Activation Frequency Stirred Energy Factor Run Reactor Btu/lb mole 1/sec Bypass Blackening Excess No. Ht. Ft. (000) (000) Factor Factor Air

86 13 32 8000 .3 2.0 .5 87 13 32 16000 .3 2.0 .5 88 13 32 32000 .3 2.0 .5 89 13 32 64000 .3 2.0 .5 90 13 20 64000 .3 2.0 .5 91 13 25 64000 .3 2.0 .5 92 13 28 64000 .3 2.0 .5 93 30 32 250 .3 2.0 .5 94 30 32 500 .3 2.0 .5 95 30 32 1000 .3 2.0 .5 96 30 32 2000 .3 2.0 .5 97 40 32 250 .3 2.0 .5 98 40 32 500 .3 2.0 .5 99 40 32 1000 ,3 2.0 .5 100 13 32 125 .3 2.0 .25 101 13 32 250 .3 . 2.0 .25 102 13 32 500 .3 2.0 .25 103 13 32 1000 .3 2.0 .25 104 13 32 2000 .3 2.0 .25 105 13 32 4000 .3 2.0 .25 106 13 27 500 .3 2.0 .5 107 13 37 500 .3 2.0 .5 108 1.5 32 4000 .9 2.0 .5 109 7 32 4000 .7 2.0 .5 110 30 32 4000 .1 2.0 .5 111 40 32 4000 0 2.0 .5 203

# « *.* •«•••«•»••••••••••••••*• w « f mwicf e»#N) ----- ^ Il t —mmmA'fmmm aoa»y*#m ir t>4i':-:p- r r-' il Of wi«)Oip >rsw^«> •'*"6

:g f f f f f^ri> •u,MI fwc. • I I

OfSS3?£SSS?^gSSSSSSSSSgSiSS^ f<,o«»^o^ocooococoocooooococ •»•••••••••••••••••••••••••• 0>o>ee«eoooeeooeopooooeoooc • j I I I . y v O f : I •• I ^ ■••1 I- eooeoooeeoeoaeeeeoeooeeoooee ffwvmee^oe»»o«y^a‘»»cKhv • I ^ooir^fC ff o«o ••«••••••••••••••••••••••••* f "f ^ f 'f f »f'f'f

. fMimorwn^ooeofieoeQOQoeoloeeooe momooONf 'f'f'f'f "f'f'f'f'r eoeoe«*<^*^9>9‘0»o^»o>«»9-9>>f• •*••«•••••••••«•«••••••••••■ 9 I I mruMwfmmmirwtirwwwvtfMMfvri^ eeeeoeoeoaeeeoseooooeoeooooe »iN.TffQM—^f Of f e>0»Nees,eemee f «n»oc»q>o»o«y»»»»g»»o»q»<^q»»y wee w e e e o

f f %Of SffCSf (mp'^oefS&mm*^^ me*w#,ff»—fv# w*f

2a y> luX f f ^eifM»eMroof*wfffooooaeogo»c»e> o*ee«v«re ^o o2 f» ••••«•••••••••••••••••••«f«ww>MNfrw—oeeoeoeoeoeeoeeeeoe • « ^

H g T T T T T T T « oeefffff efof*N»emo, i—y<,ine^eee ooooooooof------—------efeeomeeofWMWXf *«Nff oo ^ œ

ee*rweooef«eewA#efe.we

CM

% «\ IL *imwi#m o or - t e r r~icir frr*' -T~ — ' BH'-.k-i' I;-':-

•••*a ■• f ■: =-4-' '. •••'^. ■■

23^gggSSSgS§§SSS§:Sg§gS§gg(vme^eoooooeeeaooooaooooooaoa

oeoeotieoeaeeeaooeeoeeaeoeoee I #«»***

oooéeooooooeoaoooooeeeeooeoe

SSS55SSRSSSASS5SSSSSSSSSS3S o'SS-ÎX M- #«2m*S%mf5»So5 ' nf»»—woooooooeoooocooooooooo • ■ §S «ooooooooaoeeoeeooooooQoeoop■ ■•«•••«•••••••••••••••••«a**

3 0 0 0 » # Kimommwmmo—N 300000 » ■ ■ SOOCOOOOOOQOOOOOOOOOOpOOOOOO• ••••••••••«•«•••••■••••••••a !i K :| k'4' ‘-fr-

■k •\

e. ! 205

w w«»v*aw ■ ' w «WI iO .

c ;% oMeeoooeooeoeoeoooooeooeoaoe

rooaoaooeeaaaooaoococaooaoleoeeeeoeooaaooaeaaoaeoaeo I looeeeooeoaoooi

ieebaoeooeeoeoooaeeeaeoadoo

£. S.'!:

wfweiNiwwwwwwwwjewiWKweirwvFuw^wF» 2SSA%S3C=^SZ^=5SSS=:

_•oaeeeoooooeaooooooeoo _ _ . . - ^ I

\

[ - ■ :l ..5 = I \ *", Io ^I

5 I ' » ' j ' ! ^^■ft^OOOO—!■ "mldlW##WWMW#VWM#^WW#WMM#*WWMW*WWW ..... i » w 0"C#"WW"#Q N f # WO W < ^ ' # N ^ O ^ » W O O • •••••«•••••••••«•••a»* •■• • • •i = 1 SSSgZSggS^S^giKaKSgagy^ '-!%i Ki'. I H IM' t..i

LLLLLLLLLLLL5Â"o^Vo'ei,«aye*eî>£^oeoooooeooeooopoooooooDOOopo ^ ' ;ft _e iruo??Pm?u?i^O?^fÎTruiî?OÆ%rT^Tr* m 7i S N - N - I'-i ?■ = :i

mwe»twwwNw— MWNWWWWMWWWWMWMWWNWWMMlWWWWMW

S3SSSSS33S33SS33SS33S3SSSSSS 'VW#w*vwh#lm#vM#wuw#vwww*wmM#wwMww%mw# ^ ^ lO ^ ^ ^ v«^ ^ ^ ^ ^ ^ V > J!Î **##*#*#*#.#*****##**#*$**#** -. -ooopoooooooooooooopooopooooo t ’. '««MNWMMMWWWMMWNMNWWWWMIWMMAWmWN1.V-I Jlj eoooooooeoQQoeooooooMooeooe #:• M- N -j epeoeoDooooooooeeoeeoeoeooDC e < ■ •••••••••«*••«*•*•••••••**** "* SSSgSSSSSSSSS§SSSSSSi€S||||| I' ooeoPeeeoeeeoooeoooeeooeoopo• -1 • . * i'-a •:?:Vl ■* v.J ' • - eoooeeoeoeoeooooeoooeeeeooee • 9« # «* # # • #■»« ••**••• •••••'•• il «I M N W , |;:H.' T>P^»efOi

••sr.-.' II' . a ! # . I t ; •■ 'sSSI^issssssisSSSs. - . j

± j - / - kZâAa 90S n* /

DONUU A. RAUUNC SIOKtR BOILtR f.UHDUS11UN AM) itlM IKANSFfR ANALYSIS PROGRAM S1IRREU RFACIUK llT 13.00 .. BVPaSI fAC • 0*10 ACriVA||{if« fNCRGV » 37000* fREQUfcNCV FAC • 230000, RlACRgNfWQ fAC » 2.00 SClCË'HÔ itHP riiÂî‘uTîC*sLîârnHk”fiifljM m i'— iiiÂî cfii-’^R«”»iru— im uixr. so,000 -0.009 . 2.332 2.3 0.A69 tAA 9999.3A0 1: OOOÛ. I2Ô .4;M'0 331. 099. i i i i i o.oaO.OB

A 39. 0.099 AA9 339.9 ^8:811

1f\) •,: « o ■ I .1 • • r s ; ? \ . ! iEL O—MWWwNWW*W^f f w *ww w^^w wNwvi'e^iAwe*»*#w*eMe»fvw^ 'Oo*w«#w@ »efr»o*pooDew<^u»‘»>«oy*uw»ww#«o»'e '•■n Ml I -' I - .1 .'1, COOOOOCOOOOCOOCOOOOOOOOOOOOO• • • • • « • • • • • ■ » • • • • • • « • • *«» • # • • &*»* ^^"WWWWWWWsMVWMWfi#""" ■ m OOOOO ^#a##WU*W0WMi#WO'lO^NN»WW#OO#NWWww-JSwO^mwvWkw— ^mW^^'OWkPwC—IWOOO L\ ""f I - ••}

' eoeeeeeeeeoceeeeeeoeoeeeoeofM .••« •••*••••••••••••••••»•«#•• • ^■■^pOCDOOCreOCOgOOOOCCCPOO'eoee^<^«e**i<»»eee eset»w#«wwc "I*— %U ë II

. wwewwfMOv»wm#e^#4»»^w,ew*'^P"mawmo^ e—VAWVWW»NWU"*. f W ■ . ooeeeeoeooeoeeoaoeeoooeeoM o vwmMrw»»fVMfWw»uiwvu»wwMPWMwiwwww 4 #wN#wAwwNw viw#»*wNMw— ##"^^oaa«a I —OQifl» w»w*w^*uw»#w # M ^ " # #WW»W»W *NWPa«"O N W # # w - ---

::d 1: '-1 J i j ' W#ONWW#*e»OW*WkOWWW,*wa"*^"#W%0(MWU»Wm — « Ml Ml "w i»m#www# <>m»a«e*ooj»» #.WAW#WW*n ■■»■! ^||0W>P»»"I 'N W W w # W " N N ^oj»woe^*#»*w#»Mw»viwwe»^Me»*o»woMy '^40w»iowow%*»WM#4UM0*at* •N#w»w&w»Aww •••.•• •■ • • • • • • wMi • ** I#"i»»«»«o

W- - '------.N-' M - f-:i —IP .1 -. ifw ♦ •

_— ------— _^...-.--- 2%Sw!83w!woN SS555SSS52K2eK2S5S522S?5£o5# * • • • -= j. --J ’■■ ^ •• A 11 rïl ■ 0)

90S :

V 1

r'"?!ocooooooeoeooooooceooooooooo ■ IM ■ I '"

a - M ' i-: A .1

' ^*igwa'vwwfw";*^»we'u^w##"igmw»w*we % :### - # : m • ••■•••■••■••••»*••••*••••*•«< K^; W V U W V K ^ A W %

•ottoooooooooeeepoooooctoeoooloesîsssssssssswïEsaæss^^

* oooSSooSoaoeeooeoSoooeoDOwo I I .1 "I .- - ^ # 5 M _' WWWWIW##WVWWW*#MK#*WW#^*^A#IWMM#^M «■ W W W W W W W W W W W W W M M W W W W«#m,W^#V*^*^W;^W) W 4*

' '...-j .csâoôoooSDSaoëàôôaDosees •' H !'• ■ • I I " '.; I I £5SS:g 2

. *WOOW 'Û\J N";J' j iii-rM-B-tè —1 T"rrmnyir‘r M “ *“ ■ !-£b < < » •^Sss=aS;sgsisa;ls£5S£ssg jyyffj:rr.-yyyyyyr^syrirritrf :#1 I'fd' . k - i j ^ L - fwmmmwWMWvW__ ifVMMWMWWMWmWWMf MW^nMOieM^M

0 » # @ W W N P ^ f ■Wiw#«Fw»eeO ;c i . '..-I N ' W M;

602 >

. - ] i \. 1 ■-: ■ * i . .. -[...J |. ■.•

*wfo»e*ewuie‘fr>p*fie*evOwy#ouiee. 1 = bôo6ôô6ôô6iê»ôêôb6ôbôôo6bbbôôcI iM < i'Mi I 1 til i • I M'i 141111 lÜ^llAlL 1 et -o • •• •« • •••••••••»• ••••• »**###* #% I——ooQPooDis^oceoeoeeœeoMooeee ^1—— —oooœooœp —, « ■ I kW-ly ■45 •• •oooo&eioo6oPoouL»e>CDOpeoe•••••• ••••• ••««••• •• e pcc * - » "t^wwwf'fwwiwo wwoimm<*600"^iwNww ,-g

:=.? * . &%S:2&ÿS$@5%S%5aSRÜ32KaS&R: T ■= 5 j. .- I ■ ■ ■ I -I • t • 1 eoooooeooooeepoeeooeeoeooeoe' SSSSSSSSSSSSS8SSSSSSSSSSSSSS eoooeecooooeoooeoeooocoeooee ‘i ü . oapoeoooDc*oeooDoe9^v0oo9^^ao • i «» .a

— —WIIIWII I— UULIUUOIOOOOPOOCOO-.*»*; -m ■* " «••«••««••••••«•««•’••««<•••wM—o » I r9.3 ft » liPilP iW*M##*0#WWOW""0N%0WPWWmfN99W^ - | < îaiîSSSSSKSSSSSBSfeSSSSSSKS -t « s

. wwe»e-^eev>eee r-:j ■OOOOCOPQCOOOOOOOOOOOOOOOPOOO

.••»••••«••••«••*••»«••••••••SSSSS£SS£SSSSSSS£SSSSS£S£SSS 3 n*g fVi doeeooMoooeooeeo

I 1 I Ml I I J M I I

N M - H ' . n ^^????^2;;~SSSS2î!i52rî=!5 * «OMS»a»ioat f'..

• \ ' i 1 -■ V

.' J ■ " 1 i -03

013 ks 211

,0)

' t e : ###»***##*»#»*#«& #«»»#

• *-4 •■• • »W:.# * w# 4 «'* • ••••>* « OOOAOmwNmAON#-'------2gKS3S2»U5fSKîâ!ÎK____ Î? * ' ' 3KSSSK£55»SSÂ1%SS. - •■' •'■ : i%4 r »4 * * *- W: ' iw«4»4 »g»«noco»f - i.. Î5S;SSÏSS2£SSSSSC2SSS; # : ' W :f:'Z w%o*m'#33^#m«A'A«p""oaCf<*'*«a»#m»oewg@cioOO@oOO4*Nm wmm o^i*»«jawio«i<*i # f ~SSSSSSSSSS2ï2SS3SSSag?S^S‘•■•••••••••• *»# #*##«####»*###* ■.

. ooeeeaoooaoeoooooobeoeoeoooo C^0>»»q>0i0»»«iwoiw0^—• •'■•>»•• » # * f ^ m .. fi

#*#'####« "w## w« — n—<— .:-.T. "«tSSgS=23SS5SSS2SS53 . p-';v4;. '•;>rr-j.. I 2:1" -- œ — — ------* ooeeoooe»^4«iMsi 2So38ooo8S2? »m#yami^«»NKm^f«#vw%iA * oooooeeoof'««*wm«iA«

a i^w«WHf44>«»»iiiOOOOOQOO^OOOOaOOOOO• ••«•••••••••••■• wooQoooooonnonoooooooooooooo^»

y y ooooqqgoooooo—■——'—ooooooooai *44n«arw.#inN^^N.^ cw3"» • «»•■•«••«*•••«••• «•*■• OOOOQOOOOOOOOOOOOOOOOOOOOOCO W '^M v Ifti‘^is ommmmw*cmmommo.dN»m.am'O4%o#""/»m0#»Of» #, -t o^#o«ôm*oe4ww*v>ifi«#e'ae«r^e<^«vwi**'^• ••••••••••••«•'••••••■•••••• ----- — mmwiMw • I - ! i| I--; [;? \ • 212

leeoooeeecoeeebeeoeoeebe -

>p»j>»oocoogooooee-

ooS eSoS-5535ro2ifwn -I • •!• - I ' :i » ;i *! ••. asSSSSSSSSR!------

< oifw^'eoe#"'

\ r'^ SÂ13

S I »••••• • • I» mwcOww^^Mi

iQ •(fWV^’O^ lOO

p - * ^ i a

IT^^tSZSSSSSt

o«*9o00900. — A ^ ^ ooooadooooeoedoo

s s iM N«Aomi w a ^ c arn9M'AN»v>,mn

■ \ \. "I

N,OOOOOOOOOOOOOOOOOOOOOOOPOO* M4-'M'. I-1 ' ,«'»*i,#f^»f'WWWWWWWNWNmiW#'li:■••••••••'•#•«••»•••' u OO #ONwwwW"'A"WOP"p iciww^ wmmwwiom

■ooooepoooeoeoooooooooeopoo-W .^SgggSS^gSPSSSSSgSSSSSSgSg■»opec‘0opgooooooooooopoo ^ -.r v:.”i

—O»0»w^Uk#*wNwp wm# tw w w ^ O #m#* ' ?Sitt££=S$ôSïS8SSS£S^ '.

• • • * • • « « 4 • •• • ■ V—i

e#w# #»wwwiwivw*w#mow»* w a : ;

• «wwfvo«*C"#wo»op'm'w»«#e*'C«4»ow ; ' —f pr r '-""' — — ? 'i 'S P ■ - isassssas.®! «■■ ■

•# 4•••••• • ••4 ••»• 4 ♦ ••••••••* • • ‘5 J' »*.wowO'«ew%*ai^wwie»"io#wRSm3pZ%_ S ^e^w;%NO##wwNO«wwie*«pwi»#P4MM4WW WW#WW*»eW* WAW,*» @40»»*#^#, - - ! ■eim#w* • g #4 4.« 4 • • • -S •• s -; •• /' /' 3 - \. ■ ■■ 'i

- - . • •-

. ' •

eoooeeoeeeeeeeeoooeooeoooooo ■ WWV*»'WWWWWWN#W^#0*^ e e^ a w jD ‘V»*wrw^ee<»»*h#woeo‘ihh#eev

jslB! «(

sgsggpsssgysss^gga^yaagsssag IlS| I I • ! I ; I • •!

^ ^ # •••««•••••••«■•«••••• 9 • ’•*• -e * ^u«—>o«BO»we»ts»w»f«**w»i»—Bm»ng

ww»u*wie^»m«oo—w**—^#f»»mwwëÔNg»w^e . o ^ •WBDWII «••••••••••••••••••»«•••••• OOm*fwWOONMW»'N—"t"OW*OWO»Ae © *#"o S 5o • SSSSSSESSëSSSSSSSôSSëSSoSSSë .1 I ;«•: " K -:-l %/

:j l'-‘1w#www^w%we »«oN—o >1 ^ ■ I f ■II .-- - "WW^V»D»»«*B*"W^>*BKI^W0W£«#WWW ■■■ •• t w»0 «—W»wOwNwv9'P'#«*NW»»#wwa—*,*BM •''?•** ••• •■•‘•7 • • • #"* # • «:•

?•: e»ww**#ÿ5»«wp»*—» w#w^«ep*#wiew^*# —oaw^«e«www^"Wio" o**w*#wor*wM#ww» •• »#«*#'# • • • TT

Z:- . -1 ■ .CO

. y \ ' 1 • •'

■ • i ' • ■ I " j i.;.s "Pu2»yL«»w . ^Nw#»«ec&^v^»W'Oww#'#"e^»'#«#NW'#wwo^ • *, ^ _:W -I"K?j - M 5=-: OOOOOBOOOOOOOCtOOOroOMOM Q 5 •>•••••••«•••«•»•■•••»»•••■eeeoBeoDeooeeeeoeeBeoeDBOceo • • • • *,w ç « .’ ^«wMVO* I ■ ■ ■ ...... I lOBOOPOOPOO 'f*l _ - .' . ,aDHew*»wiMww*wMNw##"^BOio«om**m0"

OOOOOeBOOOeOOOBOOOOOBOPOBOO»*. I •> _ • •••»•»•••*••••••«•••••■«••••' -w v> n ' OOBBO""Nk*Km#vkm.*wmjwwwNwmfW*»NNW^'W • ' wweww^if

• */•:••• . fwfoa^MOeeeeoeooeooBoeeooeœoo • .#U»W»W—f f W#Wk^'WWN«SL ------BOeOOBPBOOOBOPPOOCOOOOOOCqpO ., _

. - ■ : -

»CT*v ‘ .

JSS£!S£î :5523ÎSSSSÎ5ÎS5S55SSS5S *•.•' V OOMOO»»^<£^«eO

% -.

•eeeo ^ ^o M 0 *i;;îir;M ;' ' w M O w w w B f . o»w#*wpv»mp*#fwo»i#iow«^*#o%mw*#eww v»##vwO'av

M ' i *I^ i-ili . » I I MI 1 t 'ill I « illM 1 1 liiw :

— - __ e^o*@OM,#BO»wBe"e*#a'W»#Nm»w- - - - • - — ••••#•••«••«- — w o # wii —• • r ”'- .. . '-%: '.".n m - ' .'i # m

•. • : ;♦ -- . -i.r' .r" 9L2 IS % ■9 3 ' \. ' wr, «< M C*D • S - * 1

W#WMMWW#V*WNW*.*,#^NNk*A*W»Mww*^f'W*u»vp*o #«*«#*»# __#"«ama#»mwww ' e»\wv*iANw*#oi»^*wK«ap»«ap»^%fpk»oo«A«A*A< o i w w e w e * o ^ w o w w w « B » W » y- e «É*»w e #N» e efrww^vfwiÉwecKwwwwowiv-^eopNjw^ae(^»'Owaw"Nwo _ ■■'M. #":%!/.,L i -5.!= -eooooooooeooocpooeooeopooooo mmmmwwmmo o ooo oct eooeeeo S'S : ' B*w»^»igfr»Ki^c>>**cepocooooop

. |.:W, . \ , . i l l ooeoooocoeec<• •«••*•••• ••« ------• eoeB0eee0c*oo* tPByi#>W#w*WWVHWW W WWW, ipt l y *»*4fviw»*fw»viww*wwwww^##»»^yMWwmm;N o- ««% • • •»«•«•»» •»••« •••»••■••»•-J s MS2S;S::ga5SRSS%3=%SBS33R *; ® I - • 1 I__j]__^..1.:** * I-. _*__ Bp^a'O'»w*wwwwwww»**#M#"w«oooeeooooo0 . %%=2:g%K:zs«:K:ggsgS88SS *.*Wwv*VWhewO«www*»w#"*^# " P O O O O O O O li! ..• OBpOOQPOOO<»OOI -- — ..- sissssasssgasasL “is- s g

wo«e#'w##ww«aom«#"Bw»w#U>PU#J—O— - - -— - wWWOWWl# o#o&5•ooeoooee*!

si*BeWB*e»Wti»Bw#M»«eÛi :\k O iw ui ■ ywu*M O ^ • ' «ew»O^f"f»BW#%WWNW"B"WBUWm*«0 OOWWB—WWO^MWh#—WBOOO—f^OWBOWWB i i M - W . -M O # ^ - I I I MtmoI o' ^coB«v»*w»c«*wmi»Mtfg*JOt#wtf»ooig*oy> • BWWVNWWWP"^ - *•““■

•'• / ' 01 218

v/

:%3

H H.

omN,6mNfw«f mmf 'OCi'CO

Ai^oewe'na"-’*i>«'ww«Nei#wxfn9fW'*4V‘

'■..' - ! '■ :' l-'" ;. ■ l. ■ r' ■ 1 - K 1 -

#» X» % ;

\ '1

^oeeeeoeoeeoeoeeeoeoeooee* • •»••■• ••••••••••••••• « i* • •eeeoQoe«>eoooeeoeeeeeo9oe«

-4

WVWWNWMWWWWNNMNWNNWK^WNWW^

Oi < •- ■ooeeoDaoeoeeoooeeopoooooooeo

WWf WW#"»NWO#J""WWONW^

/' /-

'is s- 220 ir -

13 ^ o « w om«fcem##kA«

#*#»*»»# #** » sssssssssssssssss Kio»«ooN"e

!z oaeoor«M»«M :wU# Qwf y ^ mmewim 8»^ ■'■*>»

>ooooooeogôoooecoobôqaoi

eoeeco3oeœeeeoooooeeceooc»eo • 13 r%=g%=%%=M%:g#sss3S2 |. ' N#»#A*w*iA«mvw%#wwm«m«A*wiMmimio«mi«w%wwww% )r oaoeooooooaeodeeaotoooaooeooe

!7R3S55SS3SSSS33SSSS ï ï 3 '

aoooooaooooooooooQoojaoo• ««••«*••••*••••<• ••••«••••*» s<« ■ ■■ •^eooeoooooisooooociaeqsaooooa

k \ ' J I

• ' M K#: (#' #1 wIf ac»owOwm"#mm»mow^Ë%@»om9'—M«oooc»^«Mrf»w»»«w(jOQiw^»g 9wa roo—Of* goawo^mme 'aw^cmAwim^fiiwu ; I "wo^Q^ i W - M '-##;'-# m. .

. M N : ' ' W ilyi" ' II m . •v^

S £• eea»*ei#**^A«e oo^eree «0 e«- ^ . • »'* ••••'*••*«••••••»••*•»•«■ r»- #gSSy * S5335gr‘"gS?^^^gS5S55y. 0 * * apwo«^«o^f*ow»y^- Mrw#pmmw»^ ■ % I I ♦.

»'L L--"- - !-■ : 'F?:< « • ••--4: X*." 2p U» 1-^ ptw-ww—, aa ^ 3 maoau><>^^3»og>q»»qcooq Ngip^' •' 30Coocooe.» ^»Ck 9> 0»»a COO Q C■-• IIVw- OQOCOOOOOqoOCOOOOOOOOOOii • ••••*• »• • •>•■• • • • » •.••• •>« « 1^ ••••«> —■■. <• I - oooooaocoaoocooooooooooooooo' ______90000000000000'.. ^•ca 1^.1

se o. o.' oeoocnoooooooooooooooooooooo . -ife M$| M M - K ' & om !■>—to r- oMOCW*! @oomMm-om*- o o * - ■? '^•^^J5C55!CSS;S?S5:SXSK^^ i

CÎ i-a. » M- a V» ■ t ' ■ ■

•À 222

S.iS

I ■^■■11— iT~^r^fmiifcii^nif rin

090bock

k oocooeoocoaeooQoeooegeoooecO’.

1'---4* loocboeeoeeeoo r . r

<• u ' T _ o j

|i

il ooQoccQaooeooooooooeeogooooa

k \ V ...:\ ■r f .•• !1 :-. . J "1 r : i r • 1 - : p : 1 r.;V;:j . i . ^ c ^ f'CAVpK O«covwwi* n* x . X I - - . : #»*#***#*##*#*#*###»**###*#»wOWV^t»u4»atC*Krf^4*CC/<'7*><«s.9 3 »_ 1 • !. .■ -1 SÏS'5.?5S£=5i£?ï?£i;^îiti2ïSÎ' • ‘

■ h ".-'! k"': i - :.l i : . 4 - e oeeeeisoeee eecocc œ eeeieeeooe ■ • • ^4*4 •'****•**** w ^ œ o o g** ç •c ^1 p»*>«co«.04 u;'VC'Me4H^'Ca^4«tf g î , 4M4.4 V.^W#r»4 --- »■— — Æ«%ÿKK%;^KM?ÿ%s5à%%5: • ^y.fWO(HfAMCeA#wAf»#Cm'NO»»iina« W O »— f ■»w<4‘ |-D» 0 0 0 - - -,.. r. . w #4fo »i I wouw w»m»WA), ''• «»«»••••**•«•••«•*•••••••**«**#i*Mwee»#w«e*»e»uw»wOwwww*«fww . eMBoos9oeeeooSoooeockCoooMe • I-- g I' i £ ï '

5255SX£5£5?S^J5î«SSëœï5S£.QOCBe&oeooooeopeeooooœao^oo

^ r l k H a l i #4ier%liVOK*ei»Vewv4‘U.erf^4 44» fvwww»4ewoww^eô» ►euiiAC* o^u «*4‘e»#‘*c**^£SoS5 #v^N*fNN»p*eevWBlw^eO»440*»Ow**®awi«f<>*0«60* wwwwf^oO'R^Bmeiw »ooo K v - f r---! v;!:' :...! -. !' j i -Z=!aü::SKKgtëgS%&:K&f::,M. ig^CCB «Se-ww» 4«N.Ww«-'**WkW» . ^«weBwHtww»<^wwBe»ir*»vi*w^ooo^e^«^\rw M^o*t4w4t4a»*g*4*^vewo»oe£w ••V ■ J

OwVl*C WOWW"V&W»We o

w#*ecB«eooeo ew^OMv-^ON V’^e i ------. UMIMwaeeB0BU!0PM«4«»O4K*44‘0'teA»*4^4'

•g (O % i:'

«* e \. i I- ..i i. ■•we>vi*wi - 1 I l ^ „ OO"—wNivfÿ^wwwiff f wwîi^iAf i>mw*#'Âw6 -' s s ■ NOWVWO—WO'^"#—JOWWOf»—«^^WWWOOW^ Nwwwtm"vo^»»wc»w0"wiow«#'www»owwm»##ï; = " «Af'NWOWWMi^WW^^*—WO#*»*OOœowmN#V»f»»rO—»wow*c^—e,wCNoviO'Ck'W"##«o I - ww^—w*Nwwiwo##iowiw"#w#»ooo wo#m<«oJ • . .■■••!•• l'.^-l ■ .4 I---4 #.f»#IW««WWWWWWNM«WWA»W— —p —O O O O ■ if^www—oaw»"w'*v—owo»f wo»e«w—owwo gwCO— 0 * 0 W##* WWw#*MAf#wq)W^##N

oeeeecDeooeeoeeoeceooceoeoo^ :%s3:3%gsss%%%:s=3:—""oecoopeoooccecocooooooo^ '• N ' W ; ...... » •••••» a-* • • « li #"0*OOwOW*Wlw"0'

oooeeeeeeœoooeeoeooooo 0o e e e ■'• j - i--ÿ •■r |- -t i _ L'Y SSSSSo—WwSowoSwOWOO'VWIO#' W # «"W N"#^^ww0*o0w«w#«ia#'e'»—

hmoowww* >» —WWW—«OQwVWVOOmOf^O«eœwp'Aw*«v—w*^#pw #f ig— #" ooy»—#»—o><»OwwOwf'W'f - »WW^OVI0W^#WO—f 0M#0—W»"O"^|*KWO0-ooo'*aww#00w Xi o

♦ -i; ■

—wm#*»»W*NWWOWlWI%OWWW#^\fWWf»OOV>Wfr^»*l>»»»i»PW<»fcW‘0<00#—*wp>0 we» ^^W0m-AW*0*»0—»fLmW0#0—PWWOW—W0WO-<»*v*ww###'#o«#owwoNAt#

*D*o^ s —w0ooow#»p»#«w——wo»mfwM*SwSss5ëssy^uff?*oi%'^S5— ü jQig w t: w#, ...... ’ ” * [ 7'. ! ? - - i lO ■ /' .' ■ i ■ - 4 M

. I >225

fco" . . ■ ■ - iCM r - ^ 1 1 •■■■•• •

' .J.\• • SJ.

_ fr" .:■ ••.- • :.'. ■ . ■—

OOOOeOOOOOOOOOOQOOOOOOQOOOOO — — ■ ':; i -i I ...... rnmmmmmmmmmm mgwMm#ww%#%*wwww%i*WiiA«n*w%#%Ai«www»w%miA - adoooeeoeeioeooooeoooaaoeoeoe * l-ll mnrnfr^omf <— $ 4f.mmiA«mwwwMAvw%4A H S5RSsi55SSSSSaS=SS3SS353SSgS

Li.--. • ____ n»a9»o>o»«>^«ka^oOQOOO<^* f"?-' !*»ooaQ09aaoooeooeoooo« ' T- f - . m - M : # :'!.•■

NAfNWfVNNM

I 3, 1 ■

& %

c ! " l i : # 1 i • wp -^am ve^w ofceaao^wa !'_i *'JdiL:--' i ■■ 11 ■ m .-w c * Dveu»vvK'w/.^vKww*oee©<'«6«*<< p» x

I-.:-

i o oocooocooocceqoopoecoc»ftfK ‘ miTfr II II *^rii i~*^t •------• p : i f f #w»%ëmw;wm'«*coop* '^NWW'M 11 f. •-■ •I W .

