Time Travel and Other Mathematical Bewilderments Time Travel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ces`Aro's Integral Formula for the Bell Numbers (Corrected)
Ces`aro’s Integral Formula for the Bell Numbers (Corrected) DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-1532 [email protected] October 3, 2005 In 1885, Ces`aro [1] gave the remarkable formula π 2 cos θ N = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin pθ dθ p πe Z0 where (Np)p≥1 = (1, 2, 5, 15, 52, 203,...) are the modern-day Bell numbers. This formula was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the notation Np for Bell number was still in use then). I have not seen it in recent works and, while it’s not very profound, I think it deserves to be better known. Unfortunately, it contains a typographical error: a factor of p! is omitted. The correct formula, with n in place of p and using Bn for Bell number, is π 2 n! cos θ B = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin nθ dθ n ≥ 1. n πe Z0 eiθ The integrand is the imaginary part of ee sin nθ, and so an equivalent formula is π 2 n! eiθ B = Im ee sin nθ dθ . (1) n πe Z0 The formula (1) is quite simple to prove modulo a few standard facts about set par- n titions. Recall that the Stirling partition number k is the number of partitions of n n [n] = {1, 2,...,n} into k nonempty blocks and the Bell number Bn = k=1 k counts n k n n k k all partitions of [ ]. -
An Heptagonal Numbers
© April 2021| IJIRT | Volume 7 Issue 11 | ISSN: 2349-6002 An Heptagonal Numbers Dr. S. Usha Assistant Professor in Mathematics, Bon Secours Arts and Science College for Women, Mannargudi, Affiliated by Bharathidasan University, Tiruchirappalli, Tamil Nadu Abstract - Two Results of interest (i)There exists an prime factor that divides n is one. First few square free infinite pairs of heptagonal numbers (푯풎 , 푯풌) such that number are 1,2,3,5,6,7,10,11,13,14,15,17…… their ratio is equal to a non –zero square-free integer and (ii)the general form of the rank of square heptagonal Definition(1.5): ퟑ ퟐ풓+ퟏ number (푯 ) is given by m= [(ퟏퟗ + ퟑ√ퟒퟎ) + 풎 ퟐퟎ Square free integer: ퟐ풓+ퟏ (ퟏퟗ − ퟑ√ퟒퟎ) +2], where r = 0,1,2…….relating to A Square – free Integer is an integer which is divisible heptagonal number are presented. A Few Relations by no perfect Square other than 1. That is, its prime among heptagonal and triangular number are given. factorization has exactly one factors for each prime that appears in it. For example Index Terms - Infinite pairs of heptagonal number, the 10 =2.5 is square free, rank of square heptagonal numbers, square-free integer. But 18=2.3.3 is not because 18 is divisible by 9=32 The smallest positive square free numbers are I. PRELIMINARIES 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23……. Definition(1.1): A number is a count or measurement heptagon: Definition(1.6): A heptagon is a seven –sided polygon. -
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
MAT344 Lecture 6
MAT344 Lecture 6 2019/May/22 1 Announcements 2 This week This week, we are talking about 1. Recursion 2. Induction 3 Recap Last time we talked about 1. Recursion 4 Fibonacci numbers The famous Fibonacci sequence starts like this: 1; 1; 2; 3; 5; 8; 13;::: The rule defining the sequence is F1 = 1;F2 = 1, and for n ≥ 3, Fn = Fn−1 + Fn−2: This is a recursive formula. As you might expect, if certain kinds of numbers have a name, they answer many counting problems. Exercise 4.1 (Example 3.2 in [KT17]). Show that a 2 × n checkerboard can be tiled with 2 × 1 dominoes in Fn+1 many ways. Solution: Denote the number of tilings of a 2 × n rectangle by Tn. We check that T1 = 1 and T2 = 2. We want to prove that they satisfy the recurrence relation Tn = Tn−1 + Tn−2: Consider the domino occupying the rightmost spot in the top row of the tiling. It is either a vertical domino, in which case the rest of the tiling can be interpreted as a tiling of a 2 × (n − 1) rectangle, or it is a horizontal domino, in which case there must be another horizontal domino under it, and the rest of the tiling can be interpreted as a tiling of a 2 × (n − 2) rectangle. Therefore Tn = Tn−1 + Tn−2: Since the number of tilings satisfies the same recurrence relation as the Fibonacci numbers, and T1 = F2 = 1 and T2 = F3 = 2, we may conclude that Tn = Fn+1. -
Mathematical Circus & 'Martin Gardner
