AIRMASSES, FRONTS and FRONTAL ANALYSIS Airmasses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Air Masses and Fronts
CHAPTER 4 AIR MASSES AND FRONTS Temperature, in the form of heating and cooling, contrasts and produces a homogeneous mass of air. The plays a key roll in our atmosphere’s circulation. energy supplied to Earth’s surface from the Sun is Heating and cooling is also the key in the formation of distributed to the air mass by convection, radiation, and various air masses. These air masses, because of conduction. temperature contrast, ultimately result in the formation Another condition necessary for air mass formation of frontal systems. The air masses and frontal systems, is equilibrium between ground and air. This is however, could not move significantly without the established by a combination of the following interplay of low-pressure systems (cyclones). processes: (1) turbulent-convective transport of heat Some regions of Earth have weak pressure upward into the higher levels of the air; (2) cooling of gradients at times that allow for little air movement. air by radiation loss of heat; and (3) transport of heat by Therefore, the air lying over these regions eventually evaporation and condensation processes. takes on the certain characteristics of temperature and The fastest and most effective process involved in moisture normal to that region. Ultimately, air masses establishing equilibrium is the turbulent-convective with these specific characteristics (warm, cold, moist, transport of heat upwards. The slowest and least or dry) develop. Because of the existence of cyclones effective process is radiation. and other factors aloft, these air masses are eventually subject to some movement that forces them together. During radiation and turbulent-convective When these air masses are forced together, fronts processes, evaporation and condensation contribute in develop between them. -
Chapter 9 : Air Mass Air Masses Source Regions
4/29/2011 Chapter 9 : Air Mass • Air masses Contain uniform temperature and humidity characteristics. • Fronts Boundaries between unlike air • Air Masses masses. • Fronts • Fronts on Weather Maps ESS124 ESS124 Prof. Jin-Jin-YiYi Yu Prof. Jin-Jin-YiYi Yu Air Masses • Air masses have fairly uniform temperature and moisture Source Regions content in horizontal direction (but not uniform in vertical). • Air masses are characterized by their temperature and humidity • The areas of the globe where air masses from are properties. called source regions. • The properties of air masses are determined by the underlying • A source region must have certain temperature surface properties where they originate. and humidity properties that can remain fixed for a • Once formed, air masses migrate within the general circulation. substantial length of time to affect air masses • UidilidliliUpon movement, air masses displace residual air over locations above it. thus changing temperature and humidity characteristics. • Air mass source regions occur only in the high or • Further, the air masses themselves moderate from surface low latitudes; middle latitudes are too variable. influences. ESS124 ESS124 Prof. Jin-Jin-YiYi Yu Prof. Jin-Jin-YiYi Yu 1 4/29/2011 Cold Air Masses Warm Air Masses January July January July • The cent ers of cold ai r masses are associ at ed with hi gh pressure on surf ace weath er • The cen ters o f very warm a ir masses appear as sem i-permanentit regions o flf low maps. pressure on surface weather maps. • In summer, when the oceans are cooler than the landmasses, large high-pressure • In summer, low-pressure areas appear over desert areas such as American centers appear over North Atlantic (Bermuda high) and Pacific (Pacific high). -
The California Low-Level Coastal Jet and Nearshore Stratocumulus
Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2001 The California Low-Level Coastal Jet and Nearshore Stratocumulus Kalogiros, John http://hdl.handle.net/10945/34433 1.1 THE CALIFORNIA LOW-LEVEL COASTAL JET AND NEARSHORE STRATOCUMULUS John Kalogiros and Qing Wang* Naval Postgraduate School, Monterey, California 1. INTRODUCTION* and the warm air above land (thermal wind) and the frictional effect within the atmospheric This observational study focus on the boundary layer (Zemba and Friehe 1987, Burk and interaction between the coastal wind field and the Thompson 1996). The horizontal temperature evolution of the coastal stratocumulus clouds. The gradient follows the orientation of the coastline data were collected during an experiment in the (317° on the average in central California). Thus, summer of 1999 near the California coast with the the thermal wind has a northern and an eastern Twin Otter research aircraft operated by the component and local maximum of both Center for Interdisciplinary Remote Piloted Aircraft components of the wind is expected close to the Study (CIRPAS) at the Naval Postgraduate School top of the boundary layer. Topographical features (NPS). The wind components were measured with may intensify this wind jet at significant convex a DGPS/radome system, which provides a very bends of the coastline like Cape Mendocino, Pt accurate (0.1 ms-1) estimate of the wind (Kalogiros Arena and Pt Sur. At such changes of the and Wang 2001). The instrumentation of the coastline geometry combined with mountain aircraft included fast sensors for the measurement barriers (channeling effect) the northerly flow can of air temperature, humidity, shortwave and become supercritical. -
Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS a Thesis Submitted in Partial Fulfillment of the Re
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Ilya Neyman May 2013 The thesis of Ilya Neyman is approved: _______________________ _________________ Dr. Steve LaDochy Date _______________________ _________________ Dr. Ron Davidson Date _______________________ _________________ Dr. James Hayes, Chair Date California State University, Northridge ii TABLE OF CONTENTS SIGNATURE PAGE ii ABSTRACT iv INTRODUCTION 1 THESIS STATEMENT 12 IMPORTANT TERMS AND DEFINITIONS 13 LITERATURE REVIEW 17 APPROACH AND METHODOLOGY 24 TRADITIONALLY RECOGNIZED TORNADIC PARAMETERS 28 CASE STUDY 1: SEPTEMBER 10, 2011 33 CASE STUDY 2: JULY 29, 2003 48 CASE STUDY 3: JANUARY 19, 2010 62 CASE STUDY 4: MAY 22, 2008 91 CONCLUSIONS 111 REFERENCES 116 iii ABSTRACT FORECASTING CALIFORNIA THUNDERSTORMS By Ilya Neyman Master of Arts in Geography Thunderstorms are a significant forecasting concern for southern California. Even though convection across this region is less frequent than in many other parts of the country significant thunderstorm events and occasional severe weather does occur. It has been found that a further challenge in convective forecasting across southern California is due to the variety of sub-regions that exist including coastal plains, inland valleys, mountains and deserts, each of which is associated with different weather conditions and sometimes drastically different convective parameters. In this paper four recent thunderstorm case studies were conducted, with each one representative of a different category of seasonal and synoptic patterns that are known to affect southern California. In addition to supporting points made in prior literature there were numerous new and unique findings that were discovered during the scope of this research and these are discussed as they are investigated in their respective case study as applicable. -
Weather Numbers Multiple Choices I
Weather Numbers Answer Bank A. 1 B. 2 C. 3 D. 4 E. 5 F. 25 G. 35 H. 36 I. 40 J. 46 K. 54 L. 58 M. 72 N. 74 O. 75 P. 80 Q. 100 R. 910 S. 1000 T. 1010 U. 1013 V. ½ W. ¾ 1. Minimum wind speed for a hurricane in mph N 74 mph 2. Flash-to-bang ratio. For every 10 second between lightning flash and thunder, the storm is this many miles away B 2 miles as flash to bang ratio is 5 seconds per mile 3. Minimum diameter of a hailstone in a severe storm (in inches) A 1 inch (formerly ¾ inches) 4. Standard sea level pressure in millibars U 1013.25 millibars 5. Minimum wind speed for a severe storm in mph L 58 mph 6. Minimum wind speed for a blizzard in mph G 35 mph 7. 22 degrees Celsius converted to Fahrenheit M 72 22 x 9/5 + 32 8. Increments between isobars in millibars D 4mb 9. Minimum water temperature in Fahrenheit for hurricane development P 80 F 10. Station model reports pressure as 100, what is the actual pressure in millibars T 1010 (remember to move decimal to left and then add either 10 or 9 100 become 10.0 910.0mb would be extreme low so logic would tell you it would be 1010.0mb) Multiple Choices I 1. A dry line front is also known as a: a. dew point front b. squall line front c. trough front d. Lemon front e. Kelvin front 2. -