• ^ ♦•••••••••••» <- Sif*. 2 f ^ i - "#Ow W6%#* W I • . ■'

f f >www#woocoeoodooôôcir.»9Cjo«»y o>g y « I @ 1 : ■"vSSSoéoAiv»• W.f*WL. tfl fm _ z X «•»•*••••• •••••••■•••••••«••«•. i l - ■*»iww«e»»o»-*XP‘#ivoa'e*wwetw.^ ? ^ î : »o

i 0)^^4»aa^0m

■OBeeo< * •! •i :-'N{ - r W ' . Jy i j.ÿ- l i ! i S i ’"

- r '! ,- ______I I |iM-1 t'I I I fJI ►! 1JIB . %KgS2SK%i%=C:K?3Kë22K:O&^OpWN—*pv&W»OWWm"^OAfOf OBWimPN 'f . . ; - y # |VV#V#wW»090VtWOWBU»we#00»^iAWW#Oi# >••••••»«•«•••• ••••««•• ##«#^ »* ■is- vivfKi, : r 4 : ; m • .JJ.-'.iü'i.L.t.'iL.LiliS —o>»^oO0WMmun » !*■ ^o>oo»**»OB— W*O«|w«wWSP**»<<0ePe»^UNe.io^wviwaN — ------~ ' !.. • *####**#*# A-j : -K- ' I I - ■ • 1 '•I i •'.y : %:

/'

9ëZ J \ I.. ■ p - J - 1 ; . . C —w'iwNwwwuf ^ v‘\y w y g »e '■ u

# : k IÎ . . eooeoccoececoocoe ooc*coc»oooom k .Ll ■ •• • V.• • • ooeoœc'OeoeoocoecoeC'ec— • ♦••#••*•##►••••»••• t» • # • -o^f^e^^wec'gcreerweemeww^ewvfrv - —

n ' w . - m r wWWWWWWWWWWWWMW : — b *5 y - r • »••••••••••••■•• •■• •#•••«••• - j • f e ; ! i'ïS£SK:SïîJr::S5££S2£&sr-— — • A,?MVNWA;W*WVWV'%#L'NMWKfk^A;NIQIW#eg"mg^ kf. Kfuww# ■gy^»>p-»wgowv.tti‘^»e>iN;Kr™wO»voeoo, —»oorf < ow e V o»4wv.» eoerec I. ■ ': ' irfs#4»»>>>lr *■**>#>* <>4it«-'. *■' * •Î’i ^' - •ryvï';irifirwf f- rrwiwrn r—— '— ■ ■»• oooeooeooooDOOBOoepeeooowM . - WWVW«WN#^NhMw^#UWWAjN«WNNWWWm#^g 00 » I »>■, @#Ag»wA"""wpBw"^w»wf #«www*»eow0o*^mw"^'^^ Q,^e»*»e^«g,g«g«A fwf w^v9^e»Mr0wvto«ceA»fr#e>^f*^ * •«•••••«•••#••••*•••*****•**

e<»«^ea^icb*uw>^«»<

- -z%azK:{%%5%:aas'v.wô.^ » v w * i f » 0 w w g » * e i f * o » k , o # " "C #«#»#*» ^ - ufe#v^#«wv»i-vMwegfu*e>wO"^u;*wo^ w#@^0m,ow'gu* g ^ w«" #• •• V-*s g 0» > «.u»oowo«w#»e>V. < w o^# # «#«* •«-««*••»••••«•••••••-•. 4 # ' ...... - f P L 'K " .-' W^SS!!5»iiKSSSSi«SSSK^%rg«g^^w(,&w*u*Uww«uNwfW'W'e"^g^NVig O —fvgw* w»f^w#g e*g <»%»■■ w"'*Nm»"fwg#oe g#vi>tsgwwowte*'eeeoeigew*ve#***wuiewxiw*w tl Mp*wtwwuh»wvi*>«evwgMg»0VBggw>*B«< oiwgow*w"»www^^oggwwggwNm#wo

| M . '.J:-:-;.. 0**»FtfH NfbUMWU^ *»i*^

'. — ww ■wc-p»fr»oo»o»e>p'»^»o»^^»*.p%MN»ge(- m . cc< ooBtf v^ «M>««e»irtt»oe »rA*uif»N-ie;**»» ** .. -eeo»V'Otiite*N • ••••••••«•••••••««^•«•** *«# * • j»fe—JC>ov»mp‘0‘B‘>y.oe**""*«y I ■•opoouo&ooocoocpooQpoeopooope - " ' ■!»■!■ ,, oo o o ^ a w w w •e^^00e<—uieH*io»w#^c#e‘N*

wW0<9N»tfe9‘0^«wmao J <«>;»vwe0«A«N'\M0S ^w;#*w»f«#>wwa»v*Mmm»o»wo*(w*OTvOoo(Nww«o^BON c f o o « f « • • •.• » # V »"# • • • #^ #«* • • • • • ♦••• # •

r . WWNMvWWWWWWWWf^WP I i; • .'TL .! ww'*w*0"wvfe wipwwvimouf»*iwve«»#K'' w . ##Coe‘»N*p‘O4‘««»e»»«*»wewwKNiâiir0'0w»w WN'* f 9 WWW*9 «C iw e «6#eee ■wN.i7MO< i«N#i,NN*>wc^ee u.#eo> 1% ON<6«N-«CVU'*N,W«VW90W.*m»»'wWfN*AW9WI*' ^NWKf*C* OW909"9#t'09^*lf»*f i W ;4 ««*•••••*• »•••••«•••■••«*«■••* ■}. ♦. A r - ' 4 :.T o»i9N9*i—wa^Nw.«»M»o**wo*##\PO*^«Aw»a'■a aucia

BZZ Iî« / /

a k 01 ’ Î I

I j POHAIU A. KAfiUlfC SIOKIR BUILfH CUHilUSIJlM A» llfcfl ANALYSIS fROGRAH 27 n SliRrtIU RLACIUH III » 13*00 BYPASS fAC » 0,3ü ACf|VAllÜN. |N|RCY « 30000. fREQUEIl(.VPAC - 1000000» BVACpfNING fAC • ?.00 sLicrw “ lÉMp " pu rüfir-snu iiiic lôrfiHî fitÂT'ctH ^'iiTirôUt"~ CÔNV ÜÀLp si

I : V'I " %!

I ( 0.00 { 09*6AO^ - i i r • {l ’ i 1 )! :7nTiligsliîi! B29Y •}

'

i. m m m - w r n m a ^

V ; n m m m s

. 7 -s -

%» «m c r. C

: ; ? , M ^ c c o o i 1^1 wwwf'f^f'Vtve c p wwf ^04. p A#»w»aOwv*m"#*w0w9iAWpo#^

Moeœoooooooooooooooooeoooooo " k i ■ N -;l t ' I •W#‘W‘>*>^*V'#U»#‘WWWtWi#Wl*MW*IW»W*ww •• •• • ••••»• • • ••• •••• >•*•••• « o^»a»wPw«f u"w#»o«o*wu**M^ i*w»»NO«w*w W»^WV*#*W##»WPWm#Om#*Wy«»"'WWWOp»^-P a = ? •oeooBÿeoeoocooeoeooooooooooee a i 3 #*#*#$****»»•#»»•»••••►•••• • wwwiww«»oweeceeeeeeeoeeeee«i#= K S . i ^eeecioee*

.%i '.. IW W " W ÿ •“ Z . asgRaKKKWBSSfl'Ç’iî5!^SjSSSSÏÏ? "i o'I

*,##**# ««••>•»••»••■•■•• * ^ • # # ■ wmjfrn^*f*iNv%wnwwy»#www»«»#M'C»wwiw^%eA'e%g'A I inwr-fmn m' nr jrvr^-r^/r-""*** ■ OOaOOOOOOOjOOOOPOOOOOOOpOOOCP i l l .

**^**e»we»®^wwC‘»uiuy»*É#u——-—— , —. ^UVSM 009^ f»#WO Wf*^WW OO* *OWvA #^«mWIWY*#iAwWW"**^fVW^*W«»# 0 »*eOW)WO'# #**»»##«***##»#*«»###*#****# POOOOOOOOOlOOOOOOOOOOOOOOOOOOs I - #V#W«WW«WWVNWWWWWKW»WM^MNWWNA*#NW fVWWNWAWW'VIWW#W#.;KMWMWVW#WW*WWWWW'*W* WWWWWWWW**W*W»W**PP*Mm«ON*"fNW*» sssïsrssïsssssssssssïïsxssss.------• #* » S! i i ooeeooeoeolooeoeoeoœoopeoooe

'••■■’w»wmwmyi0e*»0» ■ ‘ ■ l-'---l. e» M,w h' w#«wmopp#?w»^#wg■ 1 — L—-L«' • I s

SïSSaSSgSSiSSSSîSSSSSîSSSSÎSg

^«•a •«•• *"» #aaaÿ««a**a«k««aaa n i _ W ± i î ' l-il-

os I»'

/

•J

29 Uü N a LU KAPUNC SlOKE(t DOfLCR COHPUSflUN AH) liiA l fflANSreft ANALYSIS PROGRAM S|IKRtU BlAClOH Hi * 13.00 • bVPASS tf.C « 0 .3 0 ACIIVAIIOH ENERGY ■. 3 0 0 0 0 . MEQUENCV FAC • A 00000p« . BLACREHINC FAC V % .00 — 1IÎ0— “ HCAVGEM— MITMHC CONV WAUT |3 g 0 .1 6 Ï2599.9S0 39499.9 99.99 9000.000 lAYOOOOOO. 1 1 7 6 0 9 0 . 1 « II .*1 m i l ! — I i i - i i !H i i i r !»il!i i l l ‘ 2512.936 . 0.304 , 0.0A6 \

. ( ' f 8 3 .9 3 0 D.DS4 99.640 îlhfê:-rr' r '•] li mtii! 8:îSî ) !

I :• :p': . vhL ; ( •] '777^*'^ ! !■ /t.f • • .• -, I

'TTTJTT^. « :! »• ■ fu ,r. VI *1»

\

30 O U M k l U KAUUNL . SIOK€l« UOIlfR (UHUUSIIUH «ND itAI IKANSKtU AriAlYSIS rRlir.RAH - i S T iillllU RfA C lO A 'III > . |} , '0 0 . '.BYRASS FAC « 0 . 1 0 A C IiV A Iia i ENtBCV » ÏA qüQ , ' .FBCOOfllCY FAC - ZBOOOO, •i'ACK^NItlO TAC • 2,00 4 sc ICE NO lEIIF ■ lieil Olti'.SilCE IINE IÔI IIHÊ 1121} HEAT OEM WÂLl COHV ÜÀLL •* - 0 ,0 0 5 0000.010 rO. 0000,020. ’8*?J ôûôQîôio’r^ rv oI*) j ., IÆ: !.. ..:P,PO iâîiiMÉHii îii: ..... E66M. , i

im p232*l32 " I ■ *s]o 29999,nOJ^-j29999;éêÔ ■.( i » i | i: m . I «. •0,01 ait -o: I- I .•hi m m •j •0 :l ) !, l i # . 8 : 8 U v - i ■îÉllIlIt )* ■ . ( .r r —-rrn— , ( H- m •: v-':

T T'i'Vr.^ A?': •.( as : m

s y

OQNALU.A* KAQUtiC SIOKER BUILER CllHUtlJI lu«< AT fAAHSFf R. ANAi,Y jlS FROCRAH , 31 SflRAEvJ RtACIOA llf ' )i,00 , |)yPAiS TAC, - 0,39,h'^CTivA|II>f ENtRUY ' 340U0. / fREOUEMCY f AC t -500(100, . a'iACKEHINC PAC ■ 2, SUC E NO lEHp’ HE*i Uiu û|Cfc IIHE lÙT ilôr h' ii)& Cd; ! = 77 ' ÔÊ: ' P : rûÊïi HêArôtN 'lÂD WÂïr— (dNV NHI

rO .O p «•0 .006

0.0 x|l:8H ; ( n .io o ’i'. iill i 'I , ïiilte|i|llil' m I. fOI46A.M3666. Mîlll: : i W l ls?i|i;Æin5Hî:y * 1 , ^ . -y7'./yV E 23if

:>/»«rrwTf"f- -»• ..= ■*••.■, ..ww >** •.*.• s

•••*•••••••*•••••»••••••••**• , ... •«.. . I • .W. . k" - ^ . . ^ » • .4s a>wfw>f»ig«o>rc ^•#fwewxAwv»-Afw».#w;A-i-| . % *, * * • 9 4 ••• ••• #» * *»#* # »_•.« • »• ,-9 ,' r ; « . f. •,.).' • < ;W ««mr.wmC«aa»c • '..t* '•‘•K U ^ K • • ~4. -r^...... -O• 4 *• » H • ^r»#'i-«*oT .fpi».^»f,M«':«* #»rwi.»^,rtnm^e<#Nr. S I i f . «.y. I . . . T . .* W . y. '•» « , .»•*• .4* . ♦• V • ?' — X 0 1 » » 9 9 m é 9 •• i 9 » » * m • m •• m • ^ 9‘, - ■ ' ^*1 . «L \ ^ 3 -r i . , . j , ., • • r :: .\t o .u* sci«>«30>

> coeo«ec»«^^ * *• ‘ •*-.*•.!.•.••- '^.J. ... < S ^ mm&mwwoe»*'ir . t.* . w5 .a. yy>fc>—c« e»e * m o»c

«rf ooao»w^c«»»^v»c.w^fy >»io«**N.n _ _,— OOOqooO'»»»! ...... ------, . jm---- ##3#l!l J 'S <5 f . »..vrJ.;.,^.f .'4::-i .:' ^1% '=.i .:.':%:..'.x — 5 a.;.:-^T:/.: /i :(4' ». * iflo»qr»^^r*«v»«'Mn -,i ‘. n-..’l',- i, t r-.’.r -iT *?l U 2 % »•>•*••••••••••••••••••••••• *' ' Z X Xw o'.A««»».v*>»^ny.©#>is*.r<3>^t.3**'e^»3ee.ree»3*^c«^ ^yMo.rw>»«fleee»ûyiMrt y»ow%^^0 . . . - . • - - • • . » ^ . « ...i,. v .t~‘. «i S ' O ^ . ;....•• ..«r . j SO —« • ##NN*wNNm«m#f#«W'.Nnr»iM:wwwNNN#wwww ■' . ■ ••... •, .. ..• : - :.■:•..•>■ .. { • tu * * —— I -r. •■*■ s , < ■ . -. ‘ ai- ■. - : ■:■••- -■ :.- - - . . r '! ■..-/% [' -V- »

•)> } i S S i Æ :

U o t ; ;99|H !.•' trijjv < ôîé* 1 1ih . , *oss«o *o«sto Trlk' ='=-ÔV :ïU » 2 Ï :&U!II r i M « i 89% - m69B9 m 0V1MCC 8(: Ml # E i i f ë •ïtSlte-, •»««» ÔtS't66«t 6V •Z6>»7 7«D*0 . Otf'tOOO Vsi’lio ....HYM ■ W J..— ...1\ y I1 qvii_ __ Hî3Llïîll._i.1î!U._*çi_î0 : ___ _ _ ip i _____ Qî«— 1_ïHU J.W _iHi.i_îîns.iiia.i»îi'._-.''Hî I —DM jm .iî. "Z • Î*J 9HINIX1V1* • *0000001 • 3»J AlNJnOiHj ' *OOOVC - A'jOÎN] HnlivAiliV O f O « 9YJ i U M . 00*tl > III 0011*111 ittVMlli ni* NoiliniiHoi «ninrt oioolï iNon»* •» m v N o o ee . HV090IM SISAITtlV oaiSHVOi iVïH

• I __I S r i 1 -s. \ ' .31! 1

ï£ÏSS»!SSS?SS2£SEï5SïSSSgSSa := l I N ev # w«wvw—w#,##»<»#N»—WO—W'mN»'*"%: r

fet'éeooeeooeœeee'poooeeoeooooee M- W ' M =:gss22s#2- — -*ocoooce9eoee0ceeec>o«« i : i •d-M ,»•••• # # * »«»«»••••»• ••••«•#».:;i ,j«U:6S5iK5£2.%3555»i51^^ Ess

rwiiCfrru—r~tT'

;

^m\mou«»m*,e#we»*wwo»— ------_ eeeooooeeoooeooeoooeocooo 0o e -

oeooeooeeooeoeeeeeeeoeeeoeee ;:•.!'. h-^r. «' -1

v-?*y-p-?>-"jy.^£5y°!gKfgaaiaa

wfw wmm 0" ^VWOWWWAWO ■ w, »p»a»B^k*ww— cww*w.^wco ^ e . %%535%=%::$:gô=::%=ss%o .= | -X]' # i - W t'4jf- #W#WM*##VMNNWWW«iMWWW*#»i»«»UMW^ £¥®r'f'r!r!''!7SSr5sKSSK£a —uiM»wivi»**»we*ee>w—ee w o —I '*w2Sv^*5e*«j II ïrrsSSîSKÏSSKSSSSSKI - ' - * #« *#« #*###»#** #*

CO •4». 237

W f n - -..Î :ù? "M'T! • ' -*•■ . . - w.« .' • • • •»••'•■*•••«•••«-.-- I" "O'— -- rl^ ••■ ?':.r

^< S«c meiommweC'ONiD'ffwff"Amf*cP mwi"mmo<)m»4,N»«3NO'*"»ur—#c,#'fn&3m,em . i S •*• P'OOO-O-Cttf-P'w'.* *1 -r=:,T

o ; * « # # 4 # # •••#•••••••••••••••••• ** •■• ' ( ^ jw o#»<-cr—eeff-eer.»-cof»'-5«*etrvoc2^oo ..!

2 ': -ss’ffissdssgsssgssfiH gdsfsss' i .» .J »g>>o>a9 I.» ««#•••«•••«•*••>■••'•••***• *'* #; § '5ifc 3 :»^c\3»»c f fc»** O'*" . , «U ‘ ■ ^9 9~ 0 ‘{i‘90*^e^>0>9-*9^9-99>0‘?>0 —_ - te ^ 99'99'f‘i ajkk^n < A t J | I *■ f • rw'4/wrwr««>j?4rw»r^rWMrM‘jNM«'»Aif'4Mr«^4«v;..-' •<••..

■ 5^ S Ï_5S 53S:S3322ÎÎS ÏS ÎÏS5S 52;;^ . ;., j;=;i-,|j..-.,: |W ;.S.[K vl-^;'r-% v-;l ' ;2SSS5iSSSSîSS5'î«rï:SSSSSS"SS. It . ;-'--.î-W ■ •- ■ • O O O O C < !■■■■ T 4 : 3 :-igiigsssigssilsisisfssssssssg . •: .■ -1, ^ M ^ : oooceoaoo&asjocacoocaec scccg. , -■ ;. ..^;; s o'*- ■•■•- : k.'r4.-. -f: :-.?“k«-;'t--...i '2?•* ". o i — ".înTîTîTi‘fr;*î^'.i‘r:''.7î‘:*r.vr.. e»T4o*’ « "*. —- i.. r.- •• •.. -■: 2 , .-.VIT-- • •■■.-‘.■•r'?',^ - ' " ' ' -'•■J f. -■■■ 3 y*. mNNNNfWWNW.'WWMN«WfWI'#m,''")#N«^»«W',A«rMWWW fuoooeoeoooaeooeeoecoooooeooA . .* -. ■-. • •••.."• '• *...-••t; 5,'.

• W■W .OOOOOOOOOiJi—.O O O O O O O O O iJi— ■■■w——■■■■■'■— I III»— ■win— |'""I i ■■ ■■ I III I . - i> • • S' : =-??????.??????????????????????99.9999?9?9?99???????9???99?? • • .;. ■ .'f .■ • /: .'v - -•. s., j , q te Ol*IBOBOO'‘»^*OBB— - ^ - — - te. — - ^ ^ — "- B—m— — — — te.-A—-te^ *' " ' *>*.■• %,J ..: .. î • J • • gm—rnam N^»w» •• .— •< • T^ ;--».J,te .1 %cu. e »•••.••••••••••—

wNw^wcm • - . «' i s-.: -. • J.': ■;• ■ ' ■■•'■• • '->] ■■ i \ ^ :. .T:v1■-'•.J 258

•A IS' *-• I- -i-ryy ÎT:'!'

-ri • • ;

‘ja _ . oc ' ei*«#^e»'rve*ewvr**o*'l**vfvwe‘My**gf^. . !%:!" k%|: J;: ' • - tff ,^J. .■. . k r. ; v.-»- >11 ■ S'. I l - l p...... l * » •5L fwini,ewv.e' ■si; -V.; d4it-< < (>i ( < I.r « • . I p r. -.. . « «ArfH*wviwwv«r«*«4****rm"»fv .

• * ■»«•«e####***#*#*#*###»#*##» 341k'* r^oecow'ow •»wfkN<*o^^e*s>rc«>*t«*''«r*ir*'v- '- ~3SS?SS£S=S5S5:nS ' I • !■ .M- ■,. . ' s«->'“rrf'.'-— :;■.•■■ @*3*0

•3 9* ^999 999999 r ■,,. ;.; "L ,_'■>. ; SSgs?S?SIS%SgSSSg2SS5S§SSS2S ->■ i£ • • e'9»0‘O»eew#eefe#^fN»^»>»#‘fl»e»iwiM*>MaMM9oooeoeoooeoooo 1 *. «< * ss. .coe«—•■■»vfw«^eHcO‘#v.i«»m6i>rein«r*vef»y*i. ^ X »•••••••• *« *«• . ••«•••••’••« •• ««■,, « . w #,. e o o o o o c o o o o o o*^!»^»»»— o w 'jf »r z 3 , •o^9^*3O«r0>^C»f'wveo • •'* ":t ■ % •-• w *•.. •■. • ' L»L. .. : -Y-..',. •-^-i-'V.r\i‘ %lu jg ' •• • .r•.'• ~' ..a .^..., JT%. 9lo— 2 •»■; ooaooooeeciSooAacoeooeoeeoooo ■ c-'T-f..:. T^Y;' ■ Y ^ w . m#A«w«nf*9*4e«*r*A<'>rC'*OS«.'» *«■ -"J::-: *" ' ' ^ «» O r* ooooeoooooooma%m*o*»«A<*4»«i^'femm•*••.•• •*••^•«••••*••*•4 ••••*<^.7 kl --w' •4 .u . c&C»woa53w&cca'w«#<\,f—n%\*aa*»*.w*r4N ««t-.• - ; V -1 - r. ;•-►-•-*■ . •>•Z ^ . coeoeoeocs'OCS*Ni*iMm<9r*.. I ■ M W !■- I ■ .mmr.MmffWVAKWNNfWWjN .■. _T. • , . -T " î'“ •' S = - W!ss3îiss:;^S5P,3î-:î5ai5ss^"5 'Y « mt <■• S m•••••••••••••■«•••••••••••«• 3N«fA •«• 2 e «* - * _ . ■ *• ■ ' •■• •.• : • ••»••*':..«• " <1 '. .'.i . • .;. .r T. ioe‘9»a— .rmvo »*oow *ia ~. • | : g mN^wiyNWMNNNiSk'w&Lfcaaaaagccaooe «Ntoooooooaqaccaooooooooqooaoo .; .*•' :;S' — a •—----- m ^•■' • cooocooeooeo»i*^wv*gw«nwi^e‘erv.n«#oitvoio^ »■ w e>»»9»o»<**«ow a»»« wn**e<—Atfo - *«' OOCOOOOOOCPOOOOOOO»—! "" ""WifWkmifW , » I » » I i: I I I I I I' I

r. > • OM»N # AN# < f Z .••••••••••••••••••••■•••«*•» — — ------—a < leewy —

\ — ^ - -,:7“ j OONAIU * . K«HINC • flO ktfl BO Illd CU1J11U51IUN dtp IlfAI. IKAflSff» JH«L»S.IS PKOCKAH SIIRRED fICAtlOH'HI , 11,00 , uVPASS.'fAC • 0.30 AI.TIVAIIUN IHtKbf • 160C0. FHIQUENrV FAC ■ lOPLObO, . O C A WÇNINq FAC A lij I Siici wi 'IIMF. „(*i ünl iticE. iriMi 1UÜ „ " c -1 iuu' ' co: ' ' n: : fiiEi „&Ât ôcN' . ÂÀô'wÂiLTr " "cÔNv'iiÂir Ü i I

i

4 I, . -V Vf"b W Aÿ«A,01V. . i . A , . , , , ,, J "O.W. ! ; l«A.. ; . .. . C-.Vl..I. .'1 Ik. lii-i------— . ----

asïiæiftigfpïiiiim .: ■••, ■ ■ : < - V, : - ;-r r y • ' •■••■ :-yT. 7 vr-r'o-:r%.r ^ ■; ','r ,:p % rr;'.?;:'• ••’• ■’>: T " rv ' ,,; \ '

< »;t

f i,

r s îr 240

I ® ’ .w ivj.-, 'i-.1.%^ - ' .r ■ ■• l ^ - . ; y - V } - ' f I • - i

„ •••»•.•••••••••••••♦•«•♦-•e>eFiNCf^ye#«#e»'»«er'420«Ne •*•••••• .: .. ..• .iv •• ; ■*

4 i«« a e f 6vr a I* -—— -r4 ,.. »^A*ir» .. { ,*' fc. ■ . .»•••»*•» 4 .„, « 4*-“ .♦. J

r3:- "sgçaisësi-ysa^iassasîg^ s s z r.-.-zt ■ v; ■ i‘2~' r'K;Sî£2°:'-i'"iT~ur^~-ir.. z, ; •> ■-;••'•■■: : r i:"r j -r-jS ! csm» 9^Aic ®r» mmrn— - ~ ■ - I^O'O'Sf'MWA------— '1 W':-'r . 'i . g.»••«■•••■••••••••••*•••**•*•• m—f s» wc f *»

s o ^ efl4#Ne©e»e»'*f^v-r«<K.'wsw*e . a I» ' «*NmN*WVNAW^fWNm*A#N(W'»,A,«WWM#WM*y*M ^ :oœ«eeeooeei

eooooooooeoeoooopeeooeooei ■ I

rts 4 \ •-1 "1

fmwop ^ww^w a w%cwLM*»»o»

J ss k: r <,•••»••••■••«•••«•••••••••••• »w»o O^^wygagyt»» «i o I

ww* WW"W^ S ^ ■«( w#pmwiyweo@#W'Wi#o*pwM».f ammw f'C »W#WW#*WW%*wa^*M*%wWNOP*»P^WO"*# . OOOOOOOPOOOOOOOOOOCOOOOOOOOO . m w*wwv»wvwwvnmw«m*w*^%m^ww»mMm#www S « SSSS?SSS2££$£SSSS=SSSSSSSS£ j

— ------^iJo«*'Pw

- ooooooooowoooM Doeooeooooeo { 2 ..%] -r-i- l-H lL_L ;■“ I si

•mafOOwiMW##»i*iw«wwwoppw#op#mw#oo •••#•• ••«.««*###*####*##» •z p j p"

^ • •

D. ■u » 41 .OONALb a ; KAÜUNC sioKEft BUILEA COHBUSIIÜN AM) HEAT IRAMSrEN AfiAiy&gS PAOCRAH

SIIMItEU AEAC1ÜH Iff , l.jo * b y p as s >AC - 0,30 AinVAlinN ÉNlBCV » 3201)0. fKCUHfNCY FAC « 25UU00, . . niACACHIHp FAC " 2,00

SLICE NO ‘ 1EHP VeÀi'üîiVï(.ice MMt iqi liHE nzo cp? r ; 02" fuu ‘' HEAT CIN ■ RAO MAIL . . CONV MA^l i rv*};??? 8:88 oIIai ■ a'iit 6Lli94.09a. |Q9‘]9.430 :8:88 8?S8;858 T” 8:j8^ ïtîïv:î?8 5?î«?:?^8. 5ÎS tîîo?'--^ { f 08k4i l ’IS3 3 VU:;. 6 , Ü.ÜB

OSSOS,.

32frô;a5o îoJîi--- 43 Vim iiliiiS I -•iyj\ t'. j ..•■•-■

! I :■•■■'■• Tr--: 7X • '• ■' f i ’*;• V‘’'*** V .’i ^ ‘ 244 . \. . •••...■• .. • •■■> •• ■ ^ •-_• _ I T i l ';:J " -T"4i ■ -fi ..-: - !.•■ .. T. -. . . . V*'. r ^ - 1 /•-•!: V-r-i- r-"-:^ .tr-'»rt---.-s

... ,. j !>>--;^t -»cr«c e or%»»i-De«r«*«

^«Mcooeeeoeoc»ooc<9cooooeooeoo'

.f ■wTWiTuvr w. - . r‘f‘«ewef^-6er;w**‘»eiM^vvi«i • •‘pi««iv'#'»'e^v«<»r«r'#vn«un*www‘v'vwmai^.cf*»i»»»>»»»coecpoeoecg

- ' . • ., , ...... *.. ., ' - i

5 . ^A*#vo*>idr»<'i<»«"e^^**o 0e4Oei#"Ai#i#v ■ — AC'fNOff— @ "f fmrnmmrwNraww ^ - —NfWWfWNfW^fW aN#VWNfWWf#W#»*mfa#*Aap,M

*.VfWWWWWWV .-S '. •■..■ ■]■. ,P:,::.L '. •f \ 4- , : J

,'•.. ■ «-, ■'- .. V. .' s.. .K. ^ V. . - -' ■- -'=-•' 245

/ ,.?co . r.vr*.r- Tf :ia" m î ri - 0 »#*#*$#*« # »*»* ** *#** *# #*# * »* ..I. ;W :#Ë - ?S2S5ySS2SSS3!:SSS!SîS3S52^ . SKrSSïS£SSÏ523£aKSSK:SÎ53? •; ' m ;## # ■'- b'- -.c .[.■*-»-»-• — -• - ... 1 p : 4 rsSœsssS^sSSSï ^ . !• ■ !ÎA-: ig f ^Sïïé!^; Sf ; »«••'«*••• #»#««.•••••••■• »• • • • • »•• { • wO C r ^ «icem s*«g>w*^«is» »cin»fvs.“» J I • — «I. 'SCS£2£!:2ï55î55r2»?SS5!:SSSS2 . ! o :s COrw4,\ ? H: r • • Kl «•ewMCrw < w«Ne« iP < r«<»«nww«r <» «9 •*••.«•••••••••• I» '■ï X;^.V|- » >■ ic o c o ». 1 ~-4' .y e#*e»OTfw^¥««r#**h#A.T*e»^*waooeoï:' '.rr'".f. ^*)mNMNNAW**«A«K^#«^«^A#fWf»A,AWyNIWyA#W'' * p^-'K <^A*oeeoeooeooeoeooeceeoe090oa . "Il «■ «ef\#6N'Ok.«f r;.ro«fm«*w»•. c f 0rw*«wmhO^f."*^iAm#omBf ma«* m .3; »AimmK.'Ch"C«f"wmw^^o»f %ai4W^e»C3C. : • r-_. BOO" " -- — "«f lNfWfJNNAHWmiNAIfvNNNI'.mm ï eeœocÂoeoîssâe^ee&ôôeooeoeoo m fwM«M " , • ••«»•••••*••• •••••••••••4»* 0<^igBiA«yo>—»o—qoop»*»^OM^g>wn—<— - ef*:oce»rc^e«o«rr^K«^«»«ioe—çi^jiA^iAir^ soain^m^a^wO'-"»—^^wvnrvfwmrnimmmmwiA'*» ' ## i iL» ? : i• 1 ^.*#^^KKWW*WW'WWAlN*\immNNA#m«A#N*WWA^'*;^.^ ' IV./-./MABss'sssaissssîssKrsRSss^^ f^ c 9 * 0^*'ii*»rv»r ir. e»c»«»A#F>«» ir. o ♦ “ c «a oâQooeaeo*- rnmmwwwfyNAm»': ''x • , ï'--*'-p w* ■ /^ v jr* - f.,L^;.V; '. .'T..'. -'4:4:-. '. r'i-:-' % ^»|Mnf»«w«>*»-s«tDCMSVCBa0>«»l>0‘0>0>»9COO. :- M-»oooooooooeoooeooQaecooo«*-M• •••••••.«*•••••••••«••••»••••. - - oeooœeooaooeaseeeosooaooooa

oo##MB«»f«C2»—^%Am*eNPW*Bf æ —m#n'#ww>" ■ OOOQO•••»•••«••••••••••••■»••••«••• I" Il f . ooeeeeooooaeoooooooeeeoeoeco m :ri-..%:..-& a »#U0 Wt «|Vt

@—w MillAQy^^mm»mig«r—f^ c —mm»« gmn * **Nrnwwi^wNMAmifw'#w #wA#Am*N*ymNfwwNiw*

: h \ %

■ ■ ■

' • ■ • J . 1 . I ; : ■ i

•■^-#we7«vte*>^ei»»’ew«ii^vi«e**w4‘e-ec , ^wie**Pw#e»** -1 & wwwp — “ “ ______>eo^«Mj»c»9^e -xw»»^Dwe#‘Pv«o*e*»'e»»e !. ; . i -('3:4 » o e o p e e <

wwwowww*e v*wmMV*wwC' « ^ N" M3:|W| ■ N i# 5 . •ciaoooceoeoopoooooeioo»;ioopoooo— «ma #«#*»#*#********#**#«»** ## J >■** r "eooocoooecoeeeooecoooQ o^ — w o

oeeéo eeo e o x' SSSSE:S3=R=CagSS2SKKSCSg?

www""kwjwiD»o^.»pe»#'wwA**^—smww»" :• t'jî2 ■eeeooeoooG^eoecoeeeoeoeeooeeo ^ wiwwiwiwiwAmvvwww*i,wvvw ^ ^ I oe»wOwow #»#^»WNVII>%PWP«ywP'WWVW»*#*^Oy»0,e«^v»#w^(*N*w#

• 4*wi>wm«o* je*wwMMMwW>UN#«WeOU«>*e • e«6UlO»U‘*eP»OU#OPlM«WM>MU‘eWUIOUlOO Op»wi#pww"Oww*w*—o^*ww»»vw'p*MPoeo a: I •A # # # ••#(••«•« •••.«•’«■•••••■•*^* • -1 r4>(>i^eei*»»*#»eOh*#w«6AM'Ouw* #»m«rnwPO^'Ovw "w»'waw^wO" w, »i # INiiifiwi»~iUiiMii4iMwilwTuwfrrIr%r ~inriiiifp-~ ^WWV»«"W4*"f*WWWW*WP&f«"PWW^WW^» > ••*♦ |« » #•■•••♦• * m-m— m -

■ ■■'

■ ’ ' - = •; •• . v; 945(h ."T. % \ “•

. \

- ■ j , «-WP»# »ow »#u«^e#-w f'Nf-'c Il ,«.m »w»NOw"y»«coe"ew»;^# QWCiQfOwrr'W'WWVAfWf'AWV.WUf ^WWA'AWN '- -j ^ M#W»d^W#»WW=#0^,C^W»»%—— —' al. "'I -: l-N. " • s .oec^eebeoooeocoeeoeoeooooeso #-*lh***lh#»wwuwwi«*MWK«w#iwwewOeœ 1 4 weu*#uwue»Oew»x»wMO»ww-yw.cwHi»«BU».‘etp co» wMCiMW»<»gwo s .U-tt : % : ■S1.3 »»*#*#*#*#««» tocoeooeooooQo ------Jwev^N^oei^MMw» i * • •* .' Mwwwwiww. " I « M I'll 'ppoeopooDoe "*! " g • •••••••««••••» m.» • # *•• « « •« •isiS ?*? *s* ■ • SSrSSSSSSSôêSÏSXSSSSâoeSSSSSS 'S •i,. ^

' ON^eoeetB»wi_ ^w&MPwywOwp"—^wwww»

^OOOOOOOOOOO H I»» Ml, iNNWWfPWOwW» .'b -i*' ^#oO"'NWW#^'waow»»«ewMppiowooio»«cw w \ . ’:.. v»^^^w»wo'#ieOM^wo— e»vONJ— • p » • p**»#p#------' oSoooeeoooeôêbôêbêeôëdobëe i I l’-.vj-W W W W W. W Wk--'i4 WWWW#'^»W*»^iVIWIV«»^W##"»iOiÙ . , r ’- ’ •! sg%3%5!K:ss%:%%3%ssKa3 ■'

y

•- ‘ .

