Science Behind Civil War Balloons NYS Standards: MST 1, 4, 5, 6; SS

Total Page:16

File Type:pdf, Size:1020Kb

Science Behind Civil War Balloons NYS Standards: MST 1, 4, 5, 6; SS Science Behind Civil War Balloons NYS Standards: MST 1, 4, 5, 6; SS 1 ELA Common Core SL 1, 2, 3, 4 Goal—The goal of this lesson is to learn about balloon use during the Civil War along with the scientific concepts involved in lighter-than-air flight. Objectives • Students will identify the function of balloons in combat. • Students will demonstrate understanding of buoyancy. • Students will identify the gas generation process as a chemical reaction. • Students will identify the gas generation reaction as an exothermic reaction. • Students will explain the gas generation process in terms of chemical formula and end result. • Students will define “combustion” and identify the byproducts of the combustion reaction. • Students will demonstrate knowledge relating to Thaddeus Lowe, the foremost of the Civil War balloonists. Materials • Video of hydrogen creation (link on GCV&M website) • Clear drinking glass • Marble • Ping Pong Ball • Deflated party balloon • Civil War Balloon images (download from GCV&M website) I. Brief history of ballooning: A. The first hot air and hydrogen balloons were built and flown in France in 1783. Ballooning was a popular entertainment in Europe and in America starting in 1793 with Jean Pierre Blanchard. B. The French army used balloons starting in the 1790s. France and other European countries used them for war throughout the early 19th century. C. Ask: what do you think were balloons used? What purpose could they serve in battle? Make a list of answers (either mentally/verbally or on a whiteboard) D. Discuss the uses of balloons: map-making, drawing enemy positions and fortifications, watching troop movements, counting troop numbers (using tents/fires), directing artillery fire; compare to the use of surveillance planes and drones in modern warfare. E. Balloons were considered for use during the 1830s Seminole Wars and the 1846 Mexican War in the United States, but nothing came of it. John Wise was the most Science in the Civil War Focused Field Study Online, Spring 2020, www.gcv.org well-known American aeronaut, but other “young upstarts” like John LaMountain, James Allen, and Thaddeus Lowe started making and flying balloons in the 1850s. II. Thaddeus Lowe: A. From NH and interested in science from a young age. Went to a one-room schoolhouse a few months out of the year but had no more than the equivalent of a 6th Grade education. B. He read about science and conducted experiments on his own. One involved placing the family cat in a cage beneath a huge kite and attached a lantern beneath it when he was 16 years old. He fastened kite to a hitching post and left it flying there all night. The kite supposedly rose 1,000 ft. into the air. The next day local newspapers reported seeing strange lights floating about in the evening. The cat fled once he brought the kite down and released it. He decided then and there not to put another animal in harms way again. His thoughts of using a kite to life himself off the ground were stopped, and he started reading everything he could find on aeronautics. C. Lowe became an assistant to a traveling science lecturer (Professor Reginald Dinkelhoff), and by age 18 began touring and doing scientific lectures all over the country. D. He made enough money to start making and flying balloons. E. When the Civil War started, he demonstrated his balloons in Washington, D.C. He was the first person to use a telegraph machine from a balloon. This impressed President Lincoln who introduced him to the commander of the army. Lowe eventually was put in charge of the balloon corps. III. How did the balloons fly? A. Army balloons used during the Civil War were NOT hot air balloons. Ask: what were they filled with that made them float? B. Explain that the balloons were filled with either coal gas from city gas lines (normally used for lighting) or with hydrogen gas. These gasses were used because they were lighter than air and made the balloon buoyant. C. Discuss buoyancy: buoyancy is an upward force exerted by a liquid or gas that opposes the weight of an immersed object. If an object is more dense than the liquid or gas around it, it will sink. If an object is less dense than the liquid or gas around it, it will rise. D. Demonstrate buoyancy: i. Fill a clear drinking glass with water. ii. Drop a glass or metal marble and observe it sink. Explain that since the glass/metal is more dense than the water, the object sinks. In other words, the weight of the object and the downward force