MARTIN GARDNE MATHEMATICAL ;MATH EMATICAL ASSOCIATION J OF AMERICA MATHEMATICAL CIRCUS & 'MARTIN GARDNER THE MATHEMATICAL ASSOCIATION OF AMERICA Washington, DC 1992 MATHEMATICAL More Puzzles, Games, Paradoxes, and Other Mathematical Entertainments from Scientific American with a Preface by Donald Knuth, A Postscript, from the Author, and a new Bibliography by Mr. Gardner, Thoughts from Readers, and 105 Drawings and Published in the United States of America by The Mathematical Association of America Copyright O 1968,1969,1970,1971,1979,1981,1992by Martin Gardner. All riglhts reserved under International and Pan-American Copyright Conventions. An MAA Spectrum book This book was updated and revised from the 1981 edition published by Vantage Books, New York. Most of this book originally appeared in slightly different form in Scientific American. Library of Congress Catalog Card Number 92-060996 ISBN 0-88385-506-2 Manufactured in the United States of America For Donald E. Knuth, extraordinary mathematician, computer scientist, writer, musician, humorist, recreational math buff, and much more SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications ANDREW STERRETT, JR.,Chairman Spectrum Editorial Board ROGER HORN, Chairman SABRA ANDERSON BART BRADEN UNDERWOOD DUDLEY HUGH M. EDGAR JEANNE LADUKE LESTER H. LANGE MARY PARKER MPP.a (@ SPECTRUM Also by Martin Gardner from The Mathematical Association of America 1529 Eighteenth Street, N.W. Washington, D. C. 20036 (202) 387- 5200 Riddles of the Sphinx and Other Mathematical Puzzle Tales Mathematical Carnival Mathematical Magic Show Contents Preface xi .. Introduction Xlll 1. Optical Illusions 3 Answers on page 14 2. Matches 16 Answers on page 27 3. -
The Entropy Conundrum: a Solution Proposal
OPEN ACCESS www.sciforum.net/conference/ecea-1 Conference Proceedings Paper – Entropy The Entropy Conundrum: A Solution Proposal Rodolfo A. Fiorini 1,* 1 Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milano, Italy; E- Mail: [email protected] * E-Mail: [email protected]; Tel.: +039-02-2399-3350; Fax: +039-02-2399-3360. Received: 11 September 2014 / Accepted: 11 October 2014 / Published: 3 November 2014 Abstract: In 2004, physicist Mark Newman, along with biologist Michael Lachmann and computer scientist Cristopher Moore, showed that if electromagnetic radiation is used as a transmission medium, the most information-efficient format for a given 1-D signal is indistinguishable from blackbody radiation. Since many natural processes maximize the Gibbs- Boltzmann entropy, they should give rise to spectra indistinguishable from optimally efficient transmission. In 2008, computer scientist C.S. Calude and physicist K. Svozil proved that "Quantum Randomness" is not Turing computable. In 2013, academic scientist R.A. Fiorini confirmed Newman, Lachmann and Moore's result, creating analogous example for 2-D signal (image), as an application of CICT in pattern recognition and image analysis. Paradoxically if you don’t know the code used for the message you can’t tell the difference between an information-rich message and a random jumble of letters. This is an entropy conundrum to solve. Even the most sophisticated instrumentation system is completely unable to reliably discriminate so called "random noise" from any combinatorially optimized encoded message, which CICT called "deterministic noise". Entropy fundamental concept crosses so many scientific and research areas, but, unfortunately, even across so many different disciplines, scientists have not yet worked out a definitive solution to the fundamental problem of the logical relationship between human experience and knowledge extraction. -
Elementary School Numbers and Numeration
DOCUMENT RESUME ED 166 042 SE 026 555 TITLE Mathematics for Georgia Schools,' Volume II: Upper Elementary 'Grades. INSTITUTION Georgia State Dept. of Education, Atlanta. Office of Instructional Services. e, PUB DATE 78 NOTE 183p.; For related document, see .SE 026 554 EDRB, PRICE MF-$0.33 HC-$10.03 Plus Postage., DESCRIPTORS *Curriculm; Elementary Educatia; *Elementary School Mathematics; Geometry; *Instruction; Meadurement; Number Concepts; Probability; Problem Solving; Set Thory; Statistics; *Teaching. Guides ABSTRACT1 ' This guide is organized around six concepts: sets, numbers and numeration; operations, their properties and number theory; relations and functions; geometry; measurement; and probability and statistics. Objectives and sample activities are presented for.each concept. Separate sections deal with the processes of problem solving and computation. A section on updating curriculum includes discussion of continuing program improvement, evaluation of pupil progress, and utilization of media. (MP) ti #######*#####*########.#*###*######*****######*########*##########**#### * Reproductions supplied by EDRS are the best that can be made * * from the original document. * *********************************************************************** U S DEPARTMENT OF HEALTH, EDUCATION & WELFARE IS NATIONAL INSTITUTE OF.. EDUCATION THIS DOCUMENT HA4BEEN REPRO- DuCED EXACTLY AS- RECEIVEDFROM THE PERSON OR ORGANIZATIONORIGIN- ATING IT POINTS OF VIEWOR 01NIONS STATED DO NOT NECESSARILYEpRE SENT OFFICIAL NATIONAL INSTITUTEOF TO THE EDUCATION4 -