;— •‘Ü; - .• - m^#^«mfWOww«mMgwwe^ ______- oy«^»i*ogp*Oo .' ••*••. • " ÿ \ t #16 5 rr\f. • - . .'K. •iywo#yi«io*ot^iMONe»**c#^»exyo^ewei« w*ww# o»*«»w«eiÉi Wl»4p^iA#«ViW»VW'N^if"iUm'dWO^OW*kl#OW

*.*•' . - ;■

'• • i- r < '• • V • / 'A-; X- /' /• ■ \

■-.•I

iKi «par- W i*WCW»WP» WOIW#A#iC»C«"*" Z =

1 Si

oeooeoeoeooeoeeooeoooeiDooeook'j N ' k:l c *e x w»w# »mwiop«wp"w» ï-1- k M Eïvl epoooœooe»oooeoooo<*ooocoococ> •••••••• •• ••••••• *• ••« •*•■»• veeeoeoooece^oeeoeoeeeeMrv mi • 2 ' r-'i • ••••••••■«••••••«•••■• . 2a«S8%SS=%sa%=S%a3S:S5S:

■■w»»ew*.ew»euMrf»ilivewoev^ ••»•••••••»•••••••••••^PVw#wo»»»w"(mfOv«ow(p»*w*o»"% ■wwOwee#«Viwe*Oui**wBNKC>»'»»e*^*»uw*w 'OCTeoeoseoooeoooeooooockQOocoe ••wwnwyiviw»it*wmMMviuhMiiwMWM%*»mMW^ 1 1 w»ww*ww«ai*ow ^ W # ^ ^ r«»WVW*W'A*wwiAW

eoc900oooooooeeooooooeatooooeo

I-';WVWAMUWWWW#WW#mi#WW#*W## . I k - i •; .!.. ;!%

- wwwo«e#"#wwN ÿ i . k ___ ww»»moe*#yo»t*##wNwv»^p# »0»wwooo*^

_ awmo#wwwem

842s » ? 249

.. 1 • LT'.':

#ËW i » * *•■••••«•••«•••% 0 \s...... —oecoo»^»«x» la *e»ri k-fc M » ■ -k/K| I - s t ■ ’ • • # » # » ' » # . * * # « # » # * «••••*■ k *»# •••«'•• I .w w*iAm»H*wn»«nNmmUNa"M,\"»a ;-w. IJ.';'..(: . I. * cC0'a'O«w«.ege»ee •. lâ <»i»* » h 111 I ^ • I, iw-,*>**-1 .. "Cw<#kf .-«■■■-j-ri;.^-1- }'-..:..; . " v x ' i ; , i"" :| •-r:rs’.t'-----’..r^-

A '%, mfwrwtf ■ 0 Cf> ;0 — u iH■ '|_lu ' . >■•.• . i-'?SSS?,Sf.5iCSS?a?S5'?;s mmcf—crfC*"0 ■ • *■ l.\-i - • t.- "--J • :• -1K-r-v!' » “ "v* i • ^ • ,e0500eZCefmirM^o^9to^c»CA«^^VAAt*»»^Ufc'mo.r^i^cc»ot»»9»»o»»'Bfya'»^Moo"rfyom^A, * * w r ' * ' -% r- . g.*"»*'»*'»» 3 ;... i rV.-«fi. j: -■; .^vv.. - •• • ■ ! -2gSSSSS=SgSSS3ê2S55gSSSSSSSS ' D£* *A|S ••»•••*•••90»»9>ÿe*o>f»«i.'nQ^.es‘<;r.r»A«i%A#NA«AimNNAiw f * " »;, • - It ' ' î euf>«Aatf>*^»eosooiauaoeesaeaoeac u. ,. . . a ..- «k . ' #» ^ . j T^.l?*

. eO0CC0*Aire*e*«eAiKt.r'*w^«rv‘mnw>#*v#^#f-ov*fw*e. • •••«•••••••••••••a »•«•••••■ ' oc@ooOCO»AM»iw*;^"0*f »*6D • . OCUOUaOLaCeeOI3eC‘’JOe»»>«A.«flMin#»heeAieilM»•# rx*0«J*

. . _ _ __ » a*W-'W n> —#■ fwwwwwfifwt,—oao •>■••■•••••«■••••••••••••••• o cfao aco o eo o o o o G iO . « ; Mocioessoueaoooeoedoooooooeuo :.V.

. a * •>. . wmmAio«k\w6me»"#tpH0mi' ». ooooooosoi**oaeA*«»»>t*o»«»»Ai.r*%^«»g»o— .. >«£.■«**.«• o o o o q o o o o o a o Q i I" I"—'i^Air S %

o«n«#mMerAifeo*i«t^«N4ue«wifltm#Aiwo.xei»*tf OM»*xx«ref*ovt-e^tw.6*fw*A#«»F»f‘i*«e‘eivt»e . er**w «e e * .'■qA?9C*'9M»}iAt*t>r9A*oMXM»r>HXr«IXA4AUXNMAI- »ixm<#tA<^qo>C—AimiTiitiO—g

m •I'.- \

.. T Y C.1 I- 250

c»eir.w»—wvwo-e^eiwviOf^in^eie3SSS3S£XSSSîS5gï3SS'.S5WSS^. ewn I ##»# irtrf «r .*«wrmNNpimi I. # a

V • ^ •• • ••••••••’•»•'» ••• •••«••••• • KO ^ o*oce«^ cff^ a>ft o ;• [r.m t;'j r-i !■•■ SS2-'T.'~T‘- l'.-/-l : ■ ■:ti/

• »• • • « • • • • • • • « • • • • • • • ’••«****• > . >e‘d*«oo»«rec‘e«<.TwK«wfw»ti#*ei**wor>ei>'0*v-»»ff.K0*0W0^C‘0*K<.»o^wwajir

4 .-ti-'-'ii:-'» t'-;--; :>- -I - : *.UV; vf*-'- SS?SSSig5SSSgg£Sg?SSS?SSf£fS -i - -/h . i • • -.w J* * ■ • »,--'••••■•••••••••••• •*♦ “ • - . 1 ;= ^ it •' * k.-.J": f«f'f'ff f ..' . »•• - # • - I • ' ? • » «"«i e r* '• • * .• . SS’SStSSÏKSilîSÏÏKSëSSgJSS^SSSS.-..^.>fM inrf>oeoooooooooooeaoscoooeag • j ;•.■..r-.'-J- - »•••»••••»♦•••••••••••••••♦• *1 .1 .. # T":SsE5e^3^:a%E;:'r; f::"! ' '..•'«sK■ mv:*** iereK,fywAutwwr^ eew w »»eeeoeoeeooe ••J *. . ••.:•- :. . ’!=:/ r‘i ooooocpeeocooeeoocoaeooeeeoe . KiNMrv#twKA»w»w>iA««>«wi9>0'W*4>wniwnew»ovw*o«'*0'»«0"0'"em,:»^r««N*wOK^Ker*K— ..... -'..

■s«;s25!;ssîî!s2s5!sî?.s3ssatssiK»^o«^«n«r«rin^v«ee'e‘0*Kf'winr.ejfwoa '.5

■3S2SSS2S2S5SSSSSKS?S^^S5Sg3’iy«w>foooooooooooeocooocooco --» .*:■t -.■ ;* ■■ iil'-'!.' '^MoeQooooooeoeooedooosec osoao S f ' i

’ oo»•••••••• o o cco Q i ■■# ■■■< #« NNp*Km#Nmmmmmmm#Sf.f ***** * *f* *«# * #* #« 3 •aQOQooooooeooooeeecoooooeooo-'. --.I

o*sem^eoy«""WNC*»f#^«-ceoo*##nm^r»Nm• •••*•••••#•«••■•••••••• • • •• aaowmi. w*NINlNK''««WN«N#WWIN

ti - V- 4 I' • 251

>-■ .1%' ma•»»•*••••*••»••••••••«•••••• wmmw %n i\#f •.'•/»«? r

.. .i.,îi v j .... ï'f-".:j' •..-u>î**..T-,•■■■.!.;■••': • • *» « • • • • 4 # »'* *(« <••••#• •*• t •■• »a*fN»4'»«;«»aew..awN#.8m w"wffW^m'C : i•« "^*oz'a.• .. } Pf«"

... • '**1 n-':-

aaspsï'gssîïsss'srssîssssïr; -4: ■* J ïiS

«e#Me#^mmr‘m * e .« ,r^ w ^______

*#,*.*#*#*****##»*#*»*«***#** 5 2 mo»

) mcmeemN#ym»#»»e«#iie«imi^s»merm»v>rK>em<5»*■—«iTfvc.c.ôvm'wC iicmvmmNmm—w -OOOC^CG. .f .f

. • M>«oo—iMiQOOOOOOeiQOOOOOOOOOOOOOOOOO «revie«m»w‘mm.»eje*nN»m* • • oarm—••••*•••• monmKmc»n< # »•» • t wmowNmmtf‘*mnAiirA

Si -5 . •.ooaaeêûaoeissaGieâccôCcoboeeao '

Il mm, .«"m—fcmamomacf*ww<»icri*og>erim.mr«o?^ef<«o cm»*y*»oooo icocooacoceaocoocoaocooo—»■ < . •MeaooooasMoœooooeac&aoccoe ■

., w 00Nma#»f«a»«#mw%mf 9Nmm«om»a— • «4 aoooa»*»—w^w«»m»f*mmwmmmm^r»r«ir^.4r.f^ O ooaeoeoooooQoeoaQaeoeoaeaooo .j ? î ; a f s ü s » w '■ . ♦ 04>«f>a«r»—0'o»—orjq>«m « 3 » & 4##**#4#*^4 #*#4# #*4e4»*#« *#« V « ur o#6‘#M*N>9w*fw)meNeiNeinm»e«»o«

..r T 9 \- V . '. ..- •*«' ■ .•, • \

Iso ',1: OCJNaI ü A« KAUUMC ^lOKtR tlUILÇK COMhUSflUH AM» llfcAl ANALYSIS PROGRAM ' 1 I. n SIIHHib ftCACIUH 111 - ' Y.00 ■ , BYPASS lAC « 0.30 AtlIyATICM LNfRGV'V 32000. , .PRCOUENCV fAC ■ 2000000 ■ •I.J>CKïf|INS’fAC - ;■ ÿ.oq — -SLieciiù— YkHP" iï{n*'üMrvciLf liHr — mb— — -ypüËiT^HÊArcÊïr qôNvlîÂii

r i

HiiisisiisipiiiiiiiaiïiiiiiïpIbBb - KSÔA I |l|. .A‘)N 444.52# E l I S l i l * 3435 fitil |0B I "III • : 8:2üî ' l HSrSïil UI3Î:IS8 J|g31:i58 : ‘V

- ^oj.Qop M{§^.|SO 224?;.;30 ' »M.)o) w # iiiii ifeliil I

~ v c r ] * .«.••Il ^ •#* 1. r-»?. .♦ • • » ...... 1 A. Î.:V- ...r. ‘--if..- . 'J. ■i ni « ■ ■'KiiïÿiWs? r m f m m wt;ir/»tiE3l5ïiar-*s; ■'1 l . II• W.c

IV,

■{' 253 FI

w I

f f l s f l W i * a rnmwmmomOm#N,COwmf o<^>wN^ifl^*«#r»«AM*a.»**»w«% A^W»rni^mN*!^N'"'*"' N»^ff*»Wt . ^00«@#^mN^m,moooN4aAmf ^

aOQwNewxedf 30'OM

■ ^ ^ S “ i i i i.L _ , Mcm— s I ooeewf*r»*o*«

m*OOOOOOQOOOOae000000009000000 qi^iA»fca«vrfvoooo^^tftaiAi*«»«*wwto^»«^«n -1 • •«•»•••»•••••••••■•••«••••*•

*0«wwnm*mpimm*mm«fOi.rg»^«»^^aaiftAuwwt«••««• «•• mO*A«^mUn,CO»0—------

4iNm .#vx ro o* »<« Q*«’*«

.a^co0'«w

v

• . * ' . j ..

1 3 1 ® i j - . ■ 1 f. •] 1 â s . : i . : . . J ■ • ■ ' : ' ■ \ : 1 : CP4

/■’■I " '.. -- »J • LV V |:t..

. « :z ■ ■■■■ ««pe c c o o g ^ .

_ ^ I ___ _ m.A «# mm* m &#.»# ^ &*» *«# •* : m m S i3z%%:s2z%%53%ss=:%3es:2=;". t' ..SIS SS,'3:S3î2ÜS?i£î?iÆ=?S;£sæï. :;

s I • c'»f#»r%AmC''C'feo*c»c.'»«f'f.'.ecp"wNmo«eerfwya*o»c>c’. ; . i #. C*r9in«o^C9 -, ""f PfOCwnmme^ „

^eiA«B#^a«7 w^«3^*e«fOC»»p*ere'f'#^inr^t*'#e»^ »c*o*e -, ;: 3^Ac!&S%Si%%*ZmS%%%%%%%%%%%%%;»in— ' «f ' *,wma »wMNmcœ o o o o e c o o æ o o o » o c : v^w'*e»<»*"'^«.'ih^e-s>ae'OOew"0 . ;*': *•••«.«••••••»•••••■•••*•**'***••=>®‘’‘===r"s?5sssssss:s;s=sssss-:■ : ■ • r- •,,• 1 ■ -• •' - ; ;:,. 5w •. ^:r35555S5SSSS5T»;-. ; ; a * * » » » ooceeeooo&eeooada&oo'eeoeeooo- --- ■:^î-^i'^3!:5SS;f.SSS . ;••

*ri•■•••••••••••••••••'*••»•*• ^. maoooooou&ocaceaoooeocooeooo ..

ecoooo«**o*»<*w*^^w»t«t^e»o0"*oocoooooooooao""^ — *

• ••••«•••••«•»••••••■*•****** 'w-aiA f f 0 0 —#«*VNNNNNf'm#r#f^fWWWNNA,«M

c !: • •*: ■ L55 r./:-:a

4 a

. ' f .-%r" i> ^ ' ^ ■

__ . _ _ C»imom*c»iA!mww U, yimmf» wrQ-cNoewa^—^m— •

• ♦,*• .0.1 »*# ## # •-••••««•••«*» ,. • W .mwm-fomofNf ■■ n»»nn»o«» omor—O^OOONN -

eMO*wiee«idecwf%w*w**vtncoi*omiw«ne lit£ 'Ui* ^ r40^^vnweot*co*»*yOBtw« ^ >B ; ’•.mtiwfnaooeoeaoeoeoeooooœoeeee mw '- H C ' 'ine»ooNooo«»##fO «2 .w A I :N. ##**»*###«*»*$»# »«#* »#***#*# " K•• w £ Ow . . ... myonwwBm'»—%f.oeC— ocf*»"*wNfvma— O m m .. wik..£ ' I !- T • r . .Bi'womm.eoa»*»c»oooomcocaccco' .f ^^w#W€iiniAi&inw\iA#uAA . ; :. .£ — '. "ogoaooooocrdooooQOoooooooooect.*-?' i . • -<.«t.. ^ <• .. i « , *>ivmoKV^<*‘»v%oeec«*N.*»v.vt»»*"eo«'e®x^#» v.^ < . pm ^ jO ••»»••■•*••«•*••••*•«••*•■••••—■ . W v\, O Q i#maww)#"OB#*f .f ' . « %# .; . oooNO«r*wm»rcmm'*"MA«»^^om'eT^mvT"0 ooew^omwf w«f c "^m#»*\r$rn#»y«n«8#)'CO o * gr < oeoofw^^i/wywnoo oo

''« X ..a ' u» ' g* ur r»«>*ooo^^o^oyo— »q»>i>c tfiM*wMooooesoeoocoooceoooooce-*

. 2 & ■#••••«••«•••••••••••••••••• •‘%J2 o UI S «—nr4m"OP*V)Newnni»4)mr».«mof"Vf*P««smc ■! ioaiffistCBOw%»nO«*»4POOg*«wo** - Oz ^ a*. >• e>00«wf^»W»l*>144«W>iA.#'#V*#'>Mi*

i •li'- Îôÿî OOlt«lO A. KAIiunC • SIOAtlJ BUILÇR CaHRUSIION «k6 m » I IRlMSFtR ANAI.tSIS .f«ncA»M ... ' . \

■JIIa Àï O Ae Àc JUA M 1 OÏPfSS FAC ' 0.30 ' ACIlyAIKM FtICACY.* JÎOOO.' ’ FREOUEMÇY FAC. • iooOOOO.i.!' .ALÀCl

SLICE NÔ U H F ■; ÏIEAI ui.u SLICE IIMÉ iot ilHE" . ' fîl70' .....: càf - -■ f u e l ' — ilÉAI CEH\^; ;îiÀO WALL .il.yCÔHV WAl^ :, ' i • V 34.39 - 0 .0 0 3:31 P.OO "iiî 4;?iKA. j 4:

' i hîir rVj 399.142 0.090 y'i' nn8.VA^.313&7&6 t' 100. ,7^ 298?f.».6.*î 94305; |5^.SflO 33044.190 23029.0 i i i i i i i i i u 1 , -f!! •‘V . .v,_... .. y.. ,r I F«» •v*“r*r.'V -*1 •• T. '•l'.'r’?Tll*" Iv. K ai .iiîSiliEl^KISÏil t’Ati

..f 0 OUIIALÙ A. KAUUNC ' -ilnKlri'IlUlliH CIlHUUS I lllN AhD lltAI IRANSFEH ANALYSIS PAOCRAM

SilhREb RLACIOh Ht * «.OU ' BYPASS PAL • b.30 - ALIIWAfitlH LNIRCY « 32000. PRtOUENCY FAC » 2000000, ..^ BLACKENIHO FAC • 2.00 s ô t t hO----- 1 i HP— ïiEf f ûlfü-siTiriiH. i o i i i iî t-----lizo coz '------ü ; ------f Û e l “ ittipGtN'“ Mô"H*iC TcoRv WÂCl jÜ49V,9 39399.990 ?S;1 •79U 51930.320 29290.100 19 r.060 -i illif-rlifciii’-.0U4 ( liiili”" ' g iJinpis 93%. m o^içp mis. «M 551.ISO.533 .22020.660 .ois'2f911*010 59902.ISO’22199.19 12. >*BD6t;tl9BO«ÉOO 53913,560 22190.290 : 1

.-.f

e

li s

■ ■ L ’.:; j. . . . u A K;::':, r % \ ( î i

r ru r. — V >*. 1 258 I ■

« &.I f : • • :-ïl-».S5?3S3SS22.«SÏ52S;a5S5SSS2S5 1 1- -.TV # gte|;Vl .îr:>-:r. • •■■T-H • ■ • h .•••-,?. »••«•••••-■'<

£35gS3SS1!ÎS32'?3S2SS.gS22222SSm ■ ■ ■ oc<»cmoh . r*' ..

.•I.|2- vec» » * » » »•j»** 1 _*p _ ■ . I r I . .; . .t'i •-.:|-^ 2SSë32§gs^2SgSSggS2SS£SgggSg-v-i '

^ c«;& ,— ____ , Â AT o I:• ' f f f es» :*?m » ▼ •: “ -| 3wt*m3**«Poa*# 4- M 4 . p ...•: . ..I r vr<--l «J •» 1 iAO>Sr« i X % 3 . .wfwurmirwiAkir»-o»oio«^^w>**AeA4i»*»«e‘Oe»» • 'r y< ocw .N!" ■nooiaoooqoojooo •*•••••••••».•■••••. ' , •■•«•••••ta* *••!• , • «•i ^ I r,'.. . i !• ..-^j••*• —• .• . r« •—'•••— v»-’*) •• . *• •» * z — . ootsudfsâeeocscaocisaaoaasesfiac , :• ^rri ^X ><î O aua—^ ' 3 • • • ^****** *#*#**#«»» m*,;n f .f f .fgiww* *■ .» ••! • - iN aooooao'ass.coooeaooooasooaaô.a...«., . 1 5 := 23fSiîS3g332S§523S523§S3§2SS- ' = ^ < « ocw«^>qocQOOco 2 c ^ fwiAiA o«ow«AO*f*f— •

i - ■'i- -S^srSSSSSSsSSSSSîSièiSSSS'SSÊ '!' r--.''*-'.’! . ! S

4

?— oosqqcaqqqodcaqooaocaaaoooca•*••••«••• .*.* ••*«•*•••» ••• • • a -• * } e O .oooooaoQoaqoqoaaoaeooQoaoeso' * a i • • I it I I r* i, I I )• h I.I » t; I t I 1.1 11 i I f I it » ( t*.'

*. - OjSB«vrw»iA<».jM«ep»^9t••••»••*••» c»*o»q— ■ , 5 ??î3ïÿ?5€=>3iS5IS2Z2£i£ü:2£2 |

3 ► . t-.*“l V.. t-.-'-i fi : - i- - - r • ;-.1- 1 1 ■4 I i. •:.i

\ 259 Tr'Tra>«T: / --if '

^ « 3 . W- ■0 ■. > . ry*! ~ l- - Ji!*» ^#1*.»•*.••••>» •• •«**• •• ••• •■• # e^e ^ »«i f CNmwi'w.f «ne ^few» «fewwimv " f * r % ' % i ÿ - r:;.

.•'^i '•»•••>•«••>«• *•« •»«»'• a.kkte***** rY:rt ^ ' j « .. ♦♦LC*‘»’.*‘ ^ • %** < ^ re -i ■ ^=1' .« i'i;ïïïs:=S£2a5S'SîSi??ï3i:^i.r5: n.)'f • :i . ; !;- - • vv.*,- • • ' y,.ciz&%.; ., .:p.%4 I ■ .!•> i:#i"^p;i:-. )■:•■'] • - :! %W...n%i.X^:..;. ... !■■- r :. k'.-i ■•■ : ::l :- >r I* iiMe ;I «<»r^4€f^ ■ w Ê ! .vM '"• ••* !•■••! I .• ■' :

0'9OOOr>0C'5'»0'9<*'»»&<9es 7»97W9ig»a^9*9»9>«lMVf*OVI^>« oooeeoeo^ooaooeo^aoACK^V 14». • I sccaeo I ». 'f, «}j\tn^nMM03«ii«>4iW4ai«»o^9 yfr«e»»99»eT»9?»c»?yc'»ranM*v»e‘»>»»i>eæi;ei#mav»:^ f »v*oo qx>^90^ O'9C»99»>^y ><>»<»-> *9 Il 9a«rwttrûr;iAtr«na%«A«latdijBAsiSaa» A«aie0«^aA3 nj»»'5*>in-«'a«^0. I ■yrnmmou^o—^af fm» Aif.m»««*»wwmoOOO\#aoO - ■ p S r - 'mv'r.af»»90iNw»»wee>o*'irv#v»>Gftw«3»>JW'a » ##*»*## * $ e * • •>• •• ••• •• * »••*■ . OOOOOOa Ml I MilmNfwm-fO'mAfAcfcm 4 .M . ..I*, -.i . , . \:. '.i :'-':r|' A 1 ■ aaaeodaoooocH^aoaoaeaoa!%f::|. - %r,(: ':uK':9«9pL aaaoaa : I . :K 2i2KriSSS3SS£So^S3^3S3,?rSSS; |: ; : 4 ■'■ f.--'■-';■• f--' j' ■•■ ’1 00000*930000000• *•>•• k # » » « •«•• • •• ••-• •• ••■ * * « ^ 3gigSi3Si2f2f3S323sSS3^St2?':-. ■ 222iî2=22S22^Si2siïS^S;.'!rttCÎ / "'1 3 r ,(;i3;2siS2!K;i?33'z=nyrr;?'%:'(=:SÔ*V^a«>«a!'WW^^“» •»0i9C»0^*«- El mwima f J W t a t ■ » 6 J •• 1 .- .f1 •'■•!■■ -- .• Fa 4 # •'k ■-’•[ ■ ■SJ=5=92âî3S^i5.3gSJSïïiïîî;333-33-ar«wwfwiN«Nr*vM 4

ÿlMllMilMï-pîilI amm^'aw»m*,N0"W%09O»f ' u . < . ■ .i #/!_ ! » * /, yoof 9^99033903— '**0 (00 : : ■■.■ !•■ • 1 ' t ■ I . !■■ - ■ i-q I--. •KL \ . h . -I i:-:i •I- ■

f -i 260 .y

a # : l

..■ 2S2S25SS7mS£c52S5:Soî2î::2SS5Sirr ... . — «9000T»** •- i■ # 0

s . '.: »»*w»«e*^4>?‘«r^««4rc^or«»<«KC'v^t^4 k #» * V # *•• • •• ••• w»« mv'f«fM •1 - pi '^7CSSS£5S2S.S3S:r — >»re*.y«»#m^xa4^wwi6»»w»

, yo»»j>j,jf*>^t*tiw _ a>;^o»qg»CJ«w—o«*i . »»»»<» ! •••• ; t- v ;i'4 --^ '! " -. ';•>!■ irr. -K 'ic, tpi gSSgSS3SgSS2SS§gSSSgS32§S25î?-; «w#«g ■ •- t?L%. , 4.-V* v^--.. . « i e»e»#ii»ef iA n«f"Amwoo*t»6am.'w*f#.waa^ »■»»■ Berwn 9Juf>w i .* ' frf 1 ..^j., • *.• #f*W"df*,'MU=»V9'»^C3M0'30A"^ f fjr»a AwS -i -. W ■ Ü-ï-*' oao—eaafw _ _. xf#»A . _. a-o*i9. rt‘; ...i".•' OQ300A<— : o »c3'jf" . . . = 2 2 2 s n .; i ■ idssasî^ES^îïiî'îiéïd^is?^^ ■]•' r: ■ ■ M . ^

. •r^ 9ooaaocooaa«»«»>4«MMMM

. # ■‘.'!" *4D«*m».a #o»%*e»r«ats#*C5.-narrfNmf^nMi6»fna:w> 6^a4\0— D'C#^ . t ;j, — • mf4a4&awye4f*c»i*wmam«f*,w^fm»pa'wwcy^ • % :w OT»'*a f 4.4 > a iw, maaf Nf#f4."'NN*'4fyf•-'. ..,'■ - ..I ■ r ,- 1 i i . - ---- \ k - *1- & ' v R i.’i. :K 1 .1 59 • ;'^1UK|fK. nUlL£H COHntlSliLH A W *,&»# ANALTSIS PHo CRAH ' ' HliALIUH til « 13*00 ^ ; BVPASU «AC • 0,Ju. . ACII VA| Itiri CMRUV • bZOuil, |f«t:ûU.:Nr.v‘f-*^ rOOUOCQ.-OLAÇKCNINC fAC > 2.00 : ■‘^ “liEiTirTiTTtlcrriMr 'iui n«r I'izu” ‘ .tuz *u2*’T “ “ *'fiiri " liui V iir RAU W A i i . .-f •

ciiaci

; ( /( #NK i,- t

r fu crv s

) ■

V., .y ■ - 1

■i'. •V ' r m w ■y

m m # # # i - ^ ,1 • / 11*ii Aiidi'.-, •.'iV»i*'o«fi;-. IMnpix< •«ncit - a 'Ia 'n i i n u Y A i n » n?-li « ivi j ' y a *'" s . ob'ti III '■niiviu niMMllt HYDOIIl'X H-y^NYII I » X* (tl* M»l Hn.IHUl Mi n nil MiynlS 3iini)»M *» ni>NHO 09 •iim #% 263

'■:‘Û p i .K: üi, 2SSSS73SS!:22SS22SiS3S2S?£3SX;.! # üri

> — ^ o o*' o »W .J • L..-:, 4 -■ _ g ta. _ t 4#eyvo^î«li#>>«f«npw«**Ki»’»*iNwv»n*iee'i.'»*c c c u —.«f vw* • r. '-. . •.r.v, • '., ; f . a:wo?**'^ - I ->v • • .. j a ; *■•>•••. • y I * . ' . • • » • ? % ■ I ■■4 % r • * #«*#,« »* « #* « *.« #.*»*** » m» • t Ë ■-:.i <9O i.u S oacf^o-cze^rgw\.m*,jaa• • . *'~ ► * I im f f:c? . T t : : :