caused by gravity is stronger than the buoyancy or upward force of the water. iii. Push a ping-pong ball down into the water and observe it rise. Explain that since the air inside the ball is less dense than the water, the object floats. In other words, the upward buoyant force exerted by the water is stronger than the downward force caused by the object’s weight. iv. Explain that this same concept works for a party balloon full of helium or a Civil War balloon full of hydrogen. Since the gas was less dense than the air Science in the Civil War Focused Field Study Online, Spring 2020, www.gcv.org around it, the upward buoyant force was stronger than the downward force caused by gravity. Thus, the balloons would rise rather than sink. v. Blow up a party balloon. Ask: will this balloon sink or rise? Why? It will, of course, sink. This is because the air inside is the same density as the air outside and the downward force caused by the weight of the balloon is stronger than the upward buoyant force exerted by the surrounding air. Release the balloon and show the result. E. Thaddeus Lowe designed a machine to manufacture the hydrogen gas needed to make his balloons buoyant. i. Show the original Civil War photograph of the gas generators being used to inflate the balloon. ii. Explain that the generators were basically big tanks. Several ingredients would be combined in the tanks. They would then react and give off a new material: hydrogen gas. Ask: what kind of a reaction is this? A chemical reaction. iii. The materials to be combined were 3,300 lbs. of iron, water, and 10 large carboys of sulfuric acid. The resulting reaction would produce ferrous sulfate byproduct, about 32,000 cubic feet of hydrogen gas, and a great deal of heat. iv. Write the formula for the reaction on the board: Fe + H2SO4 → H2 + FeSO4 and explain each of the components (Iron+sulfuric acid makes hydrogen+ferrous sulfate). v. Ask: A chemical reaction that gives off heat is called what? An exothermic reaction. Explain the parts of that term: exo-meaning to give off, and thermic-meaning heat, as in a thermometer. F. Demonstration of the gas generation process. i. Show video of hydrogen gas production ii. Talk through process, prompting students to see if they understood what took place during video. a. Explain that the first flask represents the large generator boxes used during the Civil War, just on a much smaller scale (and not on wheels!). First, hydrochloric acid was added. Tell the students that sulfuric acid would have been used during the Civil War, because it was more readily available. Ask: who do you think dumped this hazardous stuff into the tank? Soldiers. b. Explain that the second flask represents the cooler/purifier boxes. These boxes will clean any left over acid out of the gas and cool the gas down. If hot gas goes into the balloon, it will soon cool and contract and the balloon will not float. c. Aluminum foil balls (about 15) added to the acid. Explain that iron would have been used during the Civil War and would have been provided by the navy yard, with what was left over after making steam boilers and ironclad warships. d. As the reaction began, point out that there was a lot of heat. Ask: what kind of reaction is this? Exothermic. Science in the Civil War Focused Field Study Online, Spring 2020, www.gcv.org f. Observe as the gas fills the balloon. Reinforce that the water in the 2nd flask is cooling the gas. This means that it will not cool and contract inside the balloon. g. After a few moments, the water from the 2nd flask was sucked into the first. This is because the pressure of the gas in the 1st flask was much less than that of the outside air. The air pushes the water into the 1st flask! h. Ask: why did the balloon float? Why? The density of the gas inside is less than the air outside. Therefore, the upward force exerted by the surrounding air will be stronger than the downward force caused by the balloon’s weight making it buoyant! i. Hydrogen gas is highly combustible. Ask: what does combustible mean? Combustion is a highly exothermic chemical reaction where a combustible material, like hydrogen, reacts rapidly with oxygen to create extreme heat. Another word for this would be an explosion! The formula for hydrogen combustion: 2 H2 + O2 → 2 H2O + heat. Explain the components (hydrogen+oxygen makes water+heat/fire). Explain that when the gas is exposed to the flame, it will rapidly combine with oxygen and combust. This will make a ball of fire and a big boom! There is some moisture left behind on the exploded pieces of the balloon. This is the water created by rapidly combining the hydrogen and oxygen to make H2O.