Tiling the Plane with Equilateral Convex Pentagons Maria Fischer1
Parabola Volume 52, Issue 3 (2016) Tiling the plane with equilateral convex pentagons Maria Fischer1 Mathematicians and non-mathematicians have been concerned with finding pentago- nal tilings for almost 100 years, yet tiling the plane with convex pentagons remains the only unsolved problem when it comes to monohedral polygonal tiling of the plane. One of the oldest and most well known pentagonal tilings is the Cairo tiling shown below. It can be found in the streets of Cairo, hence the name, and in many Islamic decorations. Figure 1: Cairo tiling There have been 15 types of such pentagons found so far, but it is not clear whether this is the complete list. We will look at the properties of these 15 types and then find a complete list of equilateral convex pentagons which tile the plane – a problem which has been solved by Hirschhorn in 1983. 1Maria Fischer completed her Master of Mathematics at UNSW Australia in 2016. 1 Archimedean/Semi-regular tessellation An Archimedean or semi-regular tessellation is a regular tessellation of the plane by two or more convex regular polygons such that the same polygons in the same order surround each polygon. All of these polygons have the same side length. There are eight such tessellations in the plane: # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 Number 5 and number 7 involve triangles and squares, number 1 and number 8 in- volve triangles and hexagons, number 2 involves squares and octagons, number 3 tri- angles and dodecagons, number 4 involves triangles, squares and hexagons and num- ber 6 squares, hexagons and dodecagons. -
Code Library
Code Library Himemiya Nanao @ Perfect Freeze September 13, 2013 Contents 1 Data Structure 1 1.1 atlantis .......................................... 1 1.2 binary indexed tree ................................... 3 1.3 COT ............................................ 4 1.4 hose ........................................... 7 1.5 Leist tree ........................................ 8 1.6 Network ......................................... 10 1.7 OTOCI ........................................... 16 1.8 picture .......................................... 19 1.9 Size Blanced Tree .................................... 22 1.10 sparse table - rectangle ................................. 27 1.11 sparse table - square ................................... 28 1.12 sparse table ....................................... 29 1.13 treap ........................................... 29 2 Geometry 32 2.1 3D ............................................. 32 2.2 3DCH ........................................... 36 2.3 circle's area ....................................... 40 2.4 circle ........................................... 44 2.5 closest point pair .................................... 45 2.6 half-plane intersection ................................. 49 2.7 intersection of circle and poly .............................. 52 2.8 k-d tree .......................................... 53 2.9 Manhattan MST ..................................... 56 2.10 rotating caliper ...................................... 60 2.11 shit ............................................ 63 2.12 other .......................................... -
Leonardian Fluid Mechanics in the Codex Atlanticus VIII-IX