îi= } w . . ao«'^""f?ineK''4^ ______^ •• m;4i *##*»*#**»*»*#»**##*«.«###&** .è o "-‘U . , i • : e000090930eaasaoooooeoeooa iis V*X f ■3 C W .») AV»«* WA .f. f-r ■» «J .J A f f ^«T ff f f f f ^ /•r#r _ « I *. “ J '. î •«! r« ... I » •■ î • T« , IS 9000090900000900009009090099 .; : .1 m#*w.now'w#*.«*«f f c a u m c CO«ffw»0— — g»^oo— I 90• •»•>••• aO."W*'O0*LO0O«»^^%fX^9W«^«weNO«,»«*- ••* • *•»-»•••••• #.* •••••••' /4 . o ».f— 9M4nnOf*^9 ; ' I jS f Ofu— I r^t< r # si- *a9 39ooôo9ooôüoooooôoooJoôaooô ^ ykyg\v»f#wca^3;^^f*»a-i^«eoom»♦,»••••••••• ÿ..>çi.yïHie*teci>«#4#r»oa09 o«v'«aa9'>#e*N*9#< «pmwwmoA^ fw%c of»—#"a»3 00 II- «am wmca i M83:ü3:J:3?'3-:3iTS%'%2333Æ3%- v p • ••■•#••• •»• • t " ? , «,##ww)A4.w,fMwy • - \

IS::

% 9"*" aeoaoaoeoaoooo.oeoeoooooooooQ . :.: :l4ê' •• i ,. _ - 2 (,<Î;'-M-W'ï'î41' I "# r ^MA*9a09«mN4#09'^^uo.V4amwvm%A«^o»o^ * :R , n-nm f .» a #"—0^ « ^ 9 0 0 A i — ooÿ'o.noo'w'wip" f*AOAff,. *»fOf-*%f«ff j-rz • «JZ < "« IX ^ jxe3»*ev*«NX)'*'* >**n«Si9SJakfN.— >«**^«uv‘«wf»«rJ"'< ''.W4*‘»««> 3 3 1,» ^4fa«f y. w 11 , » » ,,»«w9 *

' ! P | :

r ; y - -f i". T.- J \

#Z«c(w Lc w5ZKrc#a^ v* -r:;- i ! - !- 1 i i i 90’DK'KfW KC9 fW CCIwKA'VkW C eoo 9CCCC K-K.N'*>«^ C 90 ««.^MrQVBSU* KN K rw ^•■»vcee»*e».S&sa^co e <«^c « ^ J^uk»cco V~9«C< fse* c ##**##*»##*###***###»*###### tf 9» e»«fu a&«.'

ee«ceeccocceeeeecB oeeeercD ce • •••«•»••%«•••***** ••••*^'*** i ^^ 4i,9»v9, W^WWkwA. A. Nk wK'^frav^rvtotwO^csK-|CN-»wy W.» w#'ww wOO§ v — »r.‘Oeevwh-oe«.t»i^*^-99ww«A#Cz !±.

eeoceceeaeBcoeeecc'O eecceBRoe ■"V _, ; » ocofrerceoececcocceecocoee^o^ &» = a»€Sg-gagea* 9 0 eace —*** X X «. w —c c » . —* ' ■ N'K f."■ ^ w o o * e g 1 .9 g y w n i c

M t r-'-i . 5 7 : ■ . *$«#*###»##*##**$»#*#*#*#*##««coce « ^0 > 7 !•■ sfî5::îî:!rD=î?5.&w.«srsi5C7VWKBBgWWN#*—S Wf ^C4 Ow & s

&v*cwv\»^g(X'«f * %,x»oe*"*'eoc*V"-w.*#^»k9 vm N vo^a^-fw ^ ..* •■ • *•VNOB9 •••*••■•-«•••••** wv^^v-.we N*c ••* •• OBwB«oa. «.ceeeoooepcececeocBoeoooeoe *'** v.v^»w%f*fVv'Vwvi«uivwV4#*hvxiiv«*%nv:**Wi# I twWWt»Wt»U«W*i«WfvM<'fvNK‘^Ai#WwwewCOm v S<£ .eine*e»*«i• ••• •••••«••••a icvee^ «#e*wwp»e#-9wc»weoi<< •*• ••*••••»••• !I eeoQCBBaeBoeeooDCCpeecceoeocw,ev o^C'fwW Kevmgfifg^g'^ggwAW 'W kc*, # WNN#*NM#V#WNNNNm#a^WK'KlNNW»m#w : #CNA.n,fw#^'KfwV.Uv»weMg«»c ■* *’ • w*vev#K‘COxrwve<4##e*^e>w«‘g^vw fw^ w<0«wl/g«'tf'-SK90ge*9*S>'B«MC^e w »e *:. »•••••••••«••«••*•••••»•••«• ' ■ ■■>^N.eCC<— uei*e9wC«*'>99K*4u>‘0 V»Nwr—~m9t ^ ww;—«oawe ..m. *“ •i • r* r "mwK-v;»—«C • m. ______.USÏÿSSg 5 • „.^v*wwwex^'9«n»ff'v> >u to*iî«9uOwC # ^ ^ 9 0 ciuKO>w*v B * e r . c • . ri>f^g»94 2.m e e •«« t •»««••••* t «•••*•••«•••’••• • ' c

* .**WWWWWW*& Wwm'WWklK^'WWWWWWWWWW«#** £■•- ewww«»o^oc»«'<*'rircowAi'N'uf^ C,,., e«*^'*»W90V* #"9^0 ^#«fW9*»e9 W^#9"*WW^ JJ,'- cw*^gK'owoNw#f w oaf e —%' t.' o . '9w«c»fgvi#A,o»"*we» i r '. v**»^vw

»9W W ***00" I . •: SïïS££^S£SKï£ïïçJ«Î^SrôSS #

UtioSS

492 - I

1265 y:... s/ i.V^;-

##

• .•• a g ee'»«fe^^'>#3'"#w*^vt*»mN#^ae»vioa«r t ‘ *“ 0 w ooir^Aj* A^w^a o;»»mc3**oa r —«w* « . '.* @ oa*^moAaoaxMa»Na«^cam™^*ca^^ ,\ -S'-4 '• .t ^ J< """ww— . , ^ ,i i ' . i . ' .- i - t . I-.-;- 1 — .ÿ],T. i rTi:?T4/-' • AigvamNA^a/ia'Aa^AO ooNO»Of— i ■ Si- .•■•*•*•*••••••••■•••««••••••fa»ia «: v /»<—n«a 3 oaa#mw#A^ma^m#rn.^aAf * a » « 3 4 fs * * * «tf t. I w M l p * f--Tsw-j- • ■• h:n-h • ■•V-‘- “i ‘".-vKH’ •- .-f-irv:* V. s '• I rs^SS5SS2SS1S2S22SgSgg3i25 ’ Oa .. a• >M> • ••••••••••••••••«••«••••• fi-f ü 3 mam"V" y a» # ■■■ ONA#,cmw • • * M (. " A.if f f • • r; «»M m.; Ip.. % «t^^^ïWWâV'MÎ'e^^N'tiNf^lV'W.VIWN'I.'NriMWWN#WW#1»M""1fl*#f*«W<.N.NW.vr>*A«.N«W.N.'WWHW«W* .|. U" % - 0900000000000939009939060999 , "» z< 4fo . f I 9>»vi/i*wu»^»^***4*Nen^o*'e>N»evtAM»'—i*••*««*••#• #•* •#•»•••**•••••«' « 4u orf% •.' Z O f*fwo»^Aoa x» oao , •M* w f9#9^*^9NmfrA^4a^**099r»»»*0 «a"#Aww.i*wmm»vn.»in • 1k 7 ' ' ^' .fM«n«KA«AAAA^VOM\tAAAAAUk/U\AM\WtAAlA 1 • I l r' f^SS5SSSSSIS35??2523?^3S':i; b-9 < ^ ^ «« >.yi>AuwAe»Aee'e#»^e»iv«*aatNe>«^'>*»x##&*########*#*#*#*#. _ D>#^'AaaO«>9bA9^A49A(»A’<^-wr-»aMmA«bO>3M.'<.'A# 1 •- su s « A4A99^N’^n#«r^AA AAvnAA00aO«O4)Oa« I # 1. 45RNNAmfÿwAr#fÿsN^wN^x;vN^'*^;v'f«N -- ■ i => - !r. AO.'W»f»WOo,#.\#A9NP*^A ANOaAA f f m f A 0 s .9 U* ^DSg5-J35Sîï3î?5îSSfC3;53iî?!ï •' • *»••••••••••«••••«••••••••• OOOawWwW» ..... ,II,

1 — M _ A «■MA - - — A .viiA a #% MB — #a 1% 1^ .«'.. -z m^^oaooaaawaaernaaOo^af^A_ AfmAe-*"r99J»3Ca»^o^ i U3 A MW«^ao9oo0aa90ao99ao993aao33oao • • • • ♦•• • *••••• ••••••••••••♦••••* T • * . oo990009aoaoooaaao90ooas«300o ..'

I--^a' »-f î • :'->iv^o A"»>«w-*»#'Aaoaoo»A#«A#A«*o>^e* ■ f A«m»>9-ww^ f AO«»a>a<*'«A4> *A«*i »••»«•••••• — - '

.. _ t. ' Ol^a»i» iw3l*»»wuA*'<««>i>^o«'«*»«*raaA.n>'<44''4s•■*««•#«••»•«#.•••*•••»«•*•••• A/â f •«•w« > , . U » -2 AA>aAS*A 3 9kam«»Maoo«*>A9 • 3 (g ui w*^i*MOAO.*»y*>^'A»v»<> aq A r «i^>^*»ao . 9 9*» AJb>ao—•••0 An A AAr r f A A^.n A , i -2. ü' : . -.-"i -•. I i. ■ i .• ; >';l: ;• ■:.■■•£ I. W.3:?.,:

\ •V «.•

Mi-; i H V r* i rî'vj X\ -•■M •••. e^£îü*»K^^’<5^eîrïCN?o

,.!■ ’ £dw*w^oe»c»e5*i£®v!fn5i£veii2%evev.t-4^aee*»arae^<(.M^4«»a»BO-««i^ao>«9e • i/i'!“i-j*—> i V• •asesceeeeeooccee-eeceeoooce^e ••••*•#••«••••••••••«•••*•«• ^c: ' *w5. '%r Wlw**VWUVWUfU#U‘U"N^KfNK'KNKwwPM»w.weeOIf ac#»»w^ ** n % • •• 0 ae^wwa&^«6o<4awe vwcewoa—vae 'I ? .

' i i i , cecroeoeecracccreeeecceooeeoe .••-•••••••••«••I*****-•««••••• ^. iM > ^ . eeececerccrrceooceccccoococ-K — y e * * z 3 ;v. r I . a*w.f a "waw w w ' m T e

** ** !.'> WIVNWKKNhfKk^Sm•■•••••••••••••••••••••••*•«• ,,"wi ', #»i i iiin^CeCO MM.t C & .. Î «

r ' MM*WMMi^K»M^'N*K'NK2KNK>A.KA;ApN'>MIW*tilwr.fW S ' *1 ' n > w««v^e»ec;<»^pv-a Nm»<«m«*tweaN«.‘ew» a ! OOOCOODOCOQOCCC OOOOCCOOOQOfaO { «• 2 wwwwfViMf w*y \fw»w ww&fVHftfwtfWtMP U«WWUl*kteteW^U'U,wWWUU 8 , ^v.>f«.oaw.we«M*ov^p o*»u o «0 . 4 ^>tercwww'ee^Ne‘rkiraaM^8U'N>V44»<< .' •*•••••••••••••••••••••••••• ' 1. '--gt>— < y W #rf»—^^^ ocecoopooaoo e se eceeoBQOooeeo • # *r WfVfWSWfSWWymfK-kMWNKLMVmfKAWWKfWNWAWVNW #"I fs;rciwNKiwfv*N"^MruK'«icfw*u*CK^wu'WiMi*M«V.# ^ 4 ^ #wtf'v^paeoi^'sacc««^utc>cut»wi evow ^v ««KCf-wa^vNac^eaiwewuneowe» « o« wpNw^— f I »###*######*##»#####«#*****# .'i . -"t- \A4ew*vww8* aeftKuvt4M(»e»iwa**ev—»wi>*.*ap»v»vi#oo •

waa*o*NwveeoNVBN^^Nww«N&wwo8> ^ r^b 'i w u*<-^ we < N»w^ v»» «*eio*tto»* «sowao©- wcwveecewwyN ramia* we*c»y©^p\»w©o . wc u-M'VwCP o*w4 9MVBawCfri>«we^wB»se=?i ? m r. ;•.... **#$*##«##*###,#*##%#**f*«ii*Ni*woe»*©#o*^h»

. k>MlkSK*K'MKMr4/K«MfW«tfwuHiMwWlitlW^ » M .>• ec»w»«wtMW*-v»v»<»wee v‘o*#v#'vw

poe*w»w#MMN#u.www#*#w#w«

992 267

•> » #.* .»«>••••■ ••■•«* «• *4 #: m»# • • • • f ##" «r—o»'— wnf*'<"âinK' ' •r9- «/ilWMtfVneO'flf—41ftfw«.

I ft"^«smcoN—f —#» #me«*om4« /-r. ( e4rW%#WNe40r*V—mO;»ftO— MW—ff44— : I'.; Mft——f < ' 4m44imm—N^mm— *a»40f p#e*f .lfik’*’«o••’“ *•••■IÎ t-r.i-ti — • t, •ww> •- --“4m — -— o » w f t — — — - —

lAf 4B«MDCf O—0«34n0M4 . «Qfi — —Jf-C f W>nft

— 4B9—»f f e?*4iftflftK—flur—■6^iev'ef«ft4iftft• ••••.•*•••«••« f NBftH&Of^—Nf oewftB* ■ f» o o»»»» » y y »>g— j»q»f T— o ■■» nr Of ^ # w f n — - • f ••■ 5 ; > ' -T , oaaeeoeooeooooeeoooeooeoeeoooeiflee«î#seeûiBAiae*ûâû»tiûûOûi3ûûao"*:7 .1 ** i « .«• NO—» OCftO^»— . Sa 0'*M »* • »**••*•••»•*•••*•••••••• ••««“•-■'I ■ .r BE& *9 O -Q fO»C>f a»o>q»gtg <0 *.040— 4 0 »lftf tft^»«rtftft^Oift4^ I . rv .. o o — @ W f t / —to m I' <»a40'f4t44 4?v—Of f - A4 • :,«•<*••»{• .. ‘ *1 -,.. : •• i - I ' kT'fT.^:^ «i^ > f • f—««^eiftfttMoooaooaceeocooaoeoeo* .ftj.«nf-»-oo»«r—tftc—o«nAj*— f fj ’ ifttfm—torn»—wmç,wtr»*vmfwftftft#fOift— fttoo . 2T o( ••*#••••• ••• ••■•*•••• #«# ••»•••., T" r oN e O C — «ft ■ «C ,< ■. .—ftuftP»¥>ift>ftft^»rT*0 9iftift»coa0^f *"* ••••«••••• U»44ft«ft« - I #»< W.— ! Z• 0C,0W006a4f:*m,'f|ft»9.ftM'#'ftft,»4r"—OBoocoooo'ftef'f— f«v04foo»ft^f«fo— ft"0 f . .1 ;; .S'a «^', * ' • .oooeeouOftM*vft^^rv>iftOift«ft^«fttft«*iftc.tfw*——— f — :. i5SîSfflffiS5ï£!5S5;2?5S?^S9£3î^22: ' '■'

» tb- 3»«r#»a«ei^ft^a<»—i‘Xswft'#o«OF»e» o»#»r •; *Z IX«Olft^ooo6oi^. .«'•

------gcaggoao«^^4^ycp4#%r«omf------»«i>n^—WO0

, O0»ON«fN—momft if ommoB#ft«ft40.A4'*oa a^mmf f — - *a*aa#iaaa«a»aa*»»a»ea"«###»a ------4.m—^fiftO c«w—Nt^—ft »ft4 11 o —4r»—fttftO'vmoftftfMf —tft'vaf oftif «m f tftc « ® o—444444fo**4mmm

\ 1 1 1 I - :• . = = 5

■ ^ - - - - — --- e^’O'V* wh.^C<»e»»w^uk'«»e«»iU^i**.Uw»»_____ ' :• I !•••-', - i- ; ••: I . , WA»wkKKKK##KAWkkkArf.WK'NNKK^*wm'" ' N4WWW* 4 v.tiw.o pO"».«k»ee.&

>Br###*»»##*####*#*«#**###*###» » 4 C 4 k>v»»«r4*^u-»^ c oweK«ee^g. uttr‘ ^^o<^e>K*4'C e 9 < h Nf f e %»# gmkw

coooooec coeecceeccc coeeeococ

rocêceoeovocecece^ccreeec'--P ec>eee»cC'eeer«••«•••••••••••••••••«•••I occc'eeeee eeee»M »*tow»o

f 4va V>toU totoUto'UtotoWtototoK’f^-MMpw'N' *••••••••••••••••&••««•••*•• •S'- cr«4voi^f^uwMsCKv'V'^c»*^«0 to«*/ uK*»>C V ^toUifMM^eC cs«»«>Ott'ew ttoUto *» i f a f u toa^-C4 —i

K. vNeBNf»»vavvvto^D 4«w—eo v«c»#w**o •• • • fO• V.lwOtoB«.a•■• #**####*#«****##»*##»* V4>fwOO^V'We WtoVQVtB« oocececoeopooceoooeooececcoo»*, <>»^g V VPW3 f •JVGBV»«ei*sa*a^W «i.e v!mf\hvva4.wwwtov»^4»*»4 f i*»w. ».wi»—iMiM—-c e e o c o e a < ^Bwwvjov •1 Va,*tototo#"6fBwWf NG*.f'Ce<#»4fBV W«C-4‘B PwrVi^a e toO'tO toV (wC VwS iC V 4 P**» III.- 0>to^ W 4«V V^—wVtowNtow» WVtoVV.e

pecreeoeeooeocoeopopooajDOMo^G* '££■& ______

K<«UP«tofe4>a>W »*KBigO^U*V*»^4»V* «•••••« c•*• e••••••••••••«•••••*« v to^oe«p> V c^«*BVto»«'4 S 8 CV^GfG»to^e**NgVtotoBaK>Or Ow«C#Vto<»to < to# J‘0»OtoOoe>«i6<. vwaicK#eK

Mf "j:; K'M^toto wa.# V9 WB « orw V« to'OOiBMtotoM toBtoe#K*C#tf*ia«wtoVtoD9N.*KtreV.WtoOto^— # ««we »#» #■—■Oto#»BP#»to^ ■■ «* : r. \ * * wN#KPVKevOO#toiWtoOtfV»* C VI PVtgi»*toVto^to^O»to## V W.WV

#s'#wKtofAMa#vwtotowwwtoto###iPP»viv#-.%• *r..'. . *to#Vtoto*e»to#V*wGewWVto*"WV I # V c* •■CtoP#»0*»^toWW©*»< pfr* • Aiëm; «•*#••••««•»•••• »•• ••#•••##•••• I ^ ", —.. m—Mto—wm—, I M ■! M I „ ,to.,.--'j •»•«;■ »a.OOOPwi itoNNwNtototo4»#a VWIVPtow . I| U *B#to©*VWOBP#NNN#a#toWiKpOtoPPK; wotoP«£M4»aaw

99?: :s ■ «fior.fwef*io*ee«*hflf*«-e»n#e‘«o '

_ «>oev.mrN»i—0‘*e*#»‘#«<'di»s«*iîV'^»ii#^eFK» i '••.;• - U-5=S=S5CSS3Sî.îS2~SSy:S£25SSS5S~ =

JSÆPSiSgîîîSÎSSSCSSTSSSSgîSS . -'n°.'î'.‘î'.''.i-î“.®.*rr:'.‘^ ^ T :'î 'î i'î - t- ?;: .»o%w N"i—I" I— xiMM II I ■ — 11"^. . , . r"rr '■■• ■ • r - '• . v,a. •■•?:' S2SgSSgggg2gS£gSS£ggS2SS?Sgg' i' 3S ■’..!O N ^ o i»#nrweF‘v'e^«'»e*FSfw<—i»-.r3P»viF««i^-< ; iM L' ecer^^»«o«:= 4 ' —lA «n il• •.^W#YWNNfVNMIWWNfW^NNNP#'#mmMWAm,WMy** i >wi » *i ^ . f«MoeOA90esooooooecooeeoooeao , . I.. • : t I • ;.; , t • «<_» c ^ i If.a^f*w»'oa:««^mc— • ••• X< uéc ^v^-- • • • •■•»«•»•«*•••• •■• ••••••••••« •!7«t ..y .r iW . - X «w w - • » w*. z ».. ; • V. . #wi#wwwiww*m(m»w>6«*iwf4AininiA%n*m*W4(wmxoc#wfvNnwvNNNN«%A.mf^mmmfAmf'«*m , .' . , z — j bei0Ooe>Qoc0bbp3Oja3ooooeoecoo :[.;. X < ' ‘ .f 9"fOiAa"P-*»— vr«f;ooCf4(p«'*A" *wN*wc * w ##> a p^XN^«rf • • • •••4 **.*«#*#»»#«#** 9W I *%OXM«f m0AC"WVr#*O"CN#: •■• • • • ••• • ^ *. < w ; .. CO'»m.Oiâ/»‘»U»"we^N.i#fwn«T>artwtWSv^*4.Vo#yc'e#c*^.fl*tii>"«irt«io'«*#v»i6e»'»*ef‘e**k y •. •• •J/% - &m—ywfwin##«#'#N*wm.fwv«^NNiwjNNn#mm,w«>«»,<», • i* . 2 o .. KgSSSTSî^SÎSSTSKÏÇSSSSgiwwr.#pMNa^o»eeewr ,• M a* m.» • • • •• r O »- «rn^dNNismMsiN*vA.*vA,Am#;mpWMmm#,mfw.r#^4'f

£Q «k X^ x>a '• wa w «• — o>«4caaooooceoooa9r8eooaoooeS'9o••••••••«•»••••••»•••••'•«•«*• * i < ■■ Moeoooooooooaoooæoocooo«aaoe 0

oo*#'»eepj*vi^4»0^.i'rv>*>e»t>o*fwn#wwf.Mwm*vww*Nnm«M . : - . . . f _. T w r M . T •>••■ !. \

ODNtL» A. KADUNC. ,i . SIOA» SUIKA CUItdUsriUN All) lilAT IAAHSFCK At|«lYSIS FAUiSh a M

SIIHHCU KtAtiqx Ilf •'lîJlo",y, "UvPASl.FAC *ll.3u «•IIV«|H;N tHCRCV A .Ï2000. FREUUCNCV FAC • 200«000j ; ’ DLACKININ6.f Ac # :%,20 ) it ICE hn ' TtHP •iiEAiTurVi; sèitOlÀc iof iiiié : h 26 i • • Uiz r rf -"'Ô: Fuci IICAr GFN MO WTU

i . r

I- - B

X' f\} O I'# \ -.I £1 &!■ I# wen ^fc<'C^c v«»»Ke-fciô6i^w*ww#pi •‘ * 1 ■ .'••''' ' .(. ! { oww#^WkATK*» KPtiKX'KAV Ae»wuae wu o o»»c

cocoectrccwpcg?eoccccpoooe*»c »*»•••«••« • • • « • • • « ■ • * • • • • ’•«« J><.#toUyiWK»WWVWUiUKKNK>J«»K*f< ■■ ^ i ■ C I «»—* wviw.^**'N5wkf*ewm#W"W»«^OVN ./.k

. . . . M I.: «•«•«« *"4 ••••••'••••••••••••«• -*■>•?f:£' fS WC»«f »wf*VV \W t if f .f f *AW.3#.'wp UtorfM w^4Xw■ fcig a, •"■"tri.*.l i OO&OCœC^OOCCCCOOftiiiOOCSCCGCCtqS • ' WA&tf VMWf»%MRW#M*»»W»WiWW V W U*B viwV«tmwm ■' * ^ J ^ w»< J wwwwwNoe n - . -<» V.WC V .04 : * 3 J2£ ^ w/w»oR < f L ' i* M»»o«••••••••••«••••«•••••»•• ctf CWh»W . wws:uw4^.»»j/« vn- ^s»a— wvkw# f * f w e f ^ Sill- , ecoeeeeeeeosD opoeoccooooeooo f'ji • 4:4'K i^.^1 - I- m WWWU.WWWW* w w _ V.6r-0»^^0

I '«r* -1 • * * ^ew^wwiMMV*w»«ew**- hi" » i . •. w w ^ #vB0»^m<4vcrw>wO‘Qv^*M^^9CpA«»i£woe A e - .. ^ijuewoa^cvviwt^^wc* c

• '■ #*m#»maW#WWNA >’ • ' . »*eet«.e»»p«v^**«^Nfy>aaK'sceawK'^e^#«N^ *5.® ' M w»ee*w^wevico*^i*w*uieutNi»i;a#*»sw^ > r* I# « ■; ' CtoOeLtoFietowe»«wew*ww»«w*?»w*i^^'Ar r w £ m'T- # '<*

U'l \ ... ■ TTT'-I ■ 272

Jr. “ i/*' ‘ V /

■. •■•.■15- SaSfïSSSSSüSSKiSSSSSSSïSZL-SS. •.. :- '-’Sv-yr-SSSSSSaKSIfEfS!5:5-‘!iîT:2!SS3£SgS' r ‘ *k' *1 f

. w|«rf•vk/»9*fr-a««r-i.------— . ------i . jf>Fi^ow^«*ntieip.^» « . #1;uf. L«# . p»o«p»M»«nr«wer^p^^o»ci*«o^:

> ] " ooorcaeoin#wN»mm«kf —w#p"#*—e»#V"0. }. <^rr«r««n>e'^%e*r'5»e'a**r\rvy«>Mewtiw>w>i#w»AHWto*«»w>.<%i '»# 4, .«*»■■• « ^ ■ • '• • »• • .i» t «# ' f''» A * •■•I TL - > 3 'e^w»#i4C'><, . J ^ . ,f^7>OP>s«M ••. %< o'C l. fi,mi»'Ao»#Ofmw**»iÀaf-mm*\NC'Oi>—*#»:**' •«»••••••••••••»•■• •'• %•• * # # » * a‘ .•>

«g w *» . V " . >1 >. AKW»»a*\ciPO'f■•■V .. ; .L,..*.*.rsfTfc. «»! ■ ft- 5 -! J X — * .•^oooooacaocoecqgooccoooeooob c ~.f‘s s f t s ® < ^ J . oiNe»»» & ^ > .qi»i 5--fVsv,yj ^ — > -19rt OOOOCO*#**#»#*#'**.*#***&» ««*. •. • • . • • • » • ' < «*■. oci^ceooooi'4f*dr.wt*9>o«^N^••••• «la.vaaKttaai**.*» f f > rr-r^pc-^;- -;*.»:'.5--«^.i 'r‘ r-r?--'! 'Cf^dA.n—io^'-f««æoma'wm*'*!**»»*'» *eeiw«OiOC*we«we^«4$6fw»

. . fi »m,—m— - - - .m'rvMei»»Na4aiiMnmqwN.#f«ieoe'#«iwwwi4i^^o M & ••.••••■••••••••«••*••«••••«• \J £ e^»eiO»wW4e*4e^'>^»e«H«lO^#Wer*IW»*W»«t ■ l i i l 9S Sa «M«V f f a. ^ wm4fW1INNP##WNn#«WMNn«NN#vm«P#P#M -Ç. p-f;;L-.." â

t,.

- j 273

: 2 ^

:s^'"»pv •; x '+.»<*S*v;4fc^; S^iT-r -|N-:.

'.TjT :. ^ '•••»••«•••••••»••*•*••••*•*• . %%:3%!gs%3s;R3:^i%»;asK': ■ oaoag»»»

. a .«*I ..4«riwa»^#»Ft,vfwme'Aes»s.Nwi>vone»'i'•. ^ * ' ' £ A I I ,4 .1 I . w%r p«immmmm.nmo#'#:* 1^5- i io F%' '«•>•••••»•«••.»»’••£*••»•••••'•>•• rt:!; " T4AÎ o Z y M*#meoeor"»C"#«*»>f^T?'mao^9'mAmm ••trt a “a w a TA#»e«**l»eeraa#* o f N fN f -

;; ■w5 '^Jî2Si55S'ï:!:SSS£S2î?iSSS5i « w M m ' .; .- :,'....*i •,.*" .gp i > 00@3»>Tf3m»^0— , L, 38s;;rrsss'2s3ss5stîsï3ssss5ss ■ ■.