Recommended publications
  • Lighter-Than-Air Vehicles for Civilian and Military Applications
    Lighter-than-Air Vehicles for Civilian and Military Applications From the world leaders in the manufacture of aerostats, airships, air cell structures, gas balloons & tethered balloons Aerostats Parachute Training Balloons Airships Nose Docking and PARACHUTE TRAINING BALLOONS Mooring Mast System The airborne Parachute Training Balloon system (PTB) is used to give preliminary training in static line parachute jumping. For this purpose, an Instructor and a number of trainees are carried to the operational height in a balloon car, the winch is stopped, and when certain conditions are satisfied, the trainees are dispatched and make their parachute descent from the balloon car. GA-22 Airship Fully Autonomous AIRSHIPS An airship or dirigible is a type of aerostat or “lighter-than-air aircraft” that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft, and unlike hot air balloons, stay aloft by filling a large cavity with a AEROSTATS lifting gas. The main types of airship are non rigid (blimps), semi-rigid and rigid. Non rigid Aerostats are a cost effective and efficient way to raise a payload to a required altitude. airships use a pressure level in excess of the surrounding air pressure to retain Also known as a blimp or kite aerostat, aerostats have been in use since the early 19th century their shape during flight. Unlike the rigid design, the non-rigid airship’s gas for a variety of observation purposes.
    [Show full text]
  • Poster Presentation
    AN OVERVIEW OF AERIAL APPROACHES TO EXPLORING SCIENTIFIC REGIONS AT TITAN M.Pauken1, J. L. Hall1, L. Matthies1, M. Malaska1, J. A. Cutts1, P. Tokumaru2, B. Goldman3 and M. De Jong4 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA; 2AeroVironment Inc., Monrovia, CA 3Global Aerospace, Monrovia CA, 4Thin Red Line Aerospace, Chilliwack, BC Scientific Motivations Aerial Platforms for Scientific Exploration • Titan has a rich and abundant supply of organic molecules and a hydrology cycle based on cryogenic hydrocarbons. Titan • Aerial platforms are ideal for performing initial environments include organic, dunes, plains, and hydrocarbon lakes and seas. reconnaissance of such locations by remote sensing • Titan may have had near-surface liquid water from impact melt pools and possible cryovolcanic outflows that may have mixed with and following it up with in situ analysis. surface organics to create biologically interesting molecules such as amino acids. • The concept of exploring at Titan with aerial vehicles • These environments present unique and important locations for investigating prebiotic chemistry, and potentially, the first steps dates back to the 1970s [2]. towards life. • NASA initiated studies of Titan balloon missions in • When the Huygens Probe descended through Titan’s atmosphere it determined the atmosphere was clear enough to permit imaging the early 1980s [3]. of the surface from 40-km altitude and had a rich variety of geological features. Winds were light and diurnal changes were minimal • JPL
    [Show full text]
  • Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883
    Journal of Aviation/Aerospace Education & Research Volume 13 Number 1 JAAER Fall 2003 Article 1 Fall 2003 Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883 Thomas Forenz Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Forenz, T. (2003). Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883. Journal of Aviation/Aerospace Education & Research, 13(1). https://doi.org/10.15394/ jaaer.2003.1559 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Forenz: Assessing the Evolution of the Airborne Generation of Thermal Lif Thermal Lift ASSESSING THE EVOLUTION OF THE AIRBORNE GENERATION OF THERMAL LIFT IN AEROSTATS 1783 TO 1883 Thomas Forenz ABSTRACT Lift has been generated thermally in aerostats for 219 years making this the most enduring form of lift generation in lighter-than-air aviation. In the United States over 3000 thermally lifted aerostats, commonly referred to as hot air balloons, were built and flown by an estimated 12,000 licensed balloon pilots in the last decade. The evolution of controlling fire in hot air balloons during the first century of ballooning is the subject of this article. The purpose of this assessment is to separate the development of thermally lifted aerostats from the general history of aerostatics which includes all gas balloons such as hydrogen and helium lifted balloons as well as thermally lifted balloons.