LEONARDIAN FLUID MECHANICS IN THE CODEX ATLANTICUS VIII-IX ENZO MACAGNO IIHR Monograph No. 115 Iowa Institute of Hydraulic Research The University of Iowa Iowa City, Iowa 52242-1585 August 1997 LEONARDIAN FLUID MECHANICS IN THE CODEX ATLANTICUS VIII-IX ENZO MACAGNO Sponsored by National Science Foundation and National Endowment for the Humanities IIHR Monograph No. 115 Iowa Institute of Hydraulic Research The University of Iowa Iowa City, Iowa 52242-1585 August 1997 i THE MAIN RESEARCH TOOL IN THE CRITICAL ANALYSIS OF LEONARDIAN FLUID MECHANICS Laboratory Methodology Beginning at Iowa in the early sixties, the laboratory methodology for the objective study of Leonardo's reported observations and experiments was gradually developed along more than three decades and is still in use. Long periods were spent in fluid mechanics and hydraulics laboratories in the USA and Europe (Iowa- Institute of Hydraulic Research, College of Engineering Iowa City, Institut fur Hydromechanik Karlsruhe , Laboratoire de Mécanique des Fluides Orsay, and others).Some illustrations of such a methodology are interspersed in this monograph. ii TABLE OF CONTENTS INTRODUCTION Opening Remarks.............................................................. 1 THE CODEX ATLANTICUS Brief History...........................................................................3 Publications of the Codex Atlanticus............................... 5 ORGANIZATION OF THIS VOLUME................................................7 FUTURE W ORK.............................................................................. -
Patterns in Figurate Sequences
Patterns in Figurate Sequences Concepts • Numerical patterns • Figurate numbers: triangular, square, pentagonal, hexagonal, heptagonal, octagonal, etc. • Closed form representation of a number sequence • Function notation and graphing • Discrete and continuous data Materials • Chips, two-color counters, or other manipulatives for modeling patterns • Student activity sheet “Patterns in Figurate Sequences” • TI-73 EXPLORER or TI-83 Plus/SE Introduction Mathematics has been described as the “science of patterns.” Patterns are everywhere and may appear as geometric patterns or numeric patterns or both. Figurate numbers are examples of patterns that are both geometric and numeric since they relate geometric shapes of polygons to numerical patterns. In this activity you will analyze, extend, and describe patterns involving figurate numbers and make connections between numeric and geometric representations of patterns. PTE: Algebra Page 1 © 2003 Teachers Teaching With Technology Patterns in Figurate Sequences Student Activity Sheet 1. Using chips or other manipulatives, analyze the following pattern and extend the pattern pictorially for two more terms. • • • • • • • • • • 2. Write the sequence of numbers that describes the quantity of dots above. 3. Describe this pattern in another way. 4. Extend and describe the following pattern with pictures, words, and numbers. • • • • • • • • • • • • • • 5. Analyze Table 1. Fill in each of the rows of the table. Table 1: Figurate Numbers Figurate 1st 2nd 3rd 4th 5th 6th 7th 8th nth Number Triangular 1 3 6 10 15 21 28 36 n(n+1)/2 Square 1 4 9 16 25 36 49 64 Pentagonal 1 5 12 22 35 51 70 Hexagonal 1 6 15 28 45 66 Heptagonal 1 7 18 34 55 Octagonal 1 8 21 40 Nonagonal 1 9 24 Decagonal 1 10 Undecagonal 1 .. -
Identities Via Bell Matrix and Fibonacci Matrix
Discrete Applied Mathematics 156 (2008) 2793–2803 www.elsevier.com/locate/dam Note Identities via Bell matrix and Fibonacci matrix Weiping Wanga,∗, Tianming Wanga,b a Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China b Department of Mathematics, Hainan Normal University, Haikou 571158, PR China Received 31 July 2006; received in revised form 3 September 2007; accepted 13 October 2007 Available online 21 February 2008 Abstract In this paper, we study the relations between the Bell matrix and the Fibonacci matrix, which provide a unified approach to some lower triangular matrices, such as the Stirling matrices of both kinds, the Lah matrix, and the generalized Pascal matrix. To make the results more general, the discussion is also extended to the generalized Fibonacci numbers and the corresponding matrix. Moreover, based on the matrix representations, various identities are derived. c 2007 Elsevier B.V. All rights reserved. Keywords: Combinatorial identities; Fibonacci numbers; Generalized Fibonacci numbers; Bell polynomials; Iteration matrix 1. Introduction Recently, the lower triangular matrices have catalyzed many investigations. The Pascal matrix and several generalized Pascal matrices first received wide concern (see, e.g., [2,3,17,18]), and some other lower triangular matrices were also studied systematically, for example, the Lah matrix [14], the Stirling matrices of the first kind and of the second kind [5,6]. In this paper, we will study the Fibonacci matrix and the Bell matrix. Let us first consider a special n × n lower triangular matrix Sn which is defined by = 1, i j, (Sn)i, j = −1, i − 2 ≤ j ≤ i − 1, for i, j = 1, 2,..., n.