> »A»a-«i rpww*iN f @»oim o« • ' Vî'-'- :’■■’.■? » AOiwr f"0 «• ^ — ioj c ‘ ' ■ rg- ' «"T"^ ., . f ' V f ' . •4 :-* oeoaeooeoaoeo>docoo939eo0a9oe A NQA ^ a m w f —m #oMior»-r ' 4'.ri - j *» O A^mon mm "*»#*# 1 •.•*••*••••••«■•••••••■•••••** V -: '"j ! ■: 13 efem*>é«Ng»«dmOlAe*<*W^#»*'?2ss3:s3r;??c3n8• •»•••**••••••-«••••••■•■••••* **t#OWN-'NO-9<^A»A»>iAS»«— # 0#aawA^0> • ", wmNn#y.c.««**Om*'N'wo/M309J^Ammma 5 Is . '. in^vna/xeedo y 0>mnT‘n«*'e»>o^*A«># . • aiVA»^ea>y»*yoo0909ee—wwm* r . m^f f f y.f # refAf»Aw%v>nwww%iffwmA . s F: 0000000300000090009003000000" •ra^Omw'àO'Av»^• •«««••«•»• A r•■• owxo*wAiao»oea^*oo oam*p»«!»oa9**'AA*%94%^M#fmo)^A*m*""#'A ooo^O'^A^ AC^ a«* 0^9 Aao^ y'4^* , 03OO«*«0N/l«>amA««ty r/VAA0a0.'M>m>mim o o O 9 ^ » * A A A A 0 0 < a 0 00-000oaaoo>da .

a»«mmo/»m0^f f y-fty«9*y ausmo—"nm»*imLy y • Æ^s;s2i3;i7'Sï‘;sîü225.':5îA• •••••••••*<>••«•••••«••••*•* "*v.xA<.N9rn.‘nm^-‘An y^f rff# rf y. __

a^^^fmAoweayo ».v.*i«y A»mâeiO**4^'iw«y . < ywa'»'*m^w m0aa0^a ihaa >>> a ■y V^mOOOOOOOOUO 93 900 000003339 .•*•-••••••«•••••••••••••••*•• ■MOOaOQO a 00330030003003390000 .1.1% = 3 ■ ur ^ 4.*»..*, I -• •|... . -,. e y y#'Omii*ni%03»#«yOO^» A^«*i#fra0^mm> 3309"*y»oaayyy a oom*» ro^yo^N m 05^ 00900000** ■* "IN y w^ryvm • »•»••••*»•••••••'«»••••«•••«■. 0030003330300093000000909000

. •»• . I *...»•. >•» . • r. • J. myf0*rn f ff 0^0 A—n**30*» ^ rao . 'M3?»*#eOw** A0 A^*ye3 rO^> ON y-A 0 9»>m. 0».N>9• »•••••••*••••«• N»0 3>*N.^^ m9 Nw .#••••••••*•••v a 0 P 9"A ■* mm»A33^nAA^AAPfm0O3'*y 0 93m^33m y ^ >^Amofm0 A N 3 0 * 3 ^ m vj» O*xm0'ft«ma^^ o a**# « 0000AAAyy3f nit) An*H.m 3 i'l 2 * . ‘i. I.r- • r' if I- \ h i ; a 274

cvj N r• i x-'-i m@we»#\NNmopi#t# fsmicc M

I ;r^»^^»t#«î<>i«w.ce4wi*fe«3Nit

; f*»•••• Aoaaafcw »'^•••••«•••■••»• cvw.mw^c^«A'e#'4:v*wwf-of «••••• s£s:s?S5î5îS2aKSîS!rss5?.iSîs I. Kcrnt^m * M ■• "p" '.: f - r ? J*:/.. ,»• .,(. .^*1 • \ - P I1 - "I' •Î • «iMr»«r'.><'v«r.M4^««Af«cve«^t«s**cs'

.’ »et»<#Meef^r»*mf'#‘4isn«*w*ooec‘oc«> . .. eecoeocedeaeoooeeeeceoeoaooe*';■*.. I?;:';--!--.'. m— «f»N # »•••*«•».•••••• ••••••fW\OmOW\Nr*mp'mm# ••«•••«••< IÜ: V«rMfnp^#wo»«»0>» ' ««roocaeeeoosooooosooaaeaocao

mN

.ii w» »—c@cca@coo90oaoc@cccvcoocO"•>••• •.•••«•••• »••'»« ••• •• •• ••• ' ■^ooccsooaaaooooesoesQcaaaou [ . •: : I J lô--v‘.j v .. .;.;• j I -COocO""——"fW'iNiWMmmmmmmwwmm'f'f'f CaiwxfCn# f I soooceeoQOooeooeeeoooooaoeoc) 3 .' «%##e^me*ve"w.yaeo'OeNOw«#rw»r»*iMO»» p], : * w »"»eo»»ew>"^ewai«wn«r«r#mi^^w.w>*A»w*

r'r ■*^Éi»»#é%à^a»e«*w«in#a>îof c - V mw— wmm,—»..#,MN«>*,K%mKWN \3!" 'S .i; -\%., i: -'I ■ ■■'•.■-!.« • . '"' -4:.~ \ ui Ü . •. "*' r . I ■ :4: .' ■{ .1

S' ?" 275

'CO- N . '• 1% I'M:

i: -I.-;'

m i g ’ ^ . # # # •*•••«•••••••«•••••••••*•• '•• < J ANa#»^wfNwowA»Ayfm*m^m^fam*N r*-.^.irf;.-, :i-.. ' ja_ Aaa.-n.'wA-—iaO ^w%3«*wamwaAm«#aa '*«a-«aî9 tarn ra > « ^ f f nn^imrnnpwAtwmi'fmAPm# m -".I ■M. v:- -Ii "ji!.- o^yfp«#***»##$«*#*#####»*# aâcaw o^a » .N-AaaA9<* r Af a*'4»amAA#"w* A#*o f f —aN»^»*aa*«afA—3a*m*A* Z â - i::/i- ' b'-'

a*vw#tei#epaam^«i»ee»^.o. w « «* »^#a. a K» i M ^ »T? # ■ • • * • t-. • _ %'! '*‘'1 '■•'** •• .n.fw* y—a— a —fy»o/»r»a••«•«••••••••••••*••••••••*• fw»*Oaoa A#»paiw^c^MAam *« 6py o Mpf^avw"*ac444ada* ^:v«"00 E - % - . 1 dpesa^beOMooeoooooapoooo^o . . y.... yomrnm M#*iy - ■< ••«••••••••»••••••••*••••*•• ' e»»f.nm"AoO'r—'OiwAf f acm w»pm *#N"%^#A m,a'AW A.ffymeof.* *w^»fiNp@MM9w eao A^Aaf » f f f •##Asr*iiiww'yM.>tN*wN^<«»je»>nNW‘'*.N>ea A^eWAfy!WA*vm#mWW!VNWm,mwSMmiMA*MMN'V ' *> . r m#F ■ ’■ b Æ i .. ><9os9aeooeaooâ900eeQo«c>âcaad I ' omaN 3fw>a } s<*VAa«a.r<«^Ay«^5ynaAor9.n>*om. ... ^• Ayy*«rAAA.w»@a••«•«••««••••••a****»******'* aaa>^m »aaAS»^Am I , d - :1'--:.:| 'a#aa"A — @wm##—mma«a%aamoa3&N r a —a» : b 0 NAomWAmy—^amaaAAaapw —ggaoaS* , . «■AAAtfmAAAaAVIAAWtAiWWmA'AlAAWMAmao^N'awAjAm m wm • "I I ; ; f i c ï i % 5: SSS33;?115^2^2gS23^3S?^?"-i d v | > s Y - . ' E d . i ' v"»?wa##*»**«*«###*#*###'*»*#*#»*** Af «"-af^agkanyAawimamfONmpa* «wmapA o#* w ^ —aiAm ; - i <*«aBc O'»» A3IVA—pAfAn a^"9a@oi#N"v'Amm . aj^*9*w A ^r*^A A A AA A A A oaa o«*04A I i g t e

O f a»aa9^^aaA#*iw^AAA«»yma | l - l d 3 :?;:Srî:3"î?S3«5?SKC7«ï~ÏÎS'i ■■ i • ••••••••*••••••••••••«••••• . , i ■ -i'-v-.-t r;j::r#Pgag#;, L: . K d . .1 -I ^ .' r^apaoooaMpo^^aaoooaasoooaM* #*###»#*#»* •*• «••••••*•••»••• «033______da>>sa aQ9P03 aaao 3 aaooc aoa,_. : IKI-:'' h ' •» L s--;"!.-*- ’{’.«-■'••H •••-• W»r^' 1 ' • Ki.;v.-* •' I. •; i wo»#amy f y m*»aA. s y . - ' 4 9eo3«»**«*-^*r^N.^r o a 3 A«*A A pa>*>*•*.*» >a r rt «%« A>N r pn^tAw-No A «v*!*»* A f a>vAapyy.**s : g g : r A r^AAfAA y - 9 o n r> orAP" f ^a^m oM a«q.#s a^3>aa^»*»o3AnA»Ay^ w y aa.aaa.xin**o w-wN-WN • • ■ .••.! ’■ - i " I :1 . •••.., * 1 f - d il

, . n " g | L' •-■ \ I d I ' I •r*- ■•>. i r

':i-

car _ _ _

iw—«-e wf.—C' uf»—I—ao y a if y - • ‘Z-.4 ifif*uv«»is«r*icaï^'»«r*»wje:*,ein-#<»iiN^3J'C'w^#i^#>r">Af^.nMiwew»r»w#i«ewA#wew** • ^

' — S?,S£?aïSï55:S2aS5reï:SSS555îSX • ! ■ < c~— «. .u.-:'.,: o := 3o_ . i„ : . : ;.-.q. ■'•T. - ; -Zi

Kl M •••••«••*•*•»••••••■•*«•• ^ S .!&3 oc»>aw*»»«c*v»*^'Ot^crfn«»c>««'—@C.f*»cAa#»cn#'wiAMfe'ar^f"m— «A* -M'#:

5 3 $.; ' ‘j.-:..- = !• sssgsgssggsssssgssssssgsssss.-vU ..

ySSiwwîwwwx* •**• * tJ’ h - 'i -c i- ssssssassissssïissaïsssîïïsgs ' :v.;-r2■:-•.■ • 3 3 m » f^mm^wiiwvfwrwK#»—"*Coo • •* T« - t**- ■■*•{—••■-.■* • î ÎS-.3 — Nm*wNA#m;•■-.■? • ■ . • i • * ' v* .* *•« ' . • • 1-J . 2- --^rTs==== — =5=:==^=: ■ .:-; - --: r?- 277 I

• ••«••«•«••«•««••A#* ••* •««••• ïîtt«S^3SS5?«* f 5i«5iî2i?;î2.»S mom .WNMii'^oO Æ >y»»y•"—

O 'u fmmA^^rn##»90;wmwc«#wNmA.v3a ;,&' e jl fmN*"»A f " . ^ ■ - !g . u - j - ; 4:\;; ::'iZ4cS 5 8 3 @ r i Oo . •«••*««••*•••••«••••••••••*• • ' - ÎV •. .. -•••.•!•“•'- t •o z A f y j»a> g a S g l ^ ' ; «# ,. T. —fo.P'4f#Aaaw«#/w»'4mAf ■ .< ■ :-: ■ t’T-l '.." r A & C 5 3 ? S 3 $ ? % Z * Ô S r ' % s ' :,. ' ^ * @o'9ooa30@'3oo • • - y • A©«— •••5 ^ 2 4( ^ •••*•«••••«••••••••«••••••*• 3 .S AT»>>> A> f ‘ ' ' UlO 4k' A3» 3» f *6A f .; X I f * y . r . . . ..u..;.»- .: • < »" .393d003s900090e0e9930c»e0e0â0*^ • X »-#A3«»«f 4(e3Ao^Afy««#m»mNm#,avA^A#AA^ .. o •.. AA^mva.^A^'K'f "W-wAaAf AVOA •■ 3 o '«•*•••••••*•••«••••••'«••••*• .*»' a s , c AAAAAA» f»»* Af «*AA«,a » 3 .% •:-£ÆS- t o ; 0*AAAAA>» >0»A«»^'03iA*>*.'Ai*»9A*^'^5«O^A* Lr';.-} ' - ' ffffj

A«^«.N^A-vo^^oaaooe9aooâ03aao •,. ■ÎSÏ323CSS?>31î7ÎSÎ3Cj:3?î53:S !. l i t ^••«•«••«aoaoaaoo~^;~o •••••»• •••••**• , i,,, - ■ ■ •r.-53~^S55îj«j _Jr w»o*» ##«y — 7 f»J O 3300n990cec3 33003903033 OOOC^ ' T 5!!' S9««9».<4*|^OA A«4*y’^A.«W* 3A * 0 0 > A>n»<* . 3w fmA"mmA*mA##fAA#"m3WA0«iM ^ «••••■«•••••••A ••«•••••«•••••• aOOeeOOOC^^a>^^32**^30^^3^raAa . . 3a3t»0093S>>J^^*<^*iA iAA-03—*««v*> t r-f o 3 " 3 0 0 0 3 3 0 3 0 3 N m m f f AA»

5 5 . ,2 z ° r m, r r«r « a A An aa a AéA^vaaC a a «o 0. î*' •-J '52 t e f e x ^ ' ' #@f f 3*0»a««^#m3*v»^>^yw3 9«sa3daa3»> , n'«^xv«'yvx»«.>*-«33aa30a«adsoa3ooa .'4^90033• *>•«•••«•*'»«•••««»•«•••••••• «3^033330009900333003

; ;. r':r <.rV i: . ■:;..in :4,-- .Ajva üt"»v M * » 0 > «0 >o n 3a i S%ss3.%Ê'^Ê33S::C3?;;:c::sa:t:* * • •■• ••••»• »'• «••••**••••»*•• pJ 300 303 9 3 ^ 0 33903 333900333000 ...... -:U%.4 • .(

• 3 f " 0» f f a..#3N w^nw%#.4*.,y?» vn n*>a s N.« »* a a A —0 •' 3#m'#.yn'^f f 3 '#.* y A a^aa^a^anf «3aa*«>A> «nm rn>

2'!f

■■ ■I OOH*lp • j. SIOKEP'OplLEH'CUHailSIinN »M) liPH IR«tlSF.EH'«n«lY}li FIIDCRRH SIIRRfU tifVçiOK tu. ■•'11,00’. ■•i JipWESS IRC ■ ll.lK ACTIVA|IUn ENEKCY f lÿOII'j. ‘ FREOOeW y EEC 500000, . BlECRfMlHO f Ec’ « V ».'(lp sticf 1*1 à- ,'iEHE iiEÉr b n r sticE I l k iui iiHt • ifjo V ■ 'toi ’ ilfcAr OErj -Aao waIl #

t

iilii* i ' I

11:,^ • . • v. -i. • ,:V-. ---;&-Li.c.-:Z,L%L.'.J.EEwj.:."'A.. .. I k •r T CO 'y 279

î s f C ••••<•»•*«••««••■•••••'••*•ej»e#vww<*;?e# **• * * evw>'flivi»woo-A»«^i*w#»iA.«imvte#««f»«*r5 -r ea»«>o‘M>A^wt9««>o«*Nj»AfW9

{.V o-ft 9 fw a o<^«* f a«r^^A# f-o ^ -, “î > .

• •••*•••••••»••••*••»•**•••* ■*! o w 6rf*#*« a*«*> o«" * ra*» * r «»r«r^N^ACA>^«aA AaAaar»Aa>>!^^«9!^^^ 11 AA— 3m.>«^»^amm^Naam r»a

OommOmO»» iW# f A" m«w*a9kyM9 AM »«M>o Asa a C «ta XM«a S 9>M aao'voer***«4 na a «M O s m » a a T OA*M c• a•••*••*•«•«•*»••••••••• o NMo.’n>>ra A *A •■• * * . H' ■ -ii > V>MM»*AA«q^>‘AMa‘A^»'>^OA-A.y— yAAOWOe-"" o AA»»M«A*1fW».'e.'*w***M- ' ■■' ■•i' r- • . •' • !• rv*|r . .. f .«-î*? - v i T S ' ' p ' . ooâo9â»de^eeoeeû9obeoeodo«90 'S>««V4 :* ■ 4 ow>v»eMM»‘N#MNOer»0. rir-}r f « A M A O 0‘TOAMOM*>*M»irA«».A»^aMa^A«*Oa» • « f • r.'.:-T-..r*^*il': ■■•|.-ilî'*'*: .r*!•* 9>Ae909900oo909aâse'Ooooeeeooo'* «AO?»Ma« NAYW" o » « # f m s m a r ^ 9 M O O « - a o o 9 ^ f O o j o r % :• I’•'••••••«•••••••••••••*••*••** M AMwa^TNa#WQ f *)MS AON*» >09 » OAO'NfMOiwf A f W * » —MOmOT'^AAO"' • • » .» • .. I . . « 4 ■ '. « I S -.-ViM ;. 5 . I »' AIAw»i»>oeAM#AV>0>-A.M>M . »*••••••••••••••«••••«••«»•• „ -, N M f f > M f a i N N — »>-o*»> fa -M :— S 2 o f"T9 AO> % A>mor9rn*f AM*> 4 ^ .T . OOOM «M «>O 0O y»NNN**MA ■ ■ ; -I-.' I ■ i ^ % ^îWSsssî^üSn.iSîss.ïsp^^'anTsrs •; . i-'^: - \ 1 J ri . , : L - s y.. j.: . j:'- ' k'j: .4"'" '-' ■•î=r-4 ■■, ..i. ..- t. u ; ? : NA9f»f SP-^9VM*f >mAOm**TAOO> 0 «^*MA> * NS.M»M.NM«*ape>QQA>>»»^>oo»iao i .. i -rs- .-.Tf-y ÿ; ■ [■ooao-ao soooooooo oo oooo - ^

. triH #:» ^ w* owo f AA f M a > >m 0>MNA^MAI9

' . . . . !

• NMAutOM omMA fo* fiAoa>3ioa A ô ' o * » a i ** A*»*«» Na * M » 3 N M A«»o e vN -r'- -M• AN^f«fO*•«•«•••••••««•*••••'••**•** A'AOONm >wdAO f AA A .*»m O A m «I «>>•»« -> A«/> *4—90 aOM9wAOf > AOOWNf 9 9'AOM pm« 3« ‘3 0>* o^»o>aa>MaoaAA Af tm «vanwp?> 4NNNMf«W'«NV^.NNAiNA4NNNNM A :;. V ' I: - i ■■»• :T -": - -I I'--ui:' ■ »a^T! fifT %n33 fCA;; ■ W ■-UI . i Î'-M r-. 1 - . . • f:r - # 3 s 3 i -H' .. i-.' •■. • ■i*' !. : • . ’ i • • /■ ;280

. L ;».■■; /. .kT^i‘.-i .•-•■>|.;,i..=-.{...-’.ts:‘-- I ' i.^-. ..r^c.'k-f •-' m f%:" r K- y. ■■ ■; 'y»lv>=■•:.• • * *"#»# # »* * #* * # # * » » « ««# # # *«*# # ** k{jv^Tir%-:T-. ?;-f- ki-. -i ^ :::t e K i % ÿ w w A.f «»***»' *#»—c»a^rfi<^oy •

• •• ••«•• •«•*»*••••••'••«•••»• i's . P^5§î?5W.2K?SS5SS.S5;5^S3SS£S'

c,— «ewr— o ç v e eir«mmC -r.’;

% .. «câeoo'eoeodoœaeoeocee^oeevôg .o»* .. •,• i.' r ^ : • • ##**»?*#»# •••4 * m»-»e««#«>i<#w«Nérvi%eM‘4Hwre»c'Vi*'Ae»f*«'..*i»r œ v O# «»rx sf vw’ir< * ^ , • c - .«* * si- (r:irjru;(tfMniruo l ^ ü ÿ ^ S ô w o s i ' » ^ ? r»»^o^in’bÔ'5W U »»*— OfOmwii* - . . _ . . . . #**»#»** . ;»m^p f^^p»* =S3SiS^S:SJ?SSiSSSS105iS£2rSS'i;? "".

't>rorvn«%4f*>o««n«rww*seoAim■*■■ f«iu«ttîgcaig»»c»9>»o»»ooooc**. - f*coocaaocacoo»jcocoooc»w ■M«i4 , i vc-rrh' #4k44#»#»«4»#*4**4##»»4*44*»*% #i ••^oooooooooeo u

:*y mO«m»#ifN WdV ■ w Nim«*'.r«MDm*wnao^ te'-sT^v- #Nf4— Cf" r or*oom*>4*i#ië*Cf'*'fv\f*«cmwi*wcm«»o@.

•r •••'•.*»••

^mNM3i^.w» ,30-c«ywirt«iNy^a^ee'#«ewF»n »mf^«»>v»*#evtwwne‘iX4»idne»n«^^f*e • A • ."A*MMlW\*fi#VNNm*n*A#VNNM*m*A4f4N,r4NNWMW -i ■■: 1 '"%*..: f :.:'t.:

\ k-#;:' ■■ . 281

; o =f#:. N o t-T • # " r : hV>.-

■ •■• ••#••••••••••••«••*••«••••

gsssssssïsîsss?e* cmNTv* «%*#** ^lîssasîîsïss & \yr-}r^" *1Û3»e^«6 4 A# #wtm N.Nwe— 0 0 3 » » w» » » ^ "a - Irrfa^Z-.v •.

il ••«••••••••••«••••••««••••*• w x *f**^f^goaff^f^A*4mAAA*AO m "*r

*■« « « » • « « » • • OOfsrM*»ao o«^N^ 0MO*^s>rm««fA9«mAAms«04rm^mo ff r«^ eO'AN^NOO'ee^AmjyAm.NO y o ^ — o m — o K i î‘.:Vv.j. "3"'i OOj^ya^'AOf^fmf*mA'oaf*AAAo^:AAN ' % 000«*c» AO-»>«*O^.V'-Af" * S 2 oow«e»k»m-aAw*A*«o»mB f"Afw.%»#ao>a'aa am.. 04^^eA.r f# f V • J ■-■) *000000090000000 ooeaseeooMse * B i '-:*^y.»*T ; -.' i » oBf ocf «« V »’••«f.i.'..«« 9Kymo?v)»*^Af f m f»f ^w f m O » ^ 9 A U • * 4 • • « • *•• • • • • * • • • • • • • • • • • • « • • • • !. - i " .1 »C«am*o AA*:fw=mf**f"w0BmA*mN*30d'» rnmomoomaAAffmmmm^NNVNw^ : g : f ALAmmrng.VNM.^VNMATOftteM N»X \*A# ^N«WNAf\*m B:'^#wm4A«^wmww^M*iW <,«»NA##,wyA#AwwA,N»w • 7 t- -■ ,T'4 .- •>. OAOoooeooaoseooooeoooooooooo r«*-tt.î*' "I-. r'W M'-e^e»,r*A»3Siam>vr»wrA^»mr*oo«^wom a o AM xw o a > ^ g a m w w <« « o a vA * 7 --. »•• • • ••• •• • • • • • • • • • »• • • « « • «.•• • ::-W. »/ AmsA>Mx.'w»>A i ' * 1 S 9 ^ Aomo»Mi*>»Aa*Aa— 7 7 1 . fooaaN^Aac*oa«>>ffooooaoa""^ oovNewnmmmmewAmmMmet-Ami^r^iAr^ f mre nA#AWWWW\AlAAAA^WVA;aAA*AA*VAA«AA1AIAA ooaaeooobooooMOooaaoôoeoooo aO#Vf».ar»M«N#e »a X> A3 0M»A4mt^Ue»a'AÉ>«> • / W : •i- r. -i'.n* »-OM.m#*»»####*##»*####*#*# fom cm*fma»*A am ^ a & # s•••>♦• m o u i -a »OiMA»*AA»*«>*Anônm0MNm»NC->me90 ' :'k;4 -4 yw**m rxp»^ f mAONrnf Aa^^aaf^pyaao^ î-i I' AMOxw rf AAA:AaaaaAccaa a j w yx A A v y x x.xi^y h a «.x x x .x x n x x x n x x .^x x .♦J Ir.-i ■ r.*' ■■'* : a A-A a j>M o X a> >M > om o » a A«^o •• A.nm? saA'j*>>«Ma>>>saa o> a o o *-v «a ^ l à rne.jwaoM.'wm pA a m a o A a m x m TA B arO"^xm 1 - ‘ ;r* 4. .* r 4:4 •: v x xfXN.x.v'wxmmm m ::c ; • •• •*M •«•.,‘«i* « • • *• J

> o>>ÂMwmAaa>ONmAA.‘'vo>ovmAAomAM.r ! . fMi««30a«aa^7‘A7o>>>>-9aaooaoa"^ » i. ^ a o a o o o 9aaoaooaooa» "■■ "w->. oaoaoaoaaoooaa aaoeoaoaoaoao*» *i f.V -. • t 'T -i v . I.'.'.’ ..-=. a<"iO'a> wA*Mo;0OA7«*«'aa 9v > » a ^ a r *aa i - f #mOr*rm>—A>r*o s^OXAf M*v^#x*WN.mm.Aimwm rf A r Ar^«r «aaa*a*aa I-:. • • ••«••••.*••*««••*•»•••••• M i oooooooaaeooooaeaaooooeooaso

#arBAAf*aa^»»> AMfia A.'MN>-»ANa am# X A 9m.mc a.ma > a« f AA v * y J a A xwy*» n a xm * # nxy-omaafa 9 r r y v a x m mm ay sa a x a c m*s^A.voo a a «**o .a » oa AA AAa.AmmALX X v#-mw«ao a a » » N»#XXX^XAAXXm# vm#A#NXXXm#XNXX X X"" - i i r ‘ i->._vj '. ; . !.;. ' i ■.-h ■;î::- : r y H 3 •••••I •I •• ; :1 •j lilll s CM J'

"1 • W . 1 i ü

.i

1

9 l* n n in □«O-»— Z9"'Z99 '•* ouaoÜOIÜ /1 . .0000 * h , . — oi9*cooo w m m m '■i {•66«*ft2 Ol5.*§t9»9 ;• ; U99*0U)0 ...... •p.fii'i -1 ? 66» 6Z oo&'ooy»9 “ 'nooo )•; 00)0 •V.; •Zt»t Ü(H)U EPJÏÏ: >) 0000 •ï/‘ .SpiSSît:...- ttr-ï ’p i g ^ •0 m«o ODUO I r OUDO '000000>)U • n » « Àiidi >n\ i « avM 11)0 ivill . . «)tt) ICI) • ; ^ iuii 101 ’liil })W ; 1110 Ivjii ' .dH)i «I so n s .

àii't V )(i)'CiNiH!V7f-ia OO'IOOS > H i *0Naima*4 )9H)N? linU'AID* •u • 0*1 ss*dm . oo*« d tu tmlOfiB 0)0111 is . '(ifV -r '' ' 1. ' ’•fl. .K*«unai)'}isnvo» B3)sii»di i*.ii.< <«* wiiiMicmio oootn» w.*»nis ,<■ OiinayW * o irH o o 08: •• ' :. • . . • • v>;' .. . . ■ » # \

t . /• 285

&

* # $ * * # XHetWi*A*o<"**»f^*wfip #OF#es» - .•

"W l l W S I p l • «!«•« m’tà» # «.M*«- •»'

<1 iw< afxo*» • xJ #»# -*> ; • \ wJWMÛ'Sifl ei66i»*w4'.'X«< 1 .* i lit...... -.^XS’Sp.ïSïS - ... >.’ S I ••«!••«• •l«»««t«.*aM4 •■••«•••'•«••• •!• am4;g:aef«m#»#c j«P9f»MMDaONirAo&in "^-.NWac'ImvS'fa rm^w-a* rr* r»W S % ------p*mO»CkC 4 *»— w«Ojv^/vm4j— *iiA*

. . , ^ 09iiOeooudOQb<9eoee9oe>'ftTirAson14 _ . • .n«SMB^/t4rB-os«r*«vo>vi»0^9^AC9m<<#r«c ' r..' I# • «>• • • #«# • * *,*4 •••••• ala** #1 » • • ••• • ..

I ^-9éoiBet9<9ebe9cooè0o^eoceêeo» *—

! l f y y^o-CAfywcKXNornxw -f f » i/.f«y ftr^'Trtr vj*Arf»«cc f f <» f f f »f ff flpf "f «f . o«tMN ' ~ k 0 * •• à ' • • I .1 •• «I • i .*#*.' < n A SBOOCO^OCO' .- ÿ 5 —Nmnaay— *dwAa*«*exM»— * *, S tc * # *1* * * #1» * # #1» » * M* * 4 *'*' 4 * #1 4 * «^4l»*, » Q 00 0 € * 3^— ' ' I 4*NCm*mA*m ■ SKS23£2:32?S52SSS3252?2g?2gg- • ' 9O*""‘v^*'F*^#'Ai0v!»«wna y"Ay*#*we»«6eoo, • ••(«'•'*•«»•• 44 •!•«« *»•«••! •••4'•' 9 0 0 ^ 0 0 0 0 9oet3sc^tw»S‘S4- l E r i ooeooooooooosooe vx! i

Cr'39»40^— iL^dXXiLoCNm A"»?* ^ 03 ort 4*t«MVM.*

09'4*TW44A*, e #—»Ap«*U*X'*#OaX>»")^^IX ."i N3*o^«*ür4 0 - * » A e « A 4 4 3 -?!*»%* ir. 1 -1 3 0 Flf* A«"40,'40.'» O 4 4 4,4 4 * 414 4 4 4>4 4 * *•• 4 4 4,4 * * 4,4 4 4 4,4 ! ••; ■: 94*My A^ a b •^Caw^.xtS^tV^MC V 9"4\ 3 6 A A j‘yyy-A>>oeoa»f.*^>C''*9**y^«*^A-îO-c - ..44^«>o.3m« a4,x».4r4saœo*^ 9si*n I I . j. -• 1 •#«rwnr»‘nANN.N‘*tfM • f- - 4 Î ■■ • 1 I- ^ " w m k A o m o y o —M«MA.rw\le^« wAfvxIe 3>9 ^A*,A tr a 9^ a — ------ws#.4A«%'4#4 14.>*.V •* \ |: - .;• 5 - 21 284

;T -.I., t" L " . 'I.; • 1 :

■ “ r: (AC* e ww o M ^ c R> Ai ^ e •w'«o ^ ^ w o 7,3 -!#*'%# m i A!) 1 L ■ •*« # * » k W» •• • • V * « f • • « • » • ,. pi«iryNf»0 — ^w*--»C .V— W •œ :5 « I I I I I t I I wp»«*#y.*«%rs,ea •«i-** f .*^ -, rrTj

J‘*30C'5Ca‘9N*'^ 4.‘0^^r««l<*r.0 9 vMr4P.wi»^x^fj^ei*àMiv;f»«N , % , • • "i%A.is=-ir--:. » voif »«9i^ rfrfrjmC'ft'.ywr^rxs • 1.,/ .. k y - . -" o o e « o e o e e é c o ® ‘^w/'*^f“«sosf— «^«ctsgq^g***»»— ’Ov.xoe^/of* * • 9 ^9SP9 S ■> .*y » C f " I » ■ fS,NNNfW#N«W,f#fy# •• ■ . j ... r ?§SS£S2S£22SSS2S5S3Si2SgSSS2" C f M' A w O ' O K" • ••«•»%«*<*4lal •• »•«« »•'•••»« g'ç f I" 9‘»e>>4oai«»PBr>e«pM»f»co^oeooecoooeeooocaoe; •rcf'ftr 9 p»v^Ofl'*‘^w^#o*c*«Ae

r*««M#uif««KnSe «J*w it's • •■• ■•« ••• • » ••• • «• » • z o C r/&nimww>*nwin«\w\w%.,'a c «2 .'r/'! :.-.k::;i fNmcMiei»—«■»**— cai3»f • mfwwwNNmNNa,3cebooooeoocccc«oc p«aâooeacoaoeoaeQocewoooa«3aao ®;;:

«r..dV.r'‘ / ■* *•* • ••.*{. » ■|■'^'i •':' 'r~^'?“«“'23sg?.sssgs!:ss?3a2sxs r -' :.1 “* i r =&’[■-' ■ T~. ■ vg; ' •• ; 1 . K g t l l s \ 285

:. k. %

_ «iy*iiAOwiwnwfie,03'T '

— ■— - » a f — r A f ^o»p»w»

» 'Z'^moeooeoTforoea*— e I (A f a« ! » * (T *«f?e»e*<‘%Ve^^iew 6«r.»3^w’PΫ«*e M >*<^p4>**i|NWM^pe.0V'.'f PV^AllUiewWew, -VI:' ••«.is- • ssasssTrr-: • h-'vi;. -; - v •i'.i •>(..• Oeog>o>»«p>— »c>ffrp»»yp»<‘‘»gorf^'««b.*<‘. ‘«i‘.