    [Show full text]
  • How to Inflate a Hot Air Balloon
    How to Inflate a Hot Air Balloon By Douglas Crook On June 4th, 1783, the Montgolfier brothers made history when they flew a massive balloon capable of carrying multiple people over the French Countryside. Today, this tradition continues to leave those both in the balloon and on the ground in amazement. Although riding or flying a hot air balloon is extremely intriguing, there are many precautions that must be followed in order to ensure a safe and satisfying trip into the atmosphere. The process for preparing a hot air balloon for flight tends to be extensive, so it is of the upmost importance to carefully follow all instructions during preflight procedures. This instruction set will feature specific steps for crew members and pilots to safely and effectively inflate a hot air balloon for takeoff. DANGER: Improper set up procedures relating to the balloon, basket, burner, or crew may lead to serious injury or even death. All Federal Aviation Administration rules and regulations must be followed in order to ensure a safe flight. WARNING: The pilot utilized during flight must have an up to date license issued by the Federal Aviation Administration and have a certain number of previous flying hours in a Hot Air Balloon. Failure to do so could result in fines and time in jail. CAUTION: This instruction set has been created to provide the user with a basic understanding of the procedures involved in the hot air balloon inflation process. The pilot and crew members should have extensive training and experience with the balloon that they are working with.
    [Show full text]
  • FAA Regulations of Ultralight Vehicles Sudie Thompson
    Journal of Air Law and Commerce Volume 49 | Issue 3 Article 4 1984 FAA Regulations of Ultralight Vehicles Sudie Thompson Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation Sudie Thompson, FAA Regulations of Ultralight Vehicles, 49 J. Air L. & Com. 591 (1984) https://scholar.smu.edu/jalc/vol49/iss3/4 This Comment is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. Comments FAA REGULATION OF ULTRALIGHT VEHICLES SUDIE THOMPSON A RELATIVELY NEW form of sport and recreational avi- ation has swept the aviation industry - ultralights. Ul- tralights are the first airplanes to have been developed and marketed as "air recreational vehicle[s]." ' Powered ul- tralights are featherweight planes which cost between $2,800 and $7,000.2 Unpowered ultralights are most frequently called hang gliders.' It is estimated that the worldwide total of powered and unpowered ultralights of all types is 25,000,' and one source predicts that the world total of 20,000, pow- ered ultralights will soon double.5 An October, 1981, article places the Federal Aviation Administration's (FAA) estimate of the number of powered ultralights flying in the United States alone at about 2,500.6 Less than one year later the Experimental Aircraft Association (EAA) and the FAA in- creased their estimates of the number of operational powered and unpowered ultralights (excluding true hang gliders) to 7 10,000.
    [Show full text]
  • Airships Over Lincolnshire
    Airships over Lincolnshire AIRSHIPS Over Lincolnshire explore • discover • experience explore Cranwell Aviation Heritage Museum 2 Airships over Lincolnshire INTRODUCTION This file contains material and images which are intended to complement the displays and presentations in Cranwell Aviation Heritage Museum’s exhibition areas. This file looks at the history of military and civilian balloons and airships, in Lincolnshire and elsewhere, and how those balloons developed from a smoke filled bag to the high-tech hybrid airship of today. This file could not have been created without the help and guidance of a number of organisations and subject matter experts. Three individuals undoubtedly deserve special mention: Mr Mike Credland and Mr Mike Hodgson who have both contributed information and images for you, the visitor to enjoy. Last, but certainly not least, is Mr Brian J. Turpin whose enduring support has added flesh to what were the bare bones of the story we are endeavouring to tell. These gentlemen and all those who have assisted with ‘Airships over Lincolnshire’ have the grateful thanks of the staff and volunteers of Cranwell Aviation Heritage Museum. Airships over Lincolnshire 3 CONTENTS Early History of Ballooning 4 Balloons – Early Military Usage 6 Airship Types 7 Cranwell’s Lighter than Air section 8 Cranwell’s Airships 11 Balloons and Airships at Cranwell 16 Airship Pioneer – CM Waterlow 27 Airship Crews 30 Attack from the Air 32 Zeppelin Raids on Lincolnshire 34 The Zeppelin Raid on Cleethorpes 35 Airships during the inter-war years
    [Show full text]