Weather Maps
Name: ______________________________________ Date: ________________________ Student Exploration: Weather Maps Vocabulary: air mass, air pressure, cold front, high-pressure system, knot, low-pressure system, precipitation, warm front Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. How would you describe your weather today? ____________________________________ _________________________________________________________________________ 2. What information is important to include when you are describing the weather? __________ _________________________________________________________________________ Gizmo Warm-up Data on weather conditions is gathered from weather stations all over the world. This information is combined with satellite and radar images to create weather maps that show current conditions. With the Weather Maps Gizmo, you will use this information to interpret a variety of common weather patterns. A weather station symbol, shown at right, summarizes the weather conditions at a location. 1. The amount of cloud cover is shown by filling in the circle. A black circle indicates completely overcast conditions, while a white circle indicates a clear sky. What percentage of cloud cover is indicated on the symbol above? ____________________ 2. Look at the “tail” that is sticking out from the circle. The tail points to where the wind is coming from. If the tail points north, a north wind is moving from north to south. What direction is the wind coming from on the symbol above? ________________________ 3. The “feathers” that stick out from the tail indicate the wind speed in knots. (1 knot = 1.151 miles per hour.) A short feather represents 5 knots (5.75 mph), a long feather represents 10 knots (11.51 mph), and a triangular feather stands for 50 knots (57.54 mph). -
Extratropical Cyclones and Anticyclones
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Courtesy of Jeff Schmaltz, the MODIS Rapid Response Team at NASA GSFC/NASA Extratropical Cyclones 10 and Anticyclones CHAPTER OUTLINE INTRODUCTION A TIME AND PLACE OF TRAGEDY A LiFE CYCLE OF GROWTH AND DEATH DAY 1: BIRTH OF AN EXTRATROPICAL CYCLONE ■■ Typical Extratropical Cyclone Paths DaY 2: WiTH THE FI TZ ■■ Portrait of the Cyclone as a Young Adult ■■ Cyclones and Fronts: On the Ground ■■ Cyclones and Fronts: In the Sky ■■ Back with the Fitz: A Fateful Course Correction ■■ Cyclones and Jet Streams 298 9781284027372_CH10_0298.indd 298 8/10/13 5:00 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Introduction 299 DaY 3: THE MaTURE CYCLONE ■■ Bittersweet Badge of Adulthood: The Occlusion Process ■■ Hurricane West Wind ■■ One of the Worst . ■■ “Nosedive” DaY 4 (AND BEYOND): DEATH ■■ The Cyclone ■■ The Fitzgerald ■■ The Sailors THE EXTRATROPICAL ANTICYCLONE HIGH PRESSURE, HiGH HEAT: THE DEADLY EUROPEAN HEAT WaVE OF 2003 PUTTING IT ALL TOGETHER ■■ Summary ■■ Key Terms ■■ Review Questions ■■ Observation Activities AFTER COMPLETING THIS CHAPTER, YOU SHOULD BE ABLE TO: • Describe the different life-cycle stages in the Norwegian model of the extratropical cyclone, identifying the stages when the cyclone possesses cold, warm, and occluded fronts and life-threatening conditions • Explain the relationship between a surface cyclone and winds at the jet-stream level and how the two interact to intensify the cyclone • Differentiate between extratropical cyclones and anticyclones in terms of their birthplaces, life cycles, relationships to air masses and jet-stream winds, threats to life and property, and their appearance on satellite images INTRODUCTION What do you see in the diagram to the right: a vase or two faces? This classic psychology experiment exploits our amazing ability to recognize visual patterns. -
Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1
Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Sharon Sessions, Satomi Sugaya, David Raymond, Adam Sobel New Mexico Tech SWAP 2011 nmtlogo 1This work is supported by the National Science Foundation Sessions (NMT) Multiple Equilibria in a CRM May2011 1/21 Self-Aggregation Bretherton et al (2005) precipitation 1 WVP = g rt dp R nmtlogo Day 1 Day 50 Sessions (NMT) Multiple Equilibria in a CRM May2011 2/21 Possible insight from limited domain WTG simulations Bretherton et al (2005) Day 1 Day 50 nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May2011 3/21 Weak Temperature Gradients in the Tropics Charney 1963 scaling analysis Extratropics (small Rossby number) F δθ ∼ r θ Ro Tropics (Rossby number not small) δθ ∼ Fr θ 2 −3 Froude number: Fr = U /gH ∼ 10 , measure of stratification −5 Rossby number: Ro = U/fL ∼ 10 /f , characterizes rotation nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May2011 4/21 Weak Temperature Gradients in the Tropics Charney 1963 scaling analysis Extratropics (small Rossby number) F δθ ∼ r θ Ro Tropics (Rossby number not small) δθ ∼ Fr θ 2 −3 Froude number: Fr = U /gH ∼ 10 , measure of stratification −5 Rossby number: Ro = U/fL ∼ 10 /f , characterizes rotation In the tropics, gravity waves rapidly redistribute buoyancy anomalies nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May2011 4/21 Weak Temperature Gradient (WTG) Approximation Sobel & Bretherton 2000 Single column model (SCM) representing one grid cell in a global circulation -
NWS Unified Surface Analysis Manual
Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV. -
December 2013
Oklahoma Monthly Climate Summary DECEMBER 2013 A frigid and sometimes icy December seemed a fitting way to 1.53 inches, about a half-inch below normal, to rank as the close out the boisterous weather of 2013. Preliminary data from 59th wettest December on record. That total is possibly an the Oklahoma Mesonet ranked the month as the 17th coolest underestimate due to the frozen precipitation, although the December on record at nearly 4 degrees below normal. Records moisture pattern across various parts of the state was quite of this type for Oklahoma date back to 1895. The statewide clear. Far southeastern Oklahoma received from 3-5 inches average temperature as recorded by the Mesonet was 35.2 during the month while western areas of the state received degrees. As chilly as it seemed, however, that mark provided less than a half-inch, in general. little threat to 1983’s record cold of 25.8 degrees, but also far cooler than 2012’s 42.1 degrees. There were two significant The cold December propelled 2013’s statewide average winter storms during December, each creating headaches for annual temperature to a mark of 58.9 degrees, 0.8 degrees travelers and power utility companies. The first storm struck on below normal and the 27th coolest calendar year on record for December 5-6 in two separate waves and brought freezing rain, the state. That mark stands in stark contrast to 2012’s record sleet and snow across the state. Significant snow totals of 5-6 warm year of 63.1 degrees. -
Thermal Conductivity of Materials
• DECEMBER 2019 Thermal Conductivity of Materials Thermal Conductivity in Heat Transfer – Lesson 2 What Is Thermal Conductivity? Based on our life experiences, we know that some materials (like metals) conduct heat at a much faster rate than other materials (like glass). Why is this? As engineers, how do we quantify this? • Thermal conductivity of a material is a measure of its intrinsic ability to conduct heat. Metals conduct heat much faster to our hands, Plastic is a bad conductor of heat, so we can touch an which is why we use oven mitts when taking a pie iron without burning our hands. out of the oven. 2 What Is Thermal Conductivity? Hot Cold • Let’s recall Fourier’s law from the previous lesson: 푞 = −푘∇푇 Heat flow direction where 푞 is the heat flux, ∇푇 is the temperature gradient and 푘 is the thermal conductivity. • If we have a unit temperature gradient across the material, i.e.,∇푇 = 1, then 푘 = −푞. The negative sign indicates that heat flows in the direction of the negative gradient of temperature, i.e., from higher temperature to lower temperature. Thus, thermal conductivity of a material can be defined as the heat flux transmitted through a material due to a unit temperature gradient under steady-state conditions. It is a material property (independent of the geometry of the object in which conduction is occurring). 3 Measuring Thermal Conductivity • In the International System of Units (SI system), thermal conductivity is measured in watts per -1 -1 meter-Kelvin (W m K ). Unit 푞 W ∙ m−1 푞 = −푘∇푇 푘 = − (W ∙ m−1 ∙ K−1) ∇푇 K • In imperial units, thermal conductivity is measured in British thermal unit per hour-feet-degree- Fahrenheit (BTU h-1ft-1 oF-1).