. . ■.ecoeoeooogoeeeoeaoeooeaoeeoe- 4 ‘ •. e«sw&cf. ■ • {»« '.'C g,àg aK%m«nc - •* «W i". • v.nrti'#v«r*<0'fï<7>»v»T^we3»»ee'n'9f»f"*«» m I ^iT*5in'r«irfr*.' M 3 I • ' •. I. . . • •■ . . 1 . rjgTv'' - ■« I sooceeeeeoecoeeaeo^QCoeooeeaooeecoeeoceoeeseoeceeo^— .,.y . VIWIS - __ c e o»$) yr»ve*wii<»**^i'>n«r«#-r<»P'#«r«^ 'sSSî^Sa:S5SS3S?5?ti55SS225SÎBV-eVIVli N f * e * w » o @ — • •••••••••«•••«••••■••••a ••» • .vi:;---l ..; lU^ÿl^.y-1 v: ■ü.;-: i

•««*»—<000©SSaC.‘»OS9SOOOOOC03900—- oocoeaoeoQcaeoooooeeoaoeosdeo :: tis- i f i t i i i

@000C90— wNNNfw'«pwnmmmmm,f ^ a-:?' aosoceooaeoeoocooooeoooooooe . ^':S

iwee»'ne»»i»i«*e''^«pfww*r*ipH»# Ml «opa^e» ©<»«**«»> ««vo^« MiâSy Î286

'TT CO S- • •«»»•.•.•.••• •••• m m m m . w w • m m m ‘i_ • m c f ' •; i%L: ;• eeaioe^eowMtriw^vtcrHN^ e%îefw4#e»-'e«i*#»«'«r.ce^-e» T» » »» f ^ .• * .' ■ awweN. {.. s *» a, "* i u55i-

1.-V-W ' l#r- r '•"’■r ■ii • <&»*•»*'•••••.••■•••»■•••••'*••»•»• ,f . mm 4V*v*Xmre«c 4 iC'*t«c«r3 ma>^

■II* » .fmirccm^mv a^ N — a o^ w • .i .■: ' ‘|-y::i. e e a c c * ►<*•*«•* ’6 •*■ eoiT'T r. • 2 f^OCiftO'^.O»' r- • I'll i I f w # 3L! - Kp s y T T - i -L. -L4^ P:':t ' " i' * ■•f -. ! SSSgSS^5SSSSSSSS2SS?Sg£S2SS < 'W: A• ; »\, . e.flyee»w^Nrri.ytw.«»F^F*a> aitn#wc«^«» # # l "ri '•!,• caf—w' f ^ .' " : . o»ôooocToee^oooeaeodo'&a'

ï?S '. .ggSKSSSSSSSSSSKS^rSSgSgSSS4* n r ^ r ••> Z., ; ir^Mv*«r.nojf r ; oÔ9oec3bedêdecàeoe:iôeeâœebaô' Y- •2 ^f! ■ s,5sss:s25â£5s52issss?sr::sss:-; %i

3er«Nf*i^<*y>Oir-*»w^w>eeFVfw^#»e'Se»9S *.. o f «mw^>awv>M»»ww»AA«\y>,aao»; a y>)«gra«»»- . . m «•••■•#N«^i'i'N»••«• >4 ;• •t. ** * : & i ' .-.K. =1:

-t—coeoseeoenaooooca3e»eaeo«—###*#* »##*######«*»########* *• ! f^ooiaooooeooooooooaacaooeaaco. - j •sra -u* Is; # • -is} .'S-vf ~1 f w w K »* ^ 0 ’Om<9e**w6# se 9M/y**#N o 5 >9f«C9f*v**«#^.^Tt9y^*eina««A - I ;;î ‘eof'»e-v*e«npiw»w>^<^*fwA09«’'cr"«Ae«*«rO'e> *. •■ ••muvvHacser^^HtOvS.vAirttr •r«ri*Mi<*v.'>*y>iAi**o ' 'a. r q i S • ■ ® - 4 r : )s1 : il!' yf=-! :-!- -1 .-f ■\ .. T • • £ .187

"T1 U) " n-.t.-rl-'r-.U; .-00 ' rïr,-.| r4k-: m i N O #Wfw»o*wf— Awf.niO'f" ,l..-. ,. fwwf * --- m*«*w%cewk6#m#» •, o — f i O^»»— u O « - ...... _ _ _ 1 R e i w ' K\Q»moM9»#*\»;fm,-w*«e.AiA»^m;3yi ...

r noe»a'»»e*^^^« 6<*w-A«r-f ««/^mir.-ie.riirK*.*..' S- * ?;?:>.. :f::ü:|r;:'.6Tm

-: • iv-vt'•• • « • •• « *■.""■si;---;:;- * •'• •• • • • • • * •;;rv- • • • * •Lrr.i. ••« ' i»rw#»iwiMi6»>»>e 6iC*.6*<‘»f**®Sw*# rCOir.w •o ,w .<30 ^iT.CWtf C*0 «* - iiwiw — II 1 J 1 . .J . -ii. '" ."fW. ::T , SSSS22SS=S2S5§g2£5S;£SS?S§aS2 • »r»w**epeetre^q- mf < .f r-**r -r/:i • swr.oÔ^eO »»ie«fsv*w#Niwsewî«r«Npevr»f**fl‘p»'oe^«<'— c >o*«>»'' . ." ' A G f • ,. • • «.* ••• ••• ••• • •• ••• •.• •• • • • • • I CO Q i imi«nrwmm*f'#in;A'e.JP*^G*» q QT >i^.r .r j ; >4

oooooi^ccaeccooscoocooocaGOdo "» r. ooosooee^SSègSgSSSggëgSgSgâgâÊSSSi-SSS.-.lmmm.» *« ,QcooGoecsooqgçoosgQce^GCcqoc - , »5 2S'jsïS3’:iEî;3?ï£dsss.?;s?:!?5S' "'{ n^owiTFwg^ A'Aw w 4iO... - -1" fveoco»oooooeaaooaaaoaossoooo i -.Àvr ' 4 - .}%! : W 'J:-:. : : d a . :T ^ itvi u m m ^ * fifwm ift«0«o '■ Âôôëcâaôêôcaeboqeeeeoooeooco

Oimwmw)^i#iAm A ft* G**A**m.r 0"tef^«f*itii'< •30.ff*w^i^«wi#^w#rvi.a4V.6»flr • •«•••••«••••••••••••a ad»*** .'.L-IT'-" ■-■ • V! ' rc*f 9'ey:'ococ'030o— **4*'

§: Ü • :■'■ :< i . '■^ ii.Tr- \ ==#='...4^' 8 8

•I®:' /j.

*******»*«»»#«*# ''•«‘tr.-s. ( ; ■:sss2------’Of*o

# p »«»»* * * * »#.» »» * * * » » # **'*#'&

..ev^*0 «r.z»e^*«6 JiC««*'*MMw^^(^viaf^«ynOFMA«riroWf^.'w«.>> aw^moK-o/

;•• V- !> ,-P'

ottae*^<^u*09cr'

» I aocwi'^#C*f^'rww»mwiA#w#wmcmp|,*^4»f

eoeoeeace^oeoereaooecceceac*^ .§! = • t ••••*•••••«••••••••••••••• [ ' ;t“F l

* '! • ( • • I .« r « #w * * ^ « * L' aeoeo<^9ec3oecooaeooooesooeee j

** «*#*#*** *# ## #*#****$ *** # *# i 5i-.. IrirF:! oaoooôootfôedoeooed'ooo< 3è o o c o c .’ ‘ «i9«ireao3«h>rMifMi'«»«M>i"><4C-û‘nv ‘S*>«v<«2> f y»»|>«»#i»rweefw9>fni»o^ai

« S?C3S3?!nS3g:22::%25: ## »# »»##*#»* #*«.« »** *# # *# *#*»*» — . eCCii— III»'— <■■■■■■■' ■ ' I '.VNf"A»fWNf -

u K>eri-rw»*'«rdre«Dûw4it,rof»«w<5^f^in«#sw‘. i ]# L . j X op*f>#»B9B'9S}»B7>>»c<'?0e‘^ocoooac«* — p>9ooo89-sceesae aaeocai ■ ■ ' — » • T'w ■■■•■' ■ r -h i} ' I oocooocjcaooaaoacacooogtfoofeo r-..yi -•■ i^ r ka^.:.p;:;t ' f X - C ,Vt " ' • **' •’'“ » ...

s. ..m# " w « w v y m N ( v m m m m m m # w r«*f . ^ M • « •<• ••*««••%«>•»«•«••««»««»•» G [S' oooooooeaoooooooeoocaoecsoao 'B •p'-zf ••■-■• v.r-r. w ^ æ e e > « r # »Bin AaNma«.,o»# K ot* eciA-*»e*niAi#VIWK#WWif#WW

\ 1

3:,. ' « 87 pONtLD «. K«UUMC sta K E n ’apiLC» CdHiiusiiuM »«>. iif«i..tBV'5ffK''H A p y sis PRor.p»H .

''lllRKtU i.eÀciùh Itl BYPASS PAC • 0.30 ACtlVAfiÙif ÇtlERGY f 3J0UII. ; pREOUf.NCY. FÂC p bLACKCMINC • .2;on itiGE ito lEHP; ;HEAT Ulti SLICE )IM£ 101 M H i , FUEL .M£AT CbN k a o .w a U w. ÇyNW‘HAlL 34399,990 . 90DO,&00 *rfl9000000VV

'■< !’■

ï ’"•lis 9B49i* oj.Hsjpi I2ÎS A94.1I0

t 1

-r;:

,-r \o0 3 2.7 - 290

-rw'.'.it*:-^.l-,.-«.'l •• • ;.i: r-^.*«r. .*.

I'*o«giner^«iwo«6*y*#G»*K»*«*#«»‘N#nc«A*oiA .j

. _ . C.7JI #, m ;« ;- • • ^ a . :o#w*

• . ^C'Z: 0ecam."9^ef.V'C,\ec#;«M(*m»e'mNC'f .i • ■a t ' : : 'm ; 0’0«rg^^«c •• f (A OCCC f CiA* »"f W9 C^eO«* I : -• ;. .*' K;^'ss2ss%i%;SA:;;n:=a;F^'""'^ '- • ' rv.'-.4 ;•■'■!-V --

'•:!

..S?SSS2SS5gSgSSggSg2SSSSSSgS?.'V--;‘." # ••• #»###*#*»********»*******#(«. »^«iC*i»F»*»«Tir,^%rg*^eOOCOi>C<*>»o«y •• ♦ • o«c^<*H*«cco>fKtr«W‘tft/"{ ; mfwfwwvAwwvN/^r*m*WmMwNMfi*Nf^#m*n»riif'w>«n6 •.. .».•.. I • I • P . -4 . I . -1 %eaaoocooaocaaaooeooQoocooooa ■ f*#* eerw*i»»»«e»nv»r'«i*wO»»ir.xw'Te ^e-ee? • » 0 » » i « # % ^ . # O ^ o w < 3 * a ‘r-'nin4'.to«fnnfe<%«#v'' • »#.#«# •• * • * • # • • • ##**»»## •••!>■•• a I. @*

• *«iwwv"«m*wwiifwwie«ftiOiW

y»*mcyao@ec :!g f » O C O O O O C O g O « S O O C O O O O J « ii«' i«r

— *w»*mKwNnmmm#nm

o 'X —wmmws— ». * • 3 ’S.-» =^#»ocGO(f ; «■• -.• -i -■.!■.■•■ ; i ■:• ' ,;î- mWWVMWNMfwwV :i

C.CJ ------' ------r-r.— ‘— ; \i \

I *. KAInitlC ■ SIOKtH'KOIir.H CIlKI.llSlluri IHAMJFEK «MAIY&IS f i i q ç h a h

SimREO REtciOH III .15.00 ; -BVPASi M t . 0.50, ACIIV5II1!H lN'RC|r. . 320001. L _, -----

-siicÊ-Hô ■ lEMP/Tmi ûni mirikHr,ui-.nMr"- - i,M - - o? . HtAi. C C N / RAO WALL coov w^i^ • ■-•. X f=' f c p

« É i* 4:;. ' ; I

I:- Î -V ! ». < I- m SSBs^M SSSSM Bi

I;

I’ ■* • • ' ■• ».■■*■■'■• -i' * »;i • . *1^; • - . ‘ ' I * .

. r % D: DONALD A. KAWJNC . SIOKcR. BOILEH CUH1IU51 lUH âfjU |i'jA| rF^AhlFEB ANALYSIS HAOCAAM ' .* ... ! \ //f' . -*.1- '1*. ' 90

SIIHH^U KLACIOH 111 «.13,00 . ' UY1*«S$ fAC - G.iQ «CfIVAYIÜN ANIACV # jOOOni fAEtflBNCV F a Ç >’«*«••»•/; ' ülÂC(|fN|iiq «' 2^00 {% SLICE NO " l&M/ iieÂI uilL SLICE llrtt 101 1IHÉ 1120 <0? * *0? FUEL HFAY.HGCN ' RAD WAL&T WAIL 2447,023d2»S6A ■ II.1X9 * n.9a9 9 * XflO X AA 1 «x

).5A» 5275 510.Ù56 O.OA4 34Ydn*tuo: 0.8? 4994681 25 30, .! 466529 :îiï ÎI ■ 36 A 4 . AAoipn

0 .4 3 Ü.Ü9Î... 0286 9993

j'■■A n

A: rÎ ( ^ .. i »*n.‘

J'. r v I ...Z;*L#2 fxl.'é*«l,iA ùixiALl t m S* .

s t\) :y" s> . 293

/ - t o

'cy&3% iït![/.XiA:

M ff AO U B k m W * ^ U4^;rf4* 3ur te/»w»auN%»*M5.f%^~>*

iSJS?.rcCCPW^^Nme"#"*»

mf' jL:cyi*»inv\Ann/i Aftir^ oA'AAmiAA A.AM r ^f^ivfWvN*»Nmimrsh4(VW.M|ywNNf*:w*m^w«vNN \ i-sr. ' 9cecoêooooaossà&sco^'»ccooe 6 ‘V''

t • • • < » • • •!• • • »l# • • • • • • • «•• • • #«* • • •>«• •JÎ > : ".f If & %» » w s a r N m A« ^ a ^ C B —

ul f9A€\p>»p^y»^>f»py>»»»»»»^>^> J % ff f ff & f f f *f r-f fwr f r r*f . 1 mv'A*W1imimM%M&AA«»A«1imV\T%A|A'AAf^^*M%^ ' J aeob^oea0eco9<9ÔBes9eeoeeeoôe ■* sB^mw% ACf < f < y f y«*N»0p"^@90f .' g • ■ •(• • • •!» « • •■• • • «I* # $ •<• • •«>• • • •••> SI■sj yye»i#ii»ei>*»*ipw.« fc o » » Z"»e"Y» •»A*>

£i •s^«i»aBiiur9M«oo>o9»b*^r>0»oeau>9Q><3w «•I — ^ a D 0 90 p c 3 i a f t o a o ^ a 3 a o ^ ^ * i ■■' ^ i**-^ I 99SU««OSpa90D0a0H* * #1»* # #1» # # *1* * « *1# SaoOCifiOB* * #1* # *"*1# 9000* * *1*'"' • i - W mABiff AtOn'ANAwN rrN«gywN*»'f AhnAfm«»»um nBf"9y"9P—N i- •. M W M W s f *< \r e t a a on • « • «!•<• • •!• • * ». » * *••• • • •<• •*• »f» ••••••* ^ 9PaDoei9ao9aeoaoaa990oooo9v9

» m o c n « f A O ANCffA^yiA— i f ~ y ' 4 3P».f yiA«"#».« a ^ 7 ON*p<»f»'Oa*».*>« w^f»9««^u f«»^9*»J*? ^ - • « *1# # ••(• • • «>• «*é «I» * • «•• • • <■• • * ••• ; *«i*-4M>oaAia9**-A9«»A rfc»‘>x"'9 » ' ^ A M 9«*9»' I f 99IAOO«^ A»*a AN ^ f Aw # A.AU tr AlArwrfNNMNNNNNPmfNNAKWNNNNNPfNNNwj 0M«A 1 1 p*CA*%f4NMNM ■■*^0^09» . ' \ , . P . I •{• .to mlf nl o i - B y p i A N m l f % Î9if

.4 ; ■ !f% . f .-.'i • •♦•••••■•••te** ÿ . ' :.' M XI aoi-jn^o I > i» r i^f. _ _ _ ; r ’

.% . r ##«*# * j # e **-* W m—fVM^a*) AWWa'VTA^ • u <•• .-*ef>e-a-.*ia iwss— •V'. ~- 1 - .;. •~ r— w^r^A Jw f --* ■••J -- - ^ . . Trrrr"TR- : •! ■?■.

21 C C 5C O f w « wi c3aC3 4c#— f Nma AU Nac »6 A.; fp» ►r.*'-*: ; SwCfMO'f f f » 4 A A W /-1WST4r.«‘ T .: • -T. ■

a&.ua«a>s u Kr.Y:|: , r . a c æ « p f A • . •* •'

z, .• • i acssâe3eeoenesc.eca9eeo9eascD ^ I f f re«eA3iaf*»»c"#"Com*»a^w n omwn.^amN -V-. M s *#^***«»*#*#»*# *«»*#* #«4*#.*«*##«*''.. M^tmcr^O'^.e4 .Ü f-f"kA

I aoCbooaocdcaaocDoesooatfoacoo .'.•*• 1 — .6s;.^^Lc4.cf ,-rNym»— a#"'"»ia=m35fA ’£m M » s u d < r f SiAT. f 6 W N «0 > C «.* t * # **e# *W « * #*«« * 4».#* 4 #1# # *«i# 4 * M». Mt 9 >«rtr^<*w>^OAciM«a9N^frio.*»s»9a«ÿMoOrwr^«Af AA'A nc:o««OiC «c .* | wl <»nkTT>> » y» r ; " ; 9 * 3 m i f * f 0 ^ firf er r r f r »f r # rtf f y T«y • j «tA^A^ntt>|AAAA«VC>,rr.*W>A-A-AtAnA A^/MWtlA* ■ -•■■■ . ' ?S 5 ë ? S f 3 ? S 2 b l s h §.3b22?SS23fe ; -'• M r >••:;■■ i f y»«,"N4^.r»Am«4a^fo»cc r**#»o.egm#w"Ae. . r y 3* 4 4 4 * * #. 4.414 4 4 4*44*4144 #4» 4 # #4»44 4 *'»-« !* "w, ' » f » f ma "4^*rA a^ * ^ t T = a » » * » o @ o 3 B " .• * n f4mk\*%4:^4-8.;g;o«Q*«ea««8m*A3P ..*.1 ■ m ■ ;' • .- I •w4;iNiW1'>4Wef*INNf>irW.'*v*.NeoN#»v«^é»N>4»re«ie«wtca?«>mrwwwfn’1 *1 ) .• • ..3 4 ^1 .aA&44**4%*r>.\w^a«^9*M* m » 4 4 444 4 * 414 4 4 ••* 4 4 #1444 *'44* 4*4 4 » •>• • ■•' " •: , -n 3 s a * « i — 4 » w w M » i * — ■T4Nff4»itv««4>4.>^.‘4«*i!nin •■ ■ V •?. 4 K l. / 'ttit .'•w4*mow'iir.>«»e»‘-Ms<-ii»'n.'^»e4**«nA4i»^■"'* - ■- - '• ; Cl ^>?>vai4acoO'J«* ^ .’■^•acoœoaaa paaou j s jo» ' * •M # 4 414 4 # 4*4 4 *.«*• 4 4.414 » * 414 ■ 4.4,4 * *'*'* eJsoooepoocoosapcaaua&aeasap

: •■■V* :'^i' {'- * » «K < rmm AA f N44aalw «il «nAao*M%*4»^4, f^*).^8if3aT4 4*1 . ' " r-* rv«/*r j>*rAAAA W> 44 4«4*4 4l*4#4,**4 4«4 4#4l4#4#,44**l4 aoooaoDoaao-aoaoaaoeaasB " ".:

; 44»*^^44'*a*p*.*.«r ^If e ^*>t* li^Aa* 0% m A f »a m 3 A , » w ^ p .M*a Asi^ ù.mvf ““■““ -aaA A r y*f i.wN**»*, i * i w a a w ^ I.-- -I L.-,-.-| ■. - *

5-= Z '■ -' -T :■ ];■., u . / f 9 5

'. j w/ mmmm m#mO#»f »A'*00«?W\*"NW\^^f OO | '» ""W • •#ie#^#-«i;^#«-iiiO»ooay»>»>eew

I. ->A»*»»»wtt.n.'vw.#0«-%§s?=%% -r4 ' • &<«■».«»—I ~~w« —^ ^#3 A# «AomV##" # #^ *»»»^in«wp« »a^ G<^ferwrw o* ^ * ! ' "» 'Ai}*t:* A^A^V%f««m'N5* > Ht IV::?£:rÆi2:;ir:?r^*j&rjî^s£ O W >^.f T^-fT J' t .. W i » •-•^^SSSisïSÆîôJS^SîSSSSiiîîSSS •; ■?«-*:sssS23 •■!.■ k#:r::N

" acOOCOWOCak.c^wQf.ociÿ'sf ■>

.y Ik y '*' I L:. /.j T ::k'% ooeeoecooeiseoeoocosoeoeeooeo I If m# # r * ; o « # # ! ■ #Fww»er^nn^»*eewn»e**«<'«o«'*#w33»'>^. •. V. wC 29 h# - » #f # •'«.«« ••* ••• « •• •« • » * •• * '•• ■ •• • •'• •!J , • o ■• >»#ie*"»e>*N» •<•«••«•• • * • • • • > • • • . * • • » • ! • • it •gOO«**— "«f *»C*W f at*f*WAT«OV— 60» • * ■ }• — »co«P*^y** • j d m a r:-a- açi l'ww'f <# A a'oco«oeoococMrf*-yvf»'rw • •.«•••!•«•«•••»•••••••••• «i ••••>•«'«* 3f»ooo90«»o*tm«of^4\ioo <*#«*''•• coc— aawo -cafe^f»f*fyif ^"-9 * ; r oaf* {. a9oaeoeao^*^«*'*^'yv r ^«nnA‘

9>’0« « ôjMT >£.^C SA«tC4»«4tb«««U>^i^ m*^N ^«Mtvk«40009ooooaooaaooooo J

« W. OOOOa900eOC‘939«'**«w^4?NIN.'i#^M'^ ' ' W ' . # a i » «L • *1 • • • • • •*••'•<••• ••• •^ «••••«■•• •«as odoosoeooooaoeoaaaooaoeodeas • •.

r . / w f ). y - a w * 1 . -, *•• I J*aa9?«AJBW>*»-9flT‘'*a'a9*9*^**a*nB9>3«*4C ., • X & •••»•••««•• •••••••••••••••4«l«*a4a *4 I « 1/ vi .-..k:?..r.' ' _ * c *>«— :"4 i 3do*m«#M^c mrrnrm-Apia'B.irka^vMdm^df . * « a # q # d d » ^ w . » ^ V Ud d J AAA41f fiyfinmN#* I II I T.,[■• y ! r -**.• f - • !•---| ■ •f r"*2Sî2S££2228 ZC««5 ! • ' • ■*. ..)

1.3 A'N#:*' 996

/ «il \ : \ . v”-;'! r*'"-' %.:Y

W C « e ■■-.v-K?'''3': AW1V » • #«#MO > e«MA>'. wt^c xa »

4Hw^*60a**t<»zO'f*rminfw^)n^fiO— C f'cm» a o — ^ o fc— ■ • , «iW»f»«<»».»w«n«L4^'X<'nwrw»y*— iCCiN*o*a 6< '!

H L :.

»•*«••«•••••«••••••••'•»•»••*•'••* a*a*iA'^C»f m nC R m o a ■ ■ wi» > T » 6 e 4 w »w «r*ifkm^c ^ e C " « " —

• ; p f :*j -•• '•• iïii ooesooesoeaeeeae^aeeoooooee» fwxrwtoowvt*—"••Nasp^'TfviMVOsyiMme** • -.i l-Ë-SS f«f *» *«»:'*mfw o a a ^ ^ c , * ^ / > f f f f f f «f f ' ?" e*i0^wr«#wA

*#»#*» «(##*#!## *#)##»#»**#»****»"* ooxxu»"— » « « N , A N m v t z a r % !-!.. -iV^^lîîîîSSîîSÎSSgSSSSSpgS A.»omw» ,c«aNmf jS25æ5S'?g2i?2i?S2S222Sâ2SSS§ %?: ■ ••A«* ••*•••••*•«••* » • » • • • • • • • ' • • • « >1 ;- iii :>^»axmyv>vînr*. • æ />*• a * ^ QCO.xoo*r^ oav**: 6g f CSOS«sr*M«r o«of fif AAAC«^ 6« < 2=££.^ÎX35S5^/«4t^«i«5îSÆ«S« -;■1 • «.*••».*.<*»>«>»«A^r ■■••o f m A w5?*oCiX^«?*ftC5*a?S3!v«/5?.Ssoj V • ••» • • •«• • • ••• • • • • • • •’• ♦ • ••• • • •••■* I «m I-I m p.^ . l j l t ^ c *Mxn<«oaoaaQowaoo«j3‘3ocMaoeoao*» ; Aaüiooao^ooAoa&uoaaoaaa p o o ^ o a I t l /••-: i- • -k-'"'': j -'-T .- r .' . -•:>.p .- . l» ■'5-. ; . »a Q « m . . ,«J • go o o " » f M s s o s o a o o I 'I I fwx 'a.*>» 'aaoaoooooaQ«»oaaca9ooaaoaaaoa »•»%«• «t* »««v« •• #. » • •••• • ••■•■•• •>• A i l *»>?f o— lAtf >* c g cn m N f aA«»D— o^ o ^ r f g ! " f "A y%.f— — V f a *» fAv?» oaf.a r tw-co="»-»f ""*^o f A f « • « • * *«• • a #«# * * 6•■• • • ••• »»*■»•* •'• •■ «\!#nmf i) .naw«»*3x^A<^« vroa •SAOm ^» O **»\A A Af»f t «*#*yWN^XNNNNP«N#l«#WA*'fWNN"#NNN

w«V^mwXNfwww

['a :7 297

! ^ V x M l #

• *■’••••«■• •■•<•>•« • •»» «>•'•<« # # »* ‘ ' = « i « «a^'f fANp^o*ofs#C«wr»* '• V>i>W*0 #U‘« 0<«N»#We«VwO

'.. y-.-' '. Ks;3sss53;ssrs5rs5ssissi;s5iss:-4^i.a<— fwof^afaw"" c i A w * m w o * % ^ i* I. — -34»we4aAd^'çnj»ier.'we#«^'i'«y WAwfi'vre .«.*' ### •iv ##

• o^o-A««Ka^>A/k9>«xvtv>M^ea>'>«o» &—ocwa^— ' Q>407‘‘n*C«a3dnC < A

. z&9 f*f>*.%n V-. • f ------, _ _••: !=:r :'i-. -..p /-^ ! eoeocoDeaozezeisoseaeoeecooeo' i oCi"**m*eA"i"w)M*«fvicoft:Aim *«sioira«n«t«r •'w : « '* *'; K » i S ••« •»»«*•••••• cwiwwmf ll f f *f #» f »iw*w"0C30a»a» — î f ® 0^m«wm»mr#rm»N*^NA,Nn#m#Nm#fMNe##wu^ N4» - a »b o @ o 6 eaoucocôoco» 6o o M C o ê o ^ > g o — . A * 0 0 n« # a ^ ^ & N W '#*«##**«#**#'#*##,#*#««##»####»*$ ^ 0 A«r»»weAy^^9‘*wAFt*n#»>.rt>*»A»omv%*»e NiAO— Aa»'^C9»»e»COOOO#* % Z ' n«MMAIAA-A«1l^iAV«ln-AAAinW14WHA«HA»* I c> w a »v »i * # s » o ^ e A • •«•••••«••^* •••• •• •• •••§•••»•••« —^"w3PM^aaN*Nav»«f o aa^'Amtf a. ■«•■■•“ '- ' *vf — •* eof J A « A A A — mrnN*^#fVNNf*m#WNmiNNfWNr*m*UWM'###W «#NN^ f r^i^tooyAw^AOAr^^^aoiM AA —iw^f wxity. A M —avi!AO«a f w»o»*«^A j^ N ^ g o »^ y yy >» • • • ••• •*• nir«r#f# • AAP"Cf'^m»«^AAf& *, # # ••.« •••«• AAf»W»• ••••* ■A AaA««»« AAA

S ‘.b »4U • I'"‘ AA**«M*a—1A«$iA*>*»WW#W1A'*»AOmr^ *1 e> o wi Alt A e > o •»Ai#*seo Ar3r ~ jM^oooe aoao3sac»aa3oaoacao«»< . d . : 'k'A'

A m • \ ■■■ 1 'Æ 3A.vA%3A'^mkA.n&NA:^»#*,ww.t#w . ao^eym#A^iy— 'mA«»'y"#^wAAyMay^«^^AA AA 1 3B030*****NfVA«W*yi*l AMmm.lA AA f f A f • ••• »•••• • « ••! 4 • «>• • • 4l« # • «•» • 4 •># 4 =i y A3 A;»Aem4*A«A,A Ami^.'» rN — pmA ^ A A aty-A « f>e»r*AKt A - A ^ A ^ » w q 4><«%"J» y*»e«\iN«>A"*A . > ^ « a >3 V * > ^ A A A A«>A f A f fV«% AN W 4 — — ». # f § . k - - I ;■■■ -.-I • L: .■ wAa-»^mA«A#»e . •i;A-r • ' "E7Î — ------1;..* .•.:i i i i ?Î3 ® 293

:.W:

».-T- ..*V»* ••»••• •••‘•• « • V * •• * • • • • r*i* -

1 •J 5 • ao»o<^'TJ>*' ■ . ^ md »f*fV

AX»»#e*"*ve«iinw*oe^*A». .f »**f^.‘Nw « w c a o T ‘> e > » « s e « • - M j m*fmNw^N4wwwN.*f*f*pwwvvwNwvm#^«#mwvf^ :l. C * 't ooboaôôeocaceoaoco 6e a ô 6e @ c 6e\']f C ^ ?^SS2SS2233ggSSS§£SfS?SS^S&.-..-j ' - ■ 3 _ O’OJ* yO»0-»" -neomff—WNNNMA# ! •• & * 'J . m^#\#ww'if/rAAnvMnw*A'AJW)i^AdvnAft^A#\ . iy. . : .11 i^iiiiiÉssSiia^sÉlisiiia' ■ #: tm M. X~X**w,>«N««OV«N#.'»>we* rOwweAI.VW*F\«*^»i«‘i * ,.-a .-wn«v»«eH*'r ci^'^^ww-^AO^^ye-wNM .. t X ■ •" "^MwwN .. > ^ M to • ••« « * #le • • •'• • • ■'• • • ••• * •'••• • • #1# « % '' < 'If 3 aæ9oop9>ooa^a'aoeooaooo«âaoa«‘‘

;. to [ Amn3.ùegNZNaO«"4«pf # 2 , k •■•.• • * «•• • « #.« * • *>• • » •>•■• • •■* • • «■• « ". ■ I J z *>0 ».v^NW r—f ■ v . \ Z ' f to•«*e*>'<>»to*»iiM

■ » « î »

• » •<« OCOO^fy*;— .•', • • » fwf'fomt5Amc m e m y p - . . • . ' O . » / * m f y ’. < » .«94B4a»rpv«in.'x.rNce<*o*rnteso^»»g»n»«oT<— — “ - a #

**» # •«••••••.• ' #.*e«»**ifK«e»wer.mtiW.r»d'*x*ih» Mka»#* . 0 • >C9 •«^S90’mO«49>« ».*.•’«'.> ' .r*C*»e*weAI r c f .*. * t 6 ». ## #@ . _ _ o {- «.H. ... % -Z # # 9 - -h#'

•i u < fua?^

"* ow ^ ------W.; Si'-.' caoa>aotsou««i>c?*»»*»*»>c -- lees^H/VtCJ-V'ne^Ow-.f w*w »^a>» c*— A-9 «v j fW ^ - ï i m m i x ; y « h p > -t 4 3 w ^ f e 9*^3 7>3 >»M4*4ai«M>tO«>‘***4^-V«wi50 V N.^^f^çvN-. ; •• --Î. - : .|v.-3j .’ ^ • r-A. # 1 oâaoecoocob&eeescseaooDOQiaco ?*e ? ?o%Aoyw4 C*c.3wriC<;A.f samf— C'tc— *#*#*#»*## #*##*"*** #.****.*#*##* * >C-9-.’ »7»P‘7>|.»seoa0oeo'Qaba&cc^oooc**'' •r.**e »— ■ ?,my '/«'3 *^4-0" « ai #*##,##*#»#«. mrn#^N40*«OPfCC*ff V : s i » s ^iAQtf\mo«T A9a.r f r^iA»p»«c d»."N.N.'NNMVNpj;WM«V«N>WfW ■ t':rH ... ■(■•■-.il . eAwirj»!#^ NA^v-o^ee^^wwfAoV^OAjeak • >y*Aee.f r*»»»o^«SA.rtr/^*» m Alk 3 — y RtP» a#-afV"1f i S • *«• » • «<• • • ••• a «<•■• • a ••.« a • «i« «i •■•<* a ' 5 O mMw.ec0«9f 9»y>»y ;>»*i3«43AiXN3.'*>U*3saia9d3.»^d^e7^>9‘^ I. •».M:at».'«.v^i.-va^&Ct0oeo‘>3 C 3 o o w 3 O a a e y fi > a at# a a a.a $ a a a a # #■• a a aia # a «ta a a a a a !|fa04300C<.#w3aOO»W#*f,m«»CNmw%^ ... * aoPOBaooaastJtaaf—■ .