  • DYNAMIC MODELING of AUTOROTATION for SIMULTANEOUS LIFT and WIND ENERGY EXTRACTION by SADAF MACKERTICH B.S. Rochester Institute O
    DYNAMIC MODELING OF AUTOROTATION FOR SIMULTANEOUS LIFT AND WIND ENERGY EXTRACTION by SADAF MACKERTICH B.S. Rochester Institute of Technology, 2012 A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Mechanical and Aerospace Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Spring Term 2016 Major Professor: Tuhin Das c 2016 Sadaf Mackertich ii ABSTRACT The goal of this thesis is to develop a multi-body dynamics model of autorotation with the objective of studying its application in energy harvesting. A rotor undergoing autorotation is termed an Autogyro. In the autorotation mode, the rotor is unpowered and its interaction with the wind causes an upward thrust force. The theory of an autorotating rotorcraft was originally studied for achieving safe flight at low speeds and later used for safe descent of helicopters under engine failure. The concept can potentially be used as a means to collect high-altitude wind energy. Autorotation is inherently a dynamic process and requires detailed models for characterization. Existing models of autorotation assume steady operating conditions with constant angu- lar velocity of the rotor. The models provide spatially averaged aerodynamic forces and torques. While these steady-autorotation models are used to create a basis for the dynamic model developed in this thesis, the latter uses a Lagrangian formulation to determine the equations of motion. The aerodynamic effects on the blades that produce thrust forces, in- plane torques, and out-of-plane torques, are modeled as non-conservative forces within the Lagrangian framework.
    [Show full text]
  • The History of Balloon Flight
    Science Passage #3 The History of Balloon Flight About 130,000 spectators, including King Louis XVI, looked up into the sky above France and saw a large balloon soaring overhead. The balloon was filled with hot air. It had a basket attached to the bottom of it. The basket held the first passengers ever to fly in a hot-air balloon. The day was September 19, 1783. After eight minutes and two miles of flight, the balloon landed. All of the passengers got off safely. Who were the passengers? They were a sheep, a duck, and a rooster. Only a year before, two men filled a silk and paper bag with hot air and watched as it rose up to the ceiling of a house. Since the hot air was less dense than the air around it, it could rise. These men, who were brothers, started experimenting with bigger and bigger bags. It was they who, under advice from the king, launched the farm animals into the sky on that September day in 1783. The early balloon looked a little different than the hot-air balloons do of today. For one thing, it was highly decorated to impress the French royalty in the crowd. Only two months later, the first humans flew in a hot-air balloon. It took a lot of bravery because it was still a very young science. The first man to fly in a balloon was a chemistry and physics teacher. He just went straight up and then straight back down. Why? His balloon was tethered to the ground with a rope.
    [Show full text]
  • Don Piccard 50 Years & BM
    July 1997 $3.50 BALLOON LIFE EDITOR MAGAZINE 50 Years 1997 marks the 50th anniversary for a number of important dates in aviation history Volume 12, Number 7 including the formation of the U.S. Air Force. The most widely known of the 1947 July 1997 Editor-In-Chief “firsts” is Chuck Yeager’s breaking the sound barrier in an experimental jet—the X-1. Publisher Today two other famous firsts are celebrated on television by the “X-Files.” In early Tom Hamilton July near the small southwestern New Mexico town of Roswell the first aliens from outer Contributing Editors space were reported to have been taken into custody when their “flying saucer” crashed Ron Behrmann, George Denniston, and burned. Mike Rose, Peter Stekel The other surreal first had taken place two weeks earlier. Kenneth Arnold observed Columnists a strange sight while flying a search and rescue mission near Mt. Rainier in Washington Christine Kalakuka, Bill Murtorff, Don Piccard state. After he landed in Pendelton, Oregon he told reporters that he had seen a group of Staff Photographer flying objects. He described the ships as being “pie shaped” with “half domes” coming Ron Behrmann out the tops. Arnold coined the term “flying saucers.” Contributors For the last fifty years unidentified flying objects have dominated unexplainable Allen Amsbaugh, Roger Bansemer, sighting in the sky. Even sonic booms from jet aircraft can still generate phone calls to Jan Frjdman, Graham Hannah, local emergency assistance numbers. Glen Moyer, Bill Randol, Polly Anna Randol, Rob Schantz, Today, debate about visitors from another galaxy captures the headlines.