^^v «a3 er*N>cf 4"^fptfmoaa^w«aer»3«mm - >•»#►>a4.?*n 3*»a«m « w o f ô c ^ o a — a *r>a». • 0^'"— ^ f A .AZ-a^AAf a ata a a a a a a.«>« a * a»a a a a'a a a #.# a a afa a ■ 90ra6^^***>aa«SK««AM SW^-'S >.a^N > 39»^ O M « a . ^ r’8'» s s ! a eaaaa*a.p^^"{ J —AlNAgM.VflN’MNfa'VAiNN'irNNW'a C64 66A.1 A A f Aa»mN#a : . I . i. -•. '! . :■ • I r'.-' :R

1 = 1

• • .»% .» .aa a.«a3 N. 500

:jS - a c:: m m t K S s « - ■ ■ r

# ggr»* , .1 j-:sss2?5S5ss:s^s£5SKîS!;;?îsî ^ • / srrrsssî2sss2.s=sï'ï^53i«3ss.'î?-•-''

• o*'N«*eoe»'V'Nmo.v<6«\aso <*a-

«•r'rir^xit»'o»»»«o^q>^«acA w— * wo f 1 m •{ 1 •*>.t‘ • # % - 4 ' -':.%F:%:. ' ' . £ eoeooooooAedoeceeoaeoeeaâoœ •' ! vwn#wi'w f*-^yoaif»'a^g.vw^?»S^««AC5?"*o^« • •••»•'#«••*•:•••* *4 ••*'•••••*•<•» a •<• « ëym^tnkf z k, w»yNNoyf'ëf-cT'iO'Nw*'f•d . . î s o*fmv - . (.; 9^A«^^a0>^»y3COBSoor»o3O^ . ' • t' mf,f«fAA**rnAAywMr#%ifMm *.^— .. oaeaosedeâBseàoooeacaoosaaoc . ; # $ "»m« f^ o m A ^)«wm r ,4. ■ • •«•••«! !•••■••• •••*■•4 •••••*•••'•* : •MMA 0>>>M«scstDwvy'n*.a^CAM>rw«>«e -; il aoar^Cf-aa.^sJf C fametmcw#*».#— v o ..I-. o.»oa^cm—f r f 0 ’300W«iF'n«%ntf>^ Ac a 0«•• * »■•*• • • ••# • • •■« • « ••« • « • ■ • • • « ■ • • .f *#ewiw»N«r^w»»y>‘>r‘>. ■ * ' t. '::-:ï - -" %:

i%^iv6j***w^»*e»3ne 6aaev»»«> '— >.-4r«^je>oaoootftfaoaooB30oeoaoa— • •>• • • ••• « «. ••* * • •■• • • «•• * • •>« « • « • • m m - ooaaopca^a&DOoea^aesaoeooactto :fT#<%.:|rYv f»-*’ •;• csoorfwfe#/6>i'i*i'A*ê*a#Wti««Ae**A#ii»vr' '*. i — »«" — " f *94«mas5mi#4\p^ >oiM^ rta y@ — aaoBPpva"""*—^0 ^ . • « • • » • • > • • • •<• • • •<• a • a** » « • * • * & #:* a oa^^BoapoaooooafyooBsaooooaaoo.* • ^li

■ 4f ÜAA #"M*aa3^0m.M%»Wa"»f^»AA»m»» 1-. Uî' « o f m m r ^ Z * ft @9— 4.4\,an?»am«.«aft r"** «M.(^M0^9‘«a'AeaN3VC«*vr40 • # • ai# # * ai# • • a • a » ••# • a #*• a a ai* a a ai* a «s# <#•••■•-S ft irfty'^O»; ft^paSBNHS âft y 0(ft yiO.ftO-* faaB ftN9 aiN*#a ' aa94a^391*^^

.,, k--: I ^3 -? ! \ ■ i ÿ 3 0 1

% t'.'. :W : / ; - f S ^ • ! o , - k J - y

^ # # * # * # » * %.*# # » * # $ . . 4M»v%iA@hfV«mf c f— % # f f m f • » 0 , c c f r e^rwieaiy^-WKefvee»» rNO^*>iA«Aio«<4{n> oooooosyo'OyeB»»* i w. ONw*4.%*A»ww»* fw^m f f %9Af-mm \ , w 'f'*kwc^5(f3«"mm c«<wa ..'/f .5 e*N^eo.'wSiiîe.ir'-rf‘«^"«ia«#«rï^

:» •» oNPmOf-mrf . Ui Sfwmm w«me Afwm&mmo f ifc* g^sr*»# ,i Ir . -3‘f»«ete^v*c“»w«^VM«9*«»c4»

' ooboso'& oocobcolaecoboebbgeoec* • '] ’ : . k k % >f^^.rê»tiCiw>eFio«c CTwv< zre> • ' » »»!•*•«••••••••••'*••***.*»•■*•**'** ! . 1 5 f»m«er»^r*fN'0 f 0»^. -i 'M ':# J V « '"CN.T «*" L >>?*0'a-3oesooo3 * . & # »# rffsrw* rf } î r - f r î L i f sol30*>sôooooogebeeggoe«eo£obo : i w ëw«*»A w^fN a o m ÿ # N fWlNiA. '*• Z >«agirtA««Ai£«>^ve 6» eI»!*».r-.*'»"«»,'» og » e b — .v^ f f A*"»".)»—«"«mf i • «>• •••••« • t»t «••••••t*** * “ ■"* ■

I :: - ‘'vv,' ■ i-/s \* -••i-;:-r.j . •..^vÆ 'l

! 12 f f»9'?'f^»3aü^'gojBbcw— . I — '"o*?C a«»ob ,e@ba^— ^ W #*,# **#»*»***##*#»*#6 6 & # **### « #*!#» , ■'vooe»90ooc3gw

= " [ % t ' .. i m * A PO— • ■ | 1 *5 o_ o 90060O0b3OGOO0Oa0b0OO9pO0b0O.'' '-' I ' w . \' sb% . \r f A JA « 0 3 Awino ffCf» An f > •rs >9 >••*«•».«*./ n n#nr»-9 • !•» • *•■• • « •■• » • •!• • • • '•»•»•>*• ^ • • • • •.nOj«nn4r»s^‘»b'-4atf*» y o^f —a-nnADOA a Ww,NN.'*n.N^ 4Nffi'<%'N**^*«*x>b<3033y»., • I ••• • I . i • > • • ! f • ■• -I •!-■ ,.

I l s • . y 502

:• L':W-

A4 w Cf*'SS(««*ë M I o ■ r-**wnmwir*zei«7«6»^orNV'>OerA;»''>»«re'— *e»o

-> t « ' ? .' . * » ------e(ri»^o*r»6 < •

> ! oeàooôoooêecNm*o*»emmmm#,f* «^ 0 "f i . L* ' ' %. % ~ • ei" ' i, ^ *r"f- *1 :«u •»•■••••••••••••,••»*••••••••»••• i ^■*. • ^ oo«9f^«roew ;.,» . r/Tv i I e»uo‘9‘»® e ‘0» » x i ‘ewi*f^^<'6«f» 1 oeeeeoeeoeooâoeeaeceoêceeoec I- F»fvef«ri»rwfe*^w eooin ^ , t*4 #*»»»*»«** c,-^:ci-r- O : &. f L If- fw , . .* m t _ mr»wx»)i»N*m*o«"'**««x . < ■ v m # w w AiAiiwMnv.'AinwimNmiNr#" — ' u » i ' •... • • t •ow *‘g>*^^^«tftf>gg*ooooeocooteo» 1 -•zie>*#4>N»«rv«^««u«ifw»*e«r‘">r'Kr*er^*ionoh». ■

«V ocaoooaoG" m A4I^WjwrfW.êoê»»F%VfSi«lCO * — J. 11 1-11 .«n I » IJ T if ifl*!*!»* •*. . - "

< _ oÉîsSGa5ês22G*i3?.'5SSSS?5?SSî^2 , i • !. 2£®£2^=£222ïïSSï5ïî?.X2r,X;X^ r ; 3 o Le ;^s;z;r?2^s?3sz?;:!R:%3:à=ÀiK ' \ m # .«m *#*»»*#*#***»«« ###***«*#****

.. 1:^ r««t«**fnnmmfflAjr4.M«w30‘3G S C G C C

: r Ia Ti=; I *»«< o^^f*«e'neT*-ei'fwFw*«»iO"**w%m»di>f4A ^t- '*• * « » L . :w ' ocooa>oaaoo-aamrft»e<**tfi"y— • ; « W ... > i^iNNfyrw»iMm I M . ’<» ••»••••••*••»»»••»««•••«»•••• . % o 3 eoeocooQcaeoeooooooeoeoeoooo^- g : i H : owAwwoim@^wfeo«*oo*#ov\mo«#Nf,»^ooOWAWwQimo •#eo«*»oA»^^wnfr «I - % f ooa* w*w*o ,f f^ c v'f—f «# «y'vm#' o— ## k» '■ O ’»— ■■r>»’000^>>0>ft*»‘>r " U s o«"^*'^-o ao**"»—a f mcr.4’^0’fw*r I Y g ac Ut ifCOf o ^ f ymmi Lg;: 3 3'^ m*m;"N03*ooiGmc%of"i"m >*>•**»>* a- — I . — mmw,f.,n«NN.^W\,nm,f4NNIXM '•*. .:"■ ;:L •k- rs s.\ri i R y 3

T*# ) V

}. r

s SIIK:S «t’V .

m & M m uno â

I 304

»«#«#»* «rW» •• k * • ♦*■•.* ■•;>'• •• '» *♦• # » -« — fnm^etni^«fW9«f^e3'*mwioiwt«eçin»»eo/^;, « aw",emf mw — f*«A*ecw^i»<«ie<*r^»eiriœ«#ge‘r*%#*e<^ • " ,c@oev^«*ko«m.m4a »

«#*>0» #&m »re'4«ow#mom., fwwem? »wef»eflr^»

Ksgg;.gss>=ëssas^;?5ssss£^s -i

oeeeiM?fc»e*«i'imeo*'eed»»-^w»«*wr'^«c^ - 'rf*«rvtffw>aMCrfwi40<"^^*-r>oc««i£r -

»m«o

. ■f . - I- ■■.•►*■•"■■!■■ ' ?gE22SSS2§?Sgg2gSg22S£SSS22S m a • •«•«•■•*•••••■•»••••’••**••••* - c f c o m — O f 3"f 0»^»»*»^» fn . N O **«*"*, ico e # f f t f f f f f , •. ;• . V I T. . < . “H • « no Noeooeeeooooooooeseo^eoee: #>»e*e-*er«'Fi*i*>r~*eN#«ee^*'4

• w^Nr»oocooooc*"w'— ■!*•■«,• r w f f f «rfwwiirMfiAirtVWtiAk'KHrtkWWwwtei^i . •t - . • I-.. • • •• oooeeooo&deseoeoceeooobeoeao.^ •* ' Hiii

- h ■■•■.lr>r-t,t •■'.■ I. '. '. -■- 2gS3«5;£Sÿ?.ES2SS!iï:S'.«5iS5ïgS"' , ..•ri-— p •» •* ■•«•••••••••#•••••••■••••••• .

|:ir}t. !««É • «30#'N##m!nN«,or*minTi-iijifii;ï--'-rEl5fc-ria^ Z30wm.^.a=e* * T1i~i -»«&*» -.{1 * * eff»eiew;eeaio>a‘>»vcceeo3'w*^^N , _ fft^OOOGOOOOeOOO ...... • «••••• •••«•••••»••••••«•• *w • ', « Ï r■NoooeqaecaGOsadaea£oooooaoed^.T^ « a.. ;ai •! ■ ;;::pT .:'- w^O-W»*^0'OfjP'NW*ONm.NNQP. - ooomM"f r*om%rmo.4f Mw o m m w OQOOQi f f f f *$**»#*«**»***#«f*###*»»###* ooeoooeoeooeooooeooooooooooo

f aowc^vif f #»oo"#"CNo o m w — f ae *f m— fvm >Nov%of r Nlàkf iTÆN«< tfNO*f •c -M e^«ffe.f fT N C * < « * 6.*-«**i»«n%eir*«eirew—N f a -m e e v o — o » » o e o N < « J x i o f f #i%mmr««r«rf»wo « . ,.wmmmNNNNf.NNNNNmwNNriwNnmK'

\ Xi-.' 505

m

• wfw'i.f MA««r»i^cR#**«0*fw«ve'**e»r«^'er>Oi'flo •

marner» - >«• cm-mammmoN^C'rffNv'c— J

%###:-i.;. '.:i-rî'!rV • oo o o ‘«*et*^rfw»oy ^**"w**gc*""oc»s^«**«*»f* ' ****** ; , '^5'^5îfS55gPS53îSSS5S&SS£S3D» ":'- a

• 2K5SS2K?!SS?«:???.SS5g5£g-'î=2 -! i»r ^*"*eo>*r>om«»»»f»«s^»ao>«neMv^T>< 5«^r*^r«i«''>ii'«>*■------■ . * : r * * * ÿ *«**#•>* • • *« e * & * •«•>••■•■••••• , *1. * **« .. _ - _. _- ÎS?§gî5;i-S7=SgSÎS2S??S»**^*»c*aee*0 .;1 j V: i'.T? ■•S;::.-viif-: k^.r:;4 - : .- . pv.f;L ;-2SSg52SSSS?S5S?gf.gS5g2S2SSS£ *•> « • *••• •• •-•.••••••••■••• I f l» e « r o jo c ^ o » ^ c *>o» <#<»»f * < ■ * * * *»»fu . ,

•• *w .. ; '% y '« ' , »t •• 1* ■ *•! r eooeeocenaaoeeâoceucorsoooodeo ..; • o«f*so»«4#wm v»^e«nO'»f ** ; •y —«srtxm i^om o—»f«cQtf»*ya^-o«*»»rwoy»r>otvO>rnf»v«c m,A*Mnima\'AiA**if'«rifWwww'e%A*»im#MAas#vAWw». .£: . # " I >.>,(.•* ,1, k« *. * • J • ooooeosco^oceooeeceeseeaoœo''' t* i â ® s B Kl • •••••••«••a** •••••*••*• ••■••** : I . -'..{ N - :'.;ky-..^ ft,e^**wrv<* o c V »rv* v\r« :'1- ;rjSSSS2?£32?w^js2SgS73.f»3!5SÈS^ ' — “** "* *

:-l ' 4 r*«;»»<>jga»»»yycaaQa30— — joeeoooacoao*» - *—■' ■ *»< '.«" ...... • ••«•••••••••••••«•■•a** »••••• «•od££>ooa9 oooooooaooeeoQCbeaoeec^cooooâ i .i-"" îir« . . r*ew*m»ea &ïi o— «f e«oc"**f *f «f ....

% '& a # , f » X 0"-cy/L?«y*»0 i*"*f**Maf*p-*'C»'aJu*e«9in** ;.' •-i • ■ OX •»* Ut "')»»)«*>aA—#»«*— C-0<»***■<■# V — f w*wnnX"imNfwN«*f'K'*m«fy,\*f «fWfafw^'aNAafwcana^ 4’ S ; . , •■ •■ . ■ ; .••••.' I . " ; Ht , »af>.»>o*af*aiyq^i»<^«»wi0^e^e^maa«^irvo^* -:î.

,i*T . -: V HL \ 306

S k «

MS :W####»

; .«doeeoAeeoooo9eooeoeoeo&oeooo> J

•«* . — - . ^ ^ ^>* aZ" A.

r - • ' '

S%9?»93S5=^7:%3 23%»

v«o^*«tiN»»rerw>p»»e*------— <0»iwu^*«tvtr»«o^Ft'rA«r9‘O*'wwn«r*i«A c. — I wwNiwyifw*w%mm'#».f f «fAf -M I#* • ••• •••»•••»•«••••••••••••• #»* 'WgS e la aoosoooeooooaoeeeaooooooeaoo. ‘ . . . ..^ 2 ' o _ ' ' ' I -■• »•••' •» -V. v}. I" .;. '

« ^ . ys«w»o»wO@»'f»mAwcmw^*wmv«^o«*afwAi&4f"*A 2 ' &/ •.#••••••••••••••«•«••••*•••* «J "T X X >M e—mf*— . a a w z.»»f»i^«.v..##v.-i.'irifv#Niwei.-w*ocooyt‘ 3 #- NnWW^NNfVNN^f*Am#f#A,A,miN.>WM^W«M-----

ÜN\,MN*w4Am\*Nf* y 105 DDHAIO A, KAUUliC S (OKM BIlILLH CUHflUSTfUN AM) tu A f lAANlfEN *NAr. ^ l*M>r,HA/l STlHMEb HtAClUK III- «13.00 liVPASS trHC • 0.30 ' AlllVAllON CtlkaOV .* 3.?ouU. fAEOUlNCV fAC « plACKCniN&'FAC *« 2.00 SLICC MO IcMH ‘ l l U Y UŸ1|.- SLf.Ce..|IMK TOT |4Ht. fO? .02 : f % i?Hn•flS/’Sîf:888 'iwntï:. •f 1 |L teïî:; liUUl l l ë 1 1 IA9A;aGO.S3A2 4«ô:7ôô — t é W A f Oo . - r--- _ « n.a)4 • . ü. 196 ' f 0.0^7 5*»3.AA D.( 9«» .'îib 5 ( ï) l.‘ 5»o sînniëS l i ! ii ?>?&rtAO'iè -r kr' 0«l62h. J-.ÇJ8 îî8iî:U8-i

!: 20 V illAJ6.700* Aan.AQJ ÜiW:— i'

(

ÿ. y - •I f T- il" ii' "n ■( ÉS22lïgl*#ill^Sl2 r ,V

.■r -O8 3 0 8

CD O

g<04m,fW*m^mwNm 10000» » ^ # e m . ' ^'\”j • k:'-.-4 . ■■■. %: • • • • # » » j. k • • #-#»## # » • ».$ k » - ;sS=aS255SSSSS£2SSSS25^SaRS ■ a 3 NOWA—mw m N a» aM ""C iA ^'A "O in o ^O 'f* @ * f Cp«MA a«rw<5a ■

"'•■"j f-•*! 'i” i f • âoef*"*w ao‘«w^e«^*«ree»^OF>'»«»ee3c«wO om Na40!"^cn*«"a0'^0'AO»^«f—m«awamN»f owi*^r^me*#vffi'»vMn«rAioe*^er»^Moe'6iAmNC

me.aeukfe— CN*Ai<^«n«nQeexva<»^**vtwe«cneifl‘e ’OK>«r e#w#oiin»e*ee?"wa

_ — mmm^Non^NC^ ei«»i»r.tf%«# vwMm«N«N « # e «•• • • • • a •••••»•••»#•••• , a a , o>^*>>#aco*n«irtOa»oa

SSRC!#f«^mice5ecSm%^Z2*i^%%Rî$S%%m%' •" m f»4P^MfWWNrMW\*WNMNNNNrmif4MNMI';N*UAWW 4 ! . ; ' 4 « ' . j i- ••: g à • ri rie ' "i r - - ^ ^ irin rrr~iri—~ r' ------T ^

; >aoa»c o ccce*«sc»-yc»e»coocccio—• a• f»OOOOCCOCCCogOCScCPO«»»w » ***aa« a* «a a»»* »« «laa a-« • 4 •i» • •^ ai* 1 ' • 9CiooooeâeoQ0Ooaoesoceoac6coo • -“ 'C r . k L M M ï ü .*n : oeBecooeoecoae^ssocoooeoooeoo

' i ' M

••»io^*xw«ai*#ke‘ef*irje‘»^.reFM#fsef«a»«»e‘P v *fcaawwAiAw\f f^mmmm«\NA»Nwaii iwcccpc» I- . * •>

onN>in .A. K«nivic srnxf* eniifK cnHutisiinH * n o IlfA T INAHSFER ANALYSIS FROGRAH 107 s u m f o REACiiiR Ilf • ij.oo . iiyi>»5S » o.io ^ C 1 IV A I |flll ENERGY FMEQUCNCY pAC • $ 0 0 0 0 0 , BIACKCHINÇ PAC • 2.00 «-ftf-wi Teiiii^iejri-unrsmisrniirTOnftHE- liîir 62 RAD HAil CDNV WAIL Oil.000 - 0 . 00$ 2 .3 7 2 0000,000 0.0 2 1 64699.960 29999,900 - 7 6 0 7 0 2 . iS:8S i-0 .0 0 gmm 99;9»' 9 9 9 9 ; 9 -O tO O 0000. f 60659. 64499.8 AOI - n t ( i o 9 4499; 299991 ‘-50299, 601 Too 0 ,2 6 0 no ':?/%

SÎ9- o o n n . o a o oIa'aio - 0.0 DOOOfOOO :j 8«3î:î!8 r.m:Slg .- 6 4 1 0 0 . - o . n n n o o fegrfiteî'l? o n o ; 4499.64 1.356 111 21*i6.2 Vi

'I ), I'i

I. .

I ; t

y LD 310

! . O .. t * ; ■ E f t

U, gSSSSSSSSSSSSSSSSSSRSSSS:^ j .

2T?!£raf rirrtfflTrr T.rrî'STrrm. T- • . * ' • .

. —.... — _ _ (*«ne

. ;

sr •-:• ggggSS2SSiSS?22S2SS25Sggg22S LW^»^m<—Qjtniifirrr-iiTitiirr^n - :- ■ ' V . *«»••«•••• *«».* * • • • 4' » »»fli»eieefr»e»wo*o*»»»»o»c<^»»*ç^»o*p;2£

- b''4i S2SSg222£S22gggSSiS2SSSgS2g2 3 £ - r>î; b-;;r

• • - V . ^

y « # «» * » » • * . •••

.. oeaeoeoeooeeoeeoeocBoociQoeaeoM "'W -'W I''to Oi^*—^**»a^-/—«*c«'^;?oo'«cw«oo^'^»i*05. ocw mMmr' rmwii,:nfi(M"iin:-irm m nmrfT—TV— f ~ - . _ ooooooocceoooe• _• •■»• • • 4 «• •• •" 4 y| * n»iif«'»»44 mmWM44 4* #- JvJ" * iSSSSSSSSSSSSSSSSSSSSSSSSSSS Tr.*"' OOCOOOCOOOOOOqCC-SOOQCOOoOOOO

« a%sgs§=K3«;%=ss=3^ss=?« ••4-44444««44 # 4 4. » # *• W 4 4. 4 4 * * -* " aor~ii i,m», rm rm,riT rf r~r ff r-r-^*~ r:V:i M::KW ^4^49^4* .O'* AfN^f*SAOVAffVAO>miMAfNm#*WWW*WWNN«Miy4MW oooooaeoooeoeeiQoeeoceaoe

= |:.l I t F'l ' 1-': |a?ggg|g^|IH g;~=|gssSS

* 311

e a iNmof^r^Moi

■X NNCCBOOG^"^NmiAONmONO«fNW%AMfl«■ ■ I a ■TT m a I # rifl Éfcifnirini» Ê#^l

•wi#o^*^'#i*wf60M«oino‘ee*«^«»

eeM oeooeooeeoejeooe^oeeeoeoeo-

WW»«WWONONI• # «•• • « • • • s “'“siSSSS^IsïSisIsssa^si ————. oooQr^TT" O ebi>oeocoeoeeficiooeoeoo(

: C r S E S : ______% ! 22sz%c;sasz:NNf»m#NWMm*NA«fWWNmNNN*WA##Mr ' . 1 ^ _____ !_____L™ .i—. “

s ______M w Mf*«00000000cqœooqcocooeoeo.

p eçpooee^^ocaeecC|Oooe|ooocieo nnNAtD A. KAdUlC STOKER |)Olt,ER CPHAilSrinN AOO IN :A | IR A N SfC ft AMALVS IS PROORAH 110 p SIIKRfd KCACtnR lir • VÏ.00 RVPASS fAC • 0.10 Ar.riVAfiori CNFnct'a iznoo. frequency fac > <.oonooo, 8LACRfH|NQ FAC ■ 2.00 srictTirt ïlMP rijAruitirsticoihEiorriw"— ma— liEAT CCN RÂtrwÂii; a i | r - -- 420.76n 99.9AQ 25000.000 1000.000 2 A 2 9 9 9 9 0 0 . 1QBSb6SO. 3 36090. 3 6 2 5 2 4 8 :8 . i 8 :8 ?}-— 005: 101. i 296. Slits d;095 1 .00 0 6 0 5 9 . 8:8?% : ' 8:8?? m-m m: o n 0 5 9 8 6 8 0 . 9 2 0 . 4 9 . 6 0 0 Ilf; • MB- 021.3 9 0 9 , 5 5 0 ,

9 6 6 .1 9 9 5 9 . 0 5 0 >

2280 . ) ) ■I M M l TM é MSMMSISMM S ^ E i S S T "I

;■! ) I' - V' *. \\ T i l ü g g S \ y .'t

Vj) iC 515

S s oôoeôpcêoceooc

\ sssssssssssssssssssss^s: , r . J .

oooeooeeeeteoeoeoeeaeeaooeew ■

~ ty^^»e»oie»»we^JVv--cvw%ro*vo»^e^»6'YY"#'«^ 3 0'9>9*o^«*9>o>tf‘e^o^9SV9c»<^e‘9C^C‘^^'^o>

I «cmB««saa3ee«eecaeBeoseBa

«ffwwMA '

Nciaoooeeecvsooocooeooooeeceae

oeicooooocaocoQcoccooociaoccoo i i ^cæeo'»0'»»o*eBCc*^ •

I I BIBUOGRAPHY

A. (DAlbini, F.A. "A Physical. Model for Flrespread in Brush,” paper presented at 11th Symposium (International) on Com­ bustion,. The Combustion Institute, Pittsburgh, Pa., 1567, pp. 553-560..

(2) Aris, R., "Introduction to the Analysis of Chemical Reactors,” Prentice Hall, Englewood Cliffs, N.Y., 1565, pp. 208, 205.

B. (3) Bagwell, F.A. et al, "Utility Boiler Operating Modes for Reduœd Nitric Oxides Emission,” presented at 6th Annual Meeting APCA, Atlantic City, June, 1571.

(4) Baitok,. W. et al. "Systematic Investigation of Nitrogen Oxide Emissions and Combustion Control Methods for Power Plant Boilers (a),” presented at the AIChE 70th Annual Meeting. Atlantic City, August 25, 1571.

(5) Bartok, W. e t ai. "Systems Study of Nitrogen Oxides Control Methods for Stationary Sources," Final Report to APCO under Contract #P 11-22-68-55, GR-2-NOS-65, November, 1565.

(6) Bauich, D.L., Drysdale, DJD., Home, D.G., and Lloyd, A.C., "Critical Evaluation of Rate Data for Homogeneous Gas Phase Reactions of Interest in High Temperature Systems," Report No.4. Dept, of Physical Chemistry, Leeds University, UJC., December, 1565.

(7) Beer, J.M., and Lee, K.B., Tenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa,, 1565.

(8) Beer, J.M., Lee, K.B., Marsden, C., and Thring,. M«W., Fifth Joumees Internationales de ITnstitut Français des Combustibles et de-l'Energie. Paris, 15=23 May, 1564.

(5) Beer, J.M. and R.G. Siddail, "Radiative Heat Transfer in Furnaces and Combustors", ASME Winter Annual Meeting, New York, NY, November 1572, ASME Paper NO. 72-WA/HT-25,

. 314 (10) Bird, R.B^ Stewart, W.E., and Lightfoot, E.N., Transport 315 Phenomena,. John Wiley & Sons, Inc., New York, N.Y., 1960.

(11) Biswas, BJC., and Essenhigh, R.H., "The Problem of Smoke Formation and Control," Paper No.. 391 presented at A.I. Chem.£. 70th National Meeting, Atlantic City, Aug./Sept. 197L

(12) Biswasy BJC., and Essenhigh, R.H., "The Heat Value of ReAjse,"^ Mech. Eng., voi 91, no.68, 1969.

(13) Biswas, BJ^., and Essenhigh, R.H.,. "Some Characteristics of Stabilized Smoke Flames," Combustion and Flame 13; 93-96 (1970).

(14) Biswas, BJ(., Kuo, T.J., and Essenhigh, R.H., "Comfaustin and Emission Phenomena in ùicinerators; Studies on Combustion Behavior and Extinction Limits of Smoke Flames," Proc. 4th National Incinerator Conf. (Cincinnati), Am. Soc. Mech. Engrs., New York (1970).

(13) Biackshear,Jr., P.L., and Murty, K.A., "Heat and Mass Transfer To, From, and Within Ceiluiosic Solids Burning in Air," 10th Symposium (International) on Combustion,. The Combustion Institute, 1963,

(16) Blakeslee, C.E., "Reduction of NO Emissions by Combus­ tion Modification in a Gas-Fired 23u-Mw Tangentiai-Fired ' Boiler," presented at Second Conference on Natural Gas Research and Technology, , , June 3-7, 1972.

(17) Bogot, A., Hamilton, T.B., and Powell, E.M., "Coal Hand- ling-Bunker to Furnace," Paper presented to US-USSR Joint Project. Group on Design and Operation of Thermal Power Plants, Knoxville, TN, June 14-18, 1976, Combustion Engi­ neering Publication TI5^937.

(18) Bogot, A. and Hensei, RJ>,,. "Considerations in Blending Coals to Meet SO^ Emission Standards", Paper presented at the. NCA/BCR Conference and Expo lU, Louisville, KY, Oct. 19-21, 1976, Combustion Engineering Publication TIS-4925.

(19) Boynton, F.P. and Ludwig, C.B., "Total Emissivity of Hot Water Vapor-n, Sami-Empirical Charts Deduced from Long- Path Spectral Data", Int. Journal of Heat and Mass Transfer, Voi. 14, pp. 963-973, Pergamon Press, 1971.. (20) Bragg, S.L., Aeronautical Research Council Paper No. 16170, C.F..272, September, 1953.

(21) Bragg, S.L., "Application of Reaction Rate Theory to Combustion Chamber Analysis" Aeronautical Research Council Paper No, 16170, C.F. 272, September 1953. (22) Bragg,. SJ„, and Holiday, T.B., Proceedings of Combustion 316 Colloquim, Liege, Dec. 1955, "Selected Combustion Problem H," Butterworths, London, 1956»

(23) Branstetter, 3» Robert, "Radiant Heat Transfer Between Nongray Parailri Plates of Tungsten", NASA Tech. Report TN D-1088, August 1961, Lewis Research Center, Cleveland, Ohio,

(24) Branstetter, J» Robert, "Formulas for radiant Heat Tran­ sfer Between Nongray Parallei Plates of Polished. Refractory Metals", NASA T ^ . Report TN D-2902, June 1965, Lewis Researdi Center, Cleveland,. OH.

(25) Buckmaster, J.D., "Radiative Heat Transfer and Conduc- • tion Between Parallel Walls", April 1965, Cornell University, Buffalo, New York, UJS. Dept, of Commerce No. AD619 419.

(26) Bueters, K.A., "Combustion Products Emissivity by Fp Operator," Combustion, Vol. 45, No.9, March 1974; Combustion Engineering Publication TIS-3864.

(27) Bueters, K.A., et al, "N0« Emissions from Tangentially Fired Utility Boilers-A Two Part Paper", Presented at 66th Annual AIChE Meeting, November 1973, C-E Paper No. TIS 3698. (28) Bueters, KA., Cbgoli, J.G., and Habelt, W.Wê, "Perfor­ mance Prediction of Tangentially Fired Utility Furnaces by Computer Model," Paper presented at 15th International Sym­ posium on Combustion. Tokyo, Japn, Aug. 1974, Combustion Engineering Publication TIS-3865.

C. (29) Clark, W.T., "Mathematical Analyses of Gas Flow Patterns in Municipal Incinerator Furnace Configurations," Proceedings 1976 National Waste Processing Conference, ASME, New York, N.Y.. 1976, pp. 577-585..

(30) Cooper, P.W., Kamo, R., Marek, C.J., and Solbrig, C.W., "Recirculation and Fuel-Air Mixing as Related to OU-Burner Design," Am. Petroleum Inst. Publ. No. 1723 (May, 1964).

(31) Corey, R.C., Spano, L.A., Schwartz, C.H., and Perry, H., "Experimental Study of Effects of Tangential Overfire Air on the Incineration of Combustible Wastes," Air Repair, Nov, 1953, V0I.3, pp. 109-116.

(32) Corey, R.C., "Process Variables Study of Incineration Using Tangential Overfire Air," Air Cleaning Seminar, Ames Labor­ atory, (Sept..1952); WASH-149, pp. 154-169 (March 1954).

(33) Corey, R.C., and- Schwartz;, C.H., "Incineration for Solid Combustible Wastes Containing Low-Level Radioactivity," BuMines Rept. Inv. 6083, 1962, 38 pp. (34) Corey, R.C., and Schwartz, C.H., "Combustion of Low-Ash, High-Volatile Solids and Tangential Overfire Air," Univ.. of Sheffield, Fuel Soc^ 3 vol.2, 1957, pp.5-13.

(35) Corey, R.C., Oming, A.A., Schwartz, C.H., and Pfeiffer, U ;,. "A Progress Report on the Experimental Studies of Incin­ eration by A e U.5. Bureau of Mines," Proc. of Symposium on Developments in Incinerator Research, New York University, College of Engineering, Research Division, Jan. 1958, pp. 31-58.

(36) Crouse, L.F., and Wald, D.E., "Incineration of Industrial Fumes by Direct Gas Flame," presented at 1967 Technical Meeting of the Central States Section of the- Combustion Institute, Cleveland, Ohio, 1967. D. (37) Dennis, F., Muller, F.L., Kristal, E., and Silverman, L., "Special Incineration Studies-Institutional Design,” Prc. 6th AEC Air Cleaning Conference^ July 7-9, 1959, TID-7593.

(38) Dennis, R.,. and Silverman, L., "Radioactive Waste Incin­ erator Design and Operational Experience - A Review," Prc. 7th AEC Air Cleaning Conference, Oct; 10-12, 1961, TID-7627..

(39) DeRis, J.N., "Spread on a Laminar Diffusion Flame," paper presented at 12th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa., 1969, pp. 241-252.

(40) Drake, P.F., and Hubbard, E*.H., "Combustion System Aero­ dynamics and Their Effect on the Burning of Heavy Fuel Oil," J.Inst. Fuel, voL 39, no.93, 1966.

(41) Dvirka, Miro, "Temperature and Air Distrüsution in Large Rectangular Incinerator Furnaces," Proceedings for 1968 ASME Nation^ Incinerator Conference,

(42) Dvirka, Miro, "Temperature and Aid Distributrion in Large Rectangular Incinerator Furnaces - Part n," Proceedings of the 1972 ASME National Incinerator Conference.

E. (43) Edwards, D.K., and Nelson, K.E.,- "Rapid Calculation of Radiant Energy Transfer Between Nongray Walls and Isothermal . H5O or CO?Gas", Transactions of the ASME, Journal of Heat Transfer, November 1962, ASME Paper No. 6I-WA-175.

(44) Einstein, Thomas H., "Radiant Heat. Transfer to Absorbing Gases Enclosed Between Parallel Flat Plates with Flow and Conduction," NASA Tech, Report R-154, 1963, Lewis Research Center, Cleveland, Ohio.

(45) Engdahi',"R.B., "Application of Overfire Jets," Tech. Rep. N0.7, Bituminous Coal Research, Inc., Pittsburgh, Pa., 1944. (46) Engdahl, R.B., and Stang, "Effect of Overfire Air on ‘3^3 the Efficiency of a Small Industrial Boiler/ National Eng., May 1947.

(47) Engdahl, R.B., and Holton, W.C., "Overfire Air Jets," Trans* ASME, voi* 65, no. 741,1943.

(48) Essenhigh, R.H., "Application of the Perfectly Stirred Reactor (P.S.R.) TTieory to Analysis of One*Dimenslonal Flames" Western States Section (Combustion Institute) Spring Meeting, San Diego 1967 Paper No* WSS/CI-67/28 (Office of Naval Research Technical Report No. FS66-3/U).

(49) Essenhigh, R.H., "Burning Rates in Incinerators (Parts I and n)," Proceedings of 1963 National Incinerator Conference, ASME, New York, N.Y. 1963. (50) Essenhigh, R.H., Colliery Engineering, Voi. 33,1961, Voi. 39, 1962. (51) Essenhigh, R.H., "Combustion Phenomena in Industrial Flames, The Rosin Equation", Industrial and Engineering Chem­ istry, Vol. 59, No.7, July 1967.

(52) Essenhigh, R.H., "Dominant Mechanisms in the Combustion o f Coal," Am. Soc. Mech. Engrs., Paper No, 7G-WA/Fu-2 (1970).

(53) Essenhigh, R.Hi, J. Eng. for Power, 35, 133 (1963).

(54) Essenhigh, R.H., "Incineration: A Practical and Scientific Approach," Envir. Sci. Tech., voi. 2, no. 526, 1963.

(55) Essenhigh, R.H., Ind. Eng.. Chem.,.59, 52 (1967).

(56) Essenhigh, R.H., "A New Application of Perfectly Stirred Reactor (P.S.R.) Theory to Design of Combustion Chambers", Tedmical Report FS67-l(u), The Pennsylvania State University, Dept, of Fuel Science, March 1967.

(57) Essenhigh, R.H., "On the Inter-Influence of Classical Heterogeneous Combustion Research and Related Aerospace Problems," Eleventh. Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1967.

(53) Essenhigh, R.H., "On Radiative Transfer in Solids," AIAA Paper No. 67-237, AISS Thermophysics SpedaJist Conference, New Orleans, 1967. (59) Essenhigh, R.H., "A Simple Relation Between Total, Volu­ metric and Area Firing Rates," Proceedings of the 1963 National Incinerator Conference, ASME, New York, N.Y., 1963. (60) Essenhigh, R.H., Frofaerg, R., and Howard, J.S., "Combus- 319 tien Behavior of Small Particles," Ind. Eng. Chem., vol. 57, no.9, 1965.

(61) Essenhigh, R.H., Kuo, T.J.,. "Combustion and Emission Phenomena in ùidnerators; Development of Physical and. Mathe matical Models of Incinerators, Part I; Statement of Problem," Proceedings 1970 National kdnerator Conference, ASME, New York, 1970, pp. 261-271.

(62) Essenhigh, R.H., and Kuo, T.J., "Development of Funda­ mental Basis for Incinerator Design Equations and Standards," Third Mid-Atlantic Industrial Waste Conferene Proceedings, University of Maryland, Nov. 1969 (1970). pp. 105-146.

(63) Essenhigh, R.H., and Ta-jin, K., "Development of Funda­ mental Basis for Incinerator Design Equations and Standards," U.S. Department of Health, Education, and Welfare, Technical Report No. FS/PHS8/69-4. (64) Essenhigh, R.H., and Thring, M.W., in "Science in the Use of Coal," The Institute of Fuel (London) (1958).

(65) Essenhigh, R.H., and Woodhead, D.W., Combustion Flame, 2, 365(1958).

(66) Essenhigh, R.H., and Yorke, G.C., "Reaction Rates of Single-Coal Particles: Influence of Swelling, Shape, and . Other Factors," Fuel, vol. 44, 1965.

F. (67) Field,. M.A., GUI, D.W., Morgan, B.B., and Hawksley, P.G.W., "Combustion of Pulverized Coal," Ch.5, p.l75, Br. Coal Utilization Research Assn. Leatherhead, England (1967).

(68) Filimonov, S.5., et al, "Calculation of Averasge Temper­ ature and Thermal Resistance of Heating Surfaces in Furnace Chambers", Teploenergetika, 1968, 15 (9) 25-23. (69) Fons, W.L., "Heating Ignition of Small Wood Cylinders," tad, Eng. Chem., voL 42, 1950.

(70) Frandsai, W.H., "A Model for Describing Fire Spread Rate Through a Fuel Bed," paper presented at Central States Meeting, The Combustion Institute, 1969.

(71) Frank-Kamenetskii, D,A., Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, 1955, (Russian 1st ed., 1947).

(72) Fristrom, R.M., and Westenberg, A.A., Flame Structure, McGraw-Hill Book Co., New York, N.Y., 1965, pp. 328-330, 344-350. (73) Frofaerg, R.W., "The Carbon-Oxygen Reaction: An Experi- 320 mental Study of the Oxidation of Suspended Carbon Spheres," Ph.D. Thesis, Dept, of Fuel Science, The Pennsylvania State University, University Park, Pa., June 1967.

G. (74 Gaydon, A.G., and Woifhard, H.G., Flames, Chapman and Hall, London, 2nd ed., 1960, chap.3.

(75) Godridge, A.M., "Heat Transfer in the Furnace Chamber of Puiverized-Fuei-FIred Water-Tufae Boilers", Journal of the Institute of Fuel, July 1967,

(76) Gray, B.F., and Yang, C.H., "On the Unification of the Thermal and Chain Theories of Explosion Limits," J. Phys, Chem., vol.69, no. 2767, 1965.

H. (77) Habelt, W.W., and Selker, A.P., "Operating Procedures and Prediction for N0„ Control in Steam Power Plants" 1974 Spring Technical Meeting of the Central States Section of the Com­ bustion Institue, Madison, Wisconsin, March 1974, C-E Paper NO.-TIS-4001.

(78) Heap, M.P., et, al. "Burner Criteria for NO^ Control, Volume 1," International Flame Research foundation, T Jnuiden,' ' GoJJand, Report EPA-600/2-76-0612, PB 259 911, March 1976. •

(79) Heap, M.P., Lowes, T.M., Walmsley, R., and Bartelds, H., "Burner Design Principles for Minimum NO^ Emissions," Pro­ ceedings, Coal Combustion Seminar, Research Triangle Park, • N.C. Sep 1973, EPA 650/2-73-021.

(80) Hermance, C.E., "A Detailed Model of the Combustion of Composite Solid Propellants," 2nd ICRPG/AIAA Solid Propel­ lant Conference, Anaheim, California, (81) Hlrose, T., and Mitunaga, A., "An Investigation of Radiant Heat Exchange In a Boiler," Bulletin of the JSME, Vol. 14, No.74, 1971.

(82) Hottel, H.C., "Heat Transmission by Radiation from Mon- Luminous Gases," Cleveland Meeting of the AIChE,June 2, 1927. (83) Hottel, H.C., "The Meichett Lecture for 1960: Radiative Transfer in Combustion Chambers", Journal of the Institute of Fuel, June 1961.

(84) Hottel, H.C., and Cohen, E.5., "Radiant Heat Exchange in a Gas-Filled Enclosure", ASME/AIChE Joint Heat Transfer Con­ ference, August 1957, University Park, PA, AIChE Paper No. 57-HT-23. (85) Hottei, H.C.r and Egbert, R.B., "Radiant Heat Transmission 321 from Water Vapor", presented at the Joint Heat Transfer Symposium of the ASME-AIChE, at Mass. Inst., of Tech.', May 13r 1942, Transactions of the AIChE, June 1942, Yoi.38, No.3.

(86) Hottelr H.C. and Morgan, A.C., 12th Symp. (Intern.) on Combustion, The Combustion Institute,. Pittsburgh (1969).

(87) Hottei, H.C. and Williams, G.C., "The Modeling of Fire- spread Through a Fuel Bed," paper presented at 10th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa., 1965 pp. 997-1007. (88) Hottel, H.C.,. Williams, G.C., and Baker, M.L., 6th Symp. (Intern.) on Combustion, Reinhold, New York (1957).

(89) Hottei, H.C., Williams, G.C., Nerheium, N.M., and Schneider, G.R., "Kinetic Studies in Stirred Reactors: Combus­ tion of Carbon Monoxide and Propane," Tenth Symposium CDntemational) . on Combustion, Combustion Institute, Pittsburgh,. Pa., 1965.

(90) Hottel, H.C., and Sarofim, A.F., Radiative Transfer, McGraw-Hill Book Co., New York, N.Y. 1967.

(91) Howell, J.R., "Radiative Interactions Between Absorbing- Emitting and Flowing Media with Internal Energy Generation," September 1966, Lewis Research Center, Cleveland, Ohio, NASA Technical Report TN-D-3614.

(92) Howell, J.R., and Perimutter, M., "Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls," ASME Paper No. 63-AHGT-i, Presented at ASME Conference, Los Angeles, CA, March 1963.

(93) Hsia, H.M., and Love, T.J., "Radiative Transfer Between Parallel Plates Separated by, a Nonisotherm ai Medium with Anisotropic Scattering," 1967, Transactions of the ASME Journal of Heat Transfer, ASME Paper No, 66-WA/HT-28.

I. (94) LI.A. Incinerator Standards, Incinerator Inst, of America, New York (May, 1966).

J. (95) Johnson, M.L.M., and Essenhigh, R.H., A.I. Chem. E. Symp. . Series No. 126, 68, 311 Ü972).

(96) Johnson, M. L,, "Combustion In the Afterburning Zone of Propane Flames: A Study of the Air Pollution Potential of CO from Hydrocarbon Fuels," Ph.D. Thesis, The Pennsylvania State University, University Park, Pa., September 1969.

(97) Johnstone, R.E., and thring, M.W., Pilot Plants, Models and Scale-up Methods in Chemical Engineering, McGraw-Hill Book Co., New York, N.Y., 1957. (98) Jones,' F.L., "A Simulation of the Opposed-Jet Diffusion 322 Flame Under the Influence of an Electric Field," Ph.D. Thesis» The Pennsylvania State University, ‘1971.

(99) Jones, G.W., and Scott,. G.S., U^. Bureau of Mines Report of tavestigation 3468, August 1939.

K. (100) Kaiser,. Elmer R., "Chemical Analyses of Refuse Compo­ nents," Proceedings of 1966 National Incinerator Conference.

(101) Kaiser,. E.R., and Friedman, S.B., "The Pyrolysis of Refuse Cdmponents," Preprint 37D, AICH 60th Annual Meeting, New York (Noverriber, 1967).

(102) Karasina, E»S., "Allowance for Fouling of Radiant Heating Surfaces," Teploenergetika, 1968 15 (6) 14-18.

(103) Kosdon, FJL, Williams, F.A. and Bum an, C., 12th Sym­ posium (Interdnational) on Combustion, The Combustion Insti­ tute,. 1968, p.253. (104) Kramer, R.T., "Advanced Features- Incorporated In the Miami County, Ohio, Incinerator," Preprint No. 68-WA/Inc.-4, ASME, New York, N.Y., 1968.

(105) Kreisinger, H., Kvitz, F.K., and Augustine, G.E., "Com­ bustion in the Fuel Bed of Hand-Fired Furnaces," U.S. Bureau of Mines technical Paper No. 137, 1916. (106) Kretschmer, D., and Odgers, J., "Modeling of Gas Turbine Combustors - A convenient Reaction Rate E^quation," ASME Paper No.71 - WA/GT-5, (1971).

(107) Kuo, T.J.; Kuwata, M., Shieh, W.S., and Essenhigh, R.H., "Combustion and Emission Phenomena in Incinerators; Physical and Mathematical Model of a Simple Incinerator, Part H: The Mechanistic Analysis," Proceedings 1970 National Incinerator Conference, ASME, New York, N.Y., 1970, pp. 327-330.

(108) Kuryiko, L., "The Unsteady and Steady Combustion of Carbon," Ph.D. Thesis, Fuel Science Section, The Pennsylvania State University, University Park, Pa., September 1969.

(109) Kuwata, M., and Essenhigh, R.H., "Comparative Influence of Turbulence and Convection In Combustor Performance", Paper No. IV 3, Presented at Natural Gas Research and Technology Conference, Atalanta, GA, June 1972.

(110) Kuwata; M-;, Kuo, T.J., and Essenhigh, R.H., "Combustion and Emission Phenomena in Incinerators: burning Rates and Operation Limits in a Solid Fuel Bed," Proceedings 1970 National Incinerator Conference, ASME, New York, 1970, pp. 272-287. (Ill) Kuwata, M., Stumbar, J.P., and Essenhigh, R.H., "Combus- 523 tion Behavior of Suspended Paper Spheres," Proc. Twelfth Symposium (International) on Combustion, Poitiers, France, July I96S, The Combustion Institute Pittsburgh, 1969, pp. 663- 675.

Lm. (112) Lachapellej. David G., "An Engineering Evaluation of a Radioactive-Waste Incinerators^ "Proc. 9th AEC Air Cleaning Conference, Sept.13-16, 1966^ CONF-660904.

(113) Ledinegg, M., "Factors for Determination of the Heat Release in Pulverized Coal and Oil Fired Furnaces", Presented a t the VGB Annual Session in Nuremberg, W. Germany, July 1965,. VGB No. 97-8165. (114) Levenspiei, O., Chemical Reaction Engineering, John Wiley & Sons, Inc., New York,. N . Y 1967.

(115) Lipska, A.E., and Wodiey, F.A., "Isothermal Pyrolysis of Cellulose," Naval Radiological Defence Laboratory Report No, N69-13444, March 1968..

(116) Lokshin, V.A., Semenovker, I.E., and Vikhrev, Yu.V., "Cal­ culating the Temperature Concütions of the Radiant Heating Surfaces in Supercritical Boilers", Teploenergetika, 1963, 15 (9) 21-24.-

(117) Longwell, J.P., and Weiss, M.A., "High Temperature Reaction Rates in Hydrocarbon Combustion," Ind.. Eng, Chem., V0I.47, no. 1634, 1955.

(118) Love, T.J., and Grosh, R.J., 'Radiation and Heat Transfer in absorbing, Emitting, and Scattering Media", Transaction of the ASME, Journal of Heat Transfer, 1964, ASME Paper No. 64- HT-28.

(119) Lutz, Michael, A., "Radiant Energy Loss from a Cesium- Argon Plasma to an Infinite Parallel Enclosure", September 1963, Avco Everett Research Laboratory, Everett, Mass., Research Report 175.

M. (120) MacLellan, D.E., "Thermal Efficiency of Industrial Fur­ naces: A Study of the Effect of Firing Rate and Output," M.S. Thesis, Department of Fuel Science, The Pennsylvania. State University, September, 1965, (121) Martin, S., Tenth Symposium (International) on Combus- 32.1+ tion. The Combustion Institute, Pittsburgh, Pa., 1965..

(122) Martin, G.B., and Berkau, E.E., "An Investigation of the Conversion of. Various Fuel Nitrogen Compounds to Nitrogen Oxides In Oil Combustion," presented at the AIChE National Meeting, Atlantic City,New Jersey, August 30, 1971.

(123) Mayers, M.A. "Temperature and Combustion Rates in Fuel Beds," Trans. ASME, vol. 59, 1937, pp. 279-233.

(124) McAdams, W.H., "Heat Transmission", McGraw-Hill Book Co., Inc., Third Edition, 1954.

(125) McAIevy, R.F., Lee, S.Y., and Smith, W.H., "The Linear Pyrolysis of Polymethylmethacrylate," Western States Combus­ tion Institute Meeting, Denver, Colorado, spring 1966.

(126) McAlevy, RJF., and Magee> R.S., "The Mechanism of Flame Spreading Over the Surface of Igniting Condensed-Phase Material," paper presented at 12th Symposium (International) on Combustion, The Combustion kstitute, Pittsburgh, Pa., 1969, pp. 217-227.

(127) Moles, F.Û., and Thring, M.W., "Minimum Burning Rates in Coke Fuel Beds," Science in the Use of Coal, The Institute of Fuel, London, 1953, p. E26.

(128) Muillkin. H.F., "Evaluation of Effective Radiant. Heating Surface and Application of the steian-Boltzmann Law to Heat Absorption in Boiler Furnaces", Transactions of the ASME, 1935,

(129) Murty, K.,* "Smoulder Propagation in Ceiluiosic Fuels, I. A Preliminary Mathematical Theory of the Physical Problem," paper presented at Central States Meeting, The Combustion Institute, 1969. N. (130) NichoUs, P., "Underfeed Combustion, Effect of Preheat and Distribution of Ash in Fuel Beds." uJs. Bureau of Mines Bulletin No. 387, 1934.

(131) Nlessen, W.R., Sarofim, A.F., Mohr, C.M., and Moore, R.W., "An Approach to Incinerator Combustible Pollutant Control," Proceedings 1972 National Incinerator Conference, New York, N.Y.

O. (132) Oming,. A.A., "Principles and Practices of Incineration," R.C. Corey (ed.). Interscience (1969). See also Federal Register 36 (No. 247), See 60.41(c), p.24878 (1971). (133) Oming, A ^ ., Pfeiffer, 3.J., Haroijd, W.C., and Schultz, J. 325 F., "Experimental Study of Incineration," 51st Annual Meeting of APCA, Philadelphia, Pa., May 25-29, 1958, No. 58-12.

P. (134) Palmer, H.B., and Cullis, C.F., in "Chemistry and Physics of Carbon,." P.L. Walker, (ed),. Vol. I, Marcel Dekker, New York (1965).

(135) Pan, Yuan-Slang, "Temperature Discontinuities and Energy Transfer in One-Dimensional Radiation Problems", June . 1965, Mass. Institute of Technology, Cambridge, Mass., U.S. Dept, of Commerce No. AD618220»

(136) Parker, W.J., "Flame Spread Model for Ceiluiosic Mater­ ials," paper presented at Central States Meeting, The Combus­ tion Institute, 1969.

(137) Penner, S.S., "Oil Drop Theory," In Chemistry Problems in Jet Propulsion, MacMillan Book Company, New York, N.Y., 1965, pp. 276-296.

(138) Penner, 5.S., and Varanasi, P., "Simplified Procedures for Estbnating Band and Total Emissivities of Polyatomic Mole­ cules", 11th International Symposium on Combustion, Univ. of California at Berkeley, 1966. The Combustion Institute, 1967, . Publishers.

(139) Pershing, D.W., and Wendt,. J.O.L., "Pollutant Control Through STaged Combustion of ‘Pulverized Coal," University of Arizona, Presented at the Sixteenth Internationa Symposium on Combustion, Boston, MA. August 1976.

R. (140) Rao, S.T.R., and Essenhigh, R.H., "Experimental Determi­ nation of Stirring Factors Generated by Straight and Swirling Jets in Isothermal Combustion Chamber Models," Proc. Thir­ teenth Symposium jTntemational) on Combustion, University of Utah, August 1970. The Combustion Institute, 1971, pp. 603- 614..

(141) Rao, S.T.R., and Essenhigh, R.H., "Incinerator Processes and Emissions," Progress Report on Program C(l); "Mixing Studies in Isothermal Models of Incinerator Combustion Cham­ bers," Rep. No. FS/PHS 3/69-3.

(142) Rao, 3.T.R., Gelemter, G., and Essenhigh, R.H., "Scale-up Factors for Combustion Pot Behavior in Predicting Incinerator Performance," Proceedings of the Third National Incinerator Conference, New York, 1963.

(143) Rao, S.T.R., Kuo, T.J., and Essenhigh, R.H., "Combustion and Emission Phenomena in Incinerators: Characterization of Stirring Factors by Gold Model Simulation," Proceedings 1970 National Incinerator Conference, ASME, New York, 1970, pp. 314-326. (iw) Rasbash, D.J., and Langford, B., "Burning of Wood in 326 Atmospheres of Reduced Oxygen," Fire Res, Abst. Rev., vol.iO, 196S..

(1^5) Rose,. A.H., and Crafaaugh, H.R., "Incinerator Design Stan­ dards:. Research Findings," Publications of the Los Angeles County Air Pollution Control District, No.ôO.

(146) Rothermal, R.C., "Tailoring the Fire Spread Rate Model to the Field," paper presented at Central States Meeting, The Combustion hstitute, 1969.

5- (147) Sabadeil, A.J., Wenograd, T.,. and Summerfield, M., "Measurement of Temperature Profiles Through Solid Propel­ lant Flames Using Fine Thermocouples," AIAA S., vol.3, 1965. (148) Sableski, J.T., Discussions of the Third National Incin­ erator Conference, American Society of Mechanical Engineers, New York, p.21, 1968.

(149) Schwartz, C.H., Oming, A.A., Snedden, R.B., Demeter, jij".,. Bienstock, D., "Development of a Vortex Incinerator with Continuous Feed," Proceedings 1972 National Incinerator Con­ ference, ASME, New York, N.Y., 1972, pp.145-154.

(150) Sensenbaugh, J.D., and Jonakin, S., "Effect of Combustion • Conditions on Nitrogen Oxide Formation in Boiler Furnaces," presented at the 1960 Winter Annual Meeting, ASME, New York, N.Y., Paper j/60-WA-334.

(151) Sensenbaugh, J.D., "Formation and Control of Oxides of Nitrogen in Combustion Processes," presented at Air Pollution Training Course, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio, March 3, 1966.

(152) Sherman, R.A., and Landry, B.A., Chemistry of Coal Utilization: Supplementary Volume (H. H. Lowry: Ed.); Ch.18; John Wiley, 1963.

(153) Shieh, W.S., Essenhigh, R.H., "Experimental Behavior of Waste Combustion in a Test Incinerator", Fourth Mid-Atlantic Industrial Waste Conference, University of Delaware, November 1970.

(154) Shieh, W.S., Kuo, T.J., Kuwata, M., and Essenhigh, R.H., "Development of Physical and Mathematical Models of Incin­ erators, Part H: Initial Testing of a Real System," Proceedings 1970 National Incinerator Conference, ASME, New York, 1970 pp.327-330......

(155) Silver, R.S., "Combustion In Fuel Beds," Fuel, voi.32, no.2, 1953. (156) Spalding, D,S., "The Calculation of Mass, Transfer Rate in 32? Absorption, Vaporization,. Condensation and Combustion Pro­ cess," Proc Inst. Mech. Eng., vol.168, 1954.

(157) Spalding, D.B., "Mathematical. Models, of Continuous Com­ bustion", Imperial College, England, Reprint from Emissions from continuous Combustion Systems, W. Comeiiums and W. G. Agnew, Plenum Publishing Corp., 227 W. 17th Street,. New York^N.y., 10011.

(158) Sparrow, E.M., and Haji-Sheikh, A., "A Generalized Varia­ tional Method for Calculating Radiant Interchange Between Surfaces", Transactions of the ASME, Journal of Heat Transfer, 1964, ASME Paper No. 64^HT-11.

(159) Spiers, H.M., Technical Data on Fuel, 6th Ed., p.80, Brit. Nat. Comm. World Power Conf. (1961).

(160) Stenburg, R.L., Hangebrauck, R.P., VonLehunden, D.J., and Rose, A.H., "Effects of High Volatile Fuel on Incinerator Effluents," 53rd Annual Meeting of APCA, Cincinnati, Ohio, May 22-26, I960.. (161) Steward, F.R., and Cannon, P., "The Calculation of Radia­ tive Heat Flux In a Cylindrical Furnace Using the Monte Carlo Method", ûît. Journal Heat & Mass Transfer, Vol.l4, pp. 245- 262, Pergamon Press Ltd. 1971.

(162) Stewart, I.M., and Kirov, N.Y., 15th Symp. (Internat.) on Combustion. The Combuistion Institute, Pittsburgh, Pa. 1975.

(163) Strehlow, R.A., Fundamentals of Combustion, Interna­ tional Textbook Co., Scranton, Pa., 1968.

(164) Stumbar, J.P., Kuwata, M., Kuo, T.J., and Essenhigh, R.H., "Combustion and Emission Phenomena in Incinerators: Propagation Velocity and Flame Spread Through Simulated Fuel Beds, Part I: Flame Spread Down a simulated Fuel Bed, Part U. The Mechanism of Flame Spread over a Ceiluiosic Surface," Proceedings 1970 National Incinerator Conference, ASME, New York, 1970, pp. 288-293, 293-303.

(165) Stumbar, J.P., and Essenhigh, R.H., "Flame Spread Down Cardaoard- Sticks and Paper Cylinders," Fire Research Ab­ stracts and REviews 10:112 (1968).

T. (166) Tarifa, C.S., Del Natario, P.P'., and Torralbo, A.M., "On the Process of Flame Spreading Over the Surface of Plastic Fuels in an 'Oxidizing Atmosphere," paper presented at 12th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa., 1969, pp. 229-240,

(167) Tarifa, C.S., and Torralbo, A.M., "Flame Propagation Along the Interface Between a Gas and a Reacting Medium," paper presented at 11th Symposium (International) on Combus- 328 tion. The Combustion Institute, Pittsburgh, Pa., 1567, pp.333- 3 # .

(168) Thekdi, A.C., et ai. "Furnace ' Analysis: A Comparative Study"; The Pennsylvania State Univ., Dept, of Fuel Science, 1569^ Technical Report No. FS/CGSSC-12/69-4.

(169) Thomas, P.H., and Law, M. "Experiments on the Spread of Fire," Fire Res. Abst, Rev., vol. 10, 1968.

(170) Thring, M.W., Coal Research, Sept.,. p.70 (1940); J. Inst. Fuel 19, 476 (1940); Fuel 31, 355 (1952).

(171) Thring, M.W., "The Degree of Interaction between Air and Solid Fuel: The- Effect of Fuel Size," Coal Research, BCURA Leatherhead, September 1944, p.70.

(172) Thring, M.W., The Science of Flames and Furnaces, (2nd ed.), John Wiley & Sons, Inc., New York, N.Y., 1962, Chapt. 3,4..

(173) Thring, M.W., and Essenhigh, R.H., Supplement to Chem- . istry of C o i Utilization, H.H. Lowry (ed.) John Wiley & Sons, Inc., New York, N.Y., 1963, Chapt. 17.

(174) Thring, M.W., and Refaer, J., "The Effect of Output on the Thermal EÔidency of Heating Appliances," J. Inst, Fuel, 1945.

(175) Tu, C.M., Davis, H., and Hottel, H.C., "Combustion Rate • of Carbon," Ind.. Eng. Chem., vol.26, 1934.

(176) Turner, D.W. et al, "Influence of Combustion Modification and Fuel Nitrogen Content on Nitrogen Oxides Emissions from Fuel Oil Combustion," presented at the 64th Annual Meeting, AIChE, San Francisco, November 23-December 2,1971.

U. (177) Underwood, G., and Thring, M.W., "Science in the Use of Coal," p.D27, The Institue of Fuel (London) (1968).

(178) U.S. Public Health Service, October 1967, "Specifications for Incinerator Testing at Federal Facilities." (179) Usiskin, C.M., and Sparrow, E.M,,. "Thermal Radiation Between ParaHei Plates Separated by an Absorbing-Emitting Nonisothermal Gas", Int. J. Heat & Mass Transfer - Voi. 1, 1960-Pergamon Press.

V. (180) Viskanta, R., "Heat Transfer by Conduction and Radiation in Absorbing.. and Scattering Materials", Purdue University, Lafayette, Indiana, 1964, Transactions of the ASME, Journal of Heat Transfer, ASME Paper No. 64-HT-33.

(181) Viskanta, R., and Grosh, R.J., "Heat Transfer in a Thermal Radiation Absorbing and Scattering Medium", International Developments in Heat Trasfer-Part IV, pp,32Q-8^, 1961 Inter- 329 national Heat Transfer Conference, Univ. of Colorado, Boulder, Colordo.

(182) Yulis, LA., Thermal Regimes of Comubstion, McGraw-Hill Book Co.y New York, N.Y., 1961.

W. (183) Walker, P.L., Rusinko, F.,. and Austin, L.G., "Gas Reac­ tions of Carbon," in Advances in Catalysis XI, 133-221 (1959).

(184) Weintraub, M., Oming, A.A., and Schwartz, C.H.,' Experi­ mental .Studies of Incineration in Cylindrical Combustion Cham­ bers, uis.. Bureau of Mines, RI 6908, 1967.

(185) Wersborg, B.L., Howard, J.B., and Williams, G.C., "Phy­ sical Mechanisms of Carbon Formation in Flames", Dept, of Chem. Eng.. MIT, Tech. Report MIT-66-PU, June 1972, Cam­ bridge, Mass. AD744920.

(186) Williams, F.A., Combustion Theory, Addison-Wesiey Pub­ lishing Company, Palo Alto, California, 1965.

(187) Williamson, John E.,- and Twiss, Herbert M., "Multiple- Chamber Incinerator Design Standards for Los Angeles County"-Technical Publication, Engineering Division, Air Pollu­ tion Control District, County of Los Angeles.

Z- (188) Zeinalov, M.A.O., and Kuwata, M., and Essenhigh, R.H., "Stirring Factors in Combustion Chambers: A Finite-Element Model of Mixing Along an Information Flow Path", 14th Interna­ tional Symposium on Combustion, The Pennsylvania State Uni­ versity, University Park, PA. August, 1972.

(189) Zeidovich, Ya. B., Sadovnikov, P.Ya., Frank-Kamenetskh, D.A., "Oxidation of Nitrogen in Combustion”, Academy of Sciences of the USSR, Institute of Chemical Physics, Moscow- Leningrad, Translated by M. Shelef, 1947, Scientific Research Staff, Ford Motor Co.

(190) ZIel, P.H., "Apartment House Incinerators," Publication No. 1280, Building Research Advisory Board Technical Study for Federal Housing Administration, National Academy of Sciences, National Research Council, 1965.