    [Show full text]
  • Easy Access Rules for Balloons
    Easy Access Rules for Balloons EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published September 20201 Copyright notice © European Union, 1998-2020 Except where otherwise stated, reuse of the EUR-Lex data for commercial or non-commercial purposes is authorised provided the source is acknowledged ('© European Union, http://eur-lex.europa.eu/, 1998-2020') 2. Cover page picture: © kadawittfeldarchitektur 1 The published date represents the date when the consolidated version of the document was generated. 2 Euro-Lex, Important Legal Notice: http://eur-lex.europa.eu/content/legal-notice/legal-notice.html. Powered by EASA eRules Page 2 of 345| Sep 2020 Easy Access Rules for Balloons Disclaimer DISCLAIMER This version is issued by the European Union Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication related to balloons.
    [Show full text]
  • Cameron O-120 Hot Air Balloon, G-BVXF Year of Manufacture
    AAIB Bulletin: 10/2011 G-BVXF EW/C2011/0101 ACCIDENT Aircraft Type and Registration: Cameron O-120 hot air balloon, G-BVXF Year of Manufacture: 1994 Date & Time (UTC): 1 January 2011 at 0947 hrs Location: Midsomer Norton, Somerset Type of Flight: Private Persons on Board: Crew - 1 Passengers - 1 Injuries: Crew - 1 (Fatal) Passengers - 1 (Fatal) Nature of Damage: Balloon destroyed Commander’s Licence: Private Pilot’s Licence (Balloons and Airships) Commander’s Age: 42 years Commander’s Flying Experience: 194 hours on balloons Last 90 days - 2 hours Last 28 days - 0 hours Information Source: AAIB Field Investigation Synopsis Background information The pilot was attempting to climb to an altitude of 6,000 m One of the elements for award of the BBAC Gold Badge (approximately 19,700 ft). Having reached an altitude is to achieve a flight to an altitude of over 6,000 m amsl. of 21,500 ft the balloon descended for about 80 seconds The pilot was attempting this element. There have been at approximately 1,500 ft/min. It then entered a rapid 23 successful Gold Badge flights over 6,000 m altitude descent of approximately 5,500 ft/min from which it in the UK, and additionally there have been numerous did not recover. In the latter stages of the descent the flights over 4,000 m made by British balloon pilots in envelope was seen in a collapsed, ‘streamered’ state. the Alps. There was a post‑impact fire, which damaged much of the balloon basket and envelope. Members of the ground crew recalled that the pilot started planning for the attempt in October 2010.
    [Show full text]
  • Scientists in School Teacher Resource Package: Air and Flight
    Air and Flight It’s a bird, it’s a plane…what is that in the air and, more importantly, how did it get there? For thousands of years, humans have looked into the sky and wondered how the objects they saw flying in the sky stayed aloft. Flight takes many forms, from seeds drifting in the wind, birds soaring on warm air thermals, to rockets blasting through the atmosphere. Nature perfected flight and, for thousands of years, humans tried to copy it but the feat proved to be quite elusive and became almost magical. The Greeks created Icarus, who flew on wings of wax. Russian and Arabian folk tales told of flying carpets. Eventually however, humans found that the mechanics of flight came down to the relationship between gravity, lift, thrust and drag, and not long after, humans were flying to the moon. Background Information Humans have dreamed about flying for thousands of years. In the mid-15th century, an anonymous manuscript was found that depicted a design for a parachute. Around 1485, Leonardo da Vinci sketched plans for an ornithopter, an aircraft that flies by flapping wings. However his design was heavy and no one was strong enough to actually flap the wings. Hot air balloons are classified as “lighter-than-air” aircrafts, and were first introduced to the world in 1783. Almost 70 years later, Henri Giffard, a French engineer, created the first powered aircraft: a steam engine powered airship or dirigible (balloon filled with hydrogen). Airships were the first aircraft to enable controlled, powered flight, and were widely used before the 1940s.
    [Show full text]