Equalizing the Information Amounts of Protein and Mrna by Information

Total Page:16

File Type:pdf, Size:1020Kb

Equalizing the Information Amounts of Protein and Mrna by Information BioSystems 159 (2017) 1–11 Contents lists available at ScienceDirect BioSystems jo urnal homepage: www.elsevier.com/locate/biosystems Equalizing the information amounts of protein and mRNA by information theory ∗ Y. Adiguzel Biophysics Department, School of Medicine, Istanbul Kemerburgaz University, Istanbul, Turkey a r t i c l e i n f o a b s t r a c t Article history: Based on the Shannon’s information communication theory, information amount of the entire length of a Received 16 December 2016 polymeric macromolecule can be calculated in bits through adding the entropies of each building block. Received in revised form 21 April 2017 Proteins, DNA and RNA are such macromolecules. When only the building blocks’ variation is considered Accepted 19 May 2017 as the source of entropy, there is seemingly lower information in case of the protein if this approach is Available online 15 June 2017 applied directly on a protein of specific size and the coding sequence size of the mRNA corresponding to the particular length of the protein. This decrease in the information amount seems contradictory Keywords: but this apparent conflict is resolved by considering the conformational variations in proteins as a new Codon evolution variable in the calculation and balancing the approximated entropy of the coding part of the mRNA Protein conformation mRNA and the protein. Probabilities can change therefore we also assigned hypothetical probabilities to the Protein conformational states, which represent the uneven distribution as the time spent in one conformation, Shannon’s communication theory providing the probability of the presence in either or one of the possible conformations. Results that are Information amount obtained by using hypothetical probabilities are in line with the experimental values of variations in the conformational-state of protein populations. This equalization approach has further biological relevance that it compensates for the degeneracy in the codon usage during protein translation and it leads to the conclusion that the alphabet size for the protein is rather optimal for the proper protein functioning within the thermodynamic milieu of the cell. The findings were also discussed in relation to the codon bias and have implications in relation to the codon evolution concept. Eventually, this work brings the fields of protein structural studies and molecular protein translation processes together with a novel approach. © 2017 Elsevier B.V. All rights reserved. 1. Introduction seem meaningless although when it is actually not the case. Tak- ing the logarithms can make sense in such situations. A similar Shannon’s information communication theory (Shannon, 1948; approach is followed in the crude sense, in quantification of the Apter and Wolpert, 1965; Rontó, 1999) is a fruitful field that is information that is characterized by the number of possible distinct well-known mostly in bioinformatics (Koslicki, 2011; Orosz and messages that could be processed at a communication event. Obvi- Ovádi, 2011). In the simplest sense, it is based on taking the loga- ously, this depends on the type of communication and what is being rithm of variation in a condition that typically bears the information regarded as a message. Whatever they are, the universal notion in to be communicated. In mathematical terms, the act of taking the information communication is that the simplest condition of such logarithm is having a similar rationale as representing an exponen- an event involves two (equally) possible distinct messages, which tially increasing variable with a logarithmic axis when the relation could be for example the on situation or off situation of a device, of that variable with another entity is sketched as a graph. Varia- or an enzyme. This simplest condition could even be the presence tions in distinct entities can be immensely diverse in number and or absence of a signal in any sort of signal communication event. comparing them by using their actual quantities may practically Accordingly, choosing the base of the logarithm as 2 was recog- nised as the common approach, which resulted in the calculation of the information content of the ‘simplest’ signal communication event with two (equally) possible distinct messages as 1 bit. By this ∗ Correspondence to: Present address: Department of Biophysics, School of means, 1 bit is the unit information, which can simply represent the Medicine, Istanbul Kemerburgaz University, Kartaltepe Mah Incirli Cad. No: 11, presence or absence of the informing entity. Through calculating Bakirkoy, Istanbul, Turkey. the information content of any two diverse signal communication E-mail address: [email protected] http://dx.doi.org/10.1016/j.biosystems.2017.05.003 0303-2647/© 2017 Elsevier B.V. All rights reserved. 2 Y. Adiguzel / BioSystems 159 (2017) 1–11 events in bits, one can make a comparison of the two events since ation of the protein conformation is introduced as an additional this calculation takes also the realisation probabilities of the indi- source of entropy per residue. Basically, statistical variation of the vidual messages of the respective events as well. Such a comparison conformations in the folded state of the protein is considered to be would not be immediately possible without such a quantification representing the missing entropy per residue and hence the infor- (or in other words, standardization). So, this standardization enables mation amounts of the proteins, compared to that of the mRNAs. quantification in various information communication systems and So, statistical distribution of conformations in the protein popu- hence comparing and analysing them. Information content of a lation provides additional entropy per amino acid residue of the message can be calculated through the number of all possible mes- protein. In this sense, the work has inherent relation to the Boltz- sages, along with their realisation propensities, that are eliminated mann entropy as well. once a certain message is received. Messages are comprised of Different from the calculations for the information contents of sequential or a multiple number of symbols, entropy of which the molecular structures (Sarkar et al., 1978; Sullivan et al., 2003; would be proportional to the variation in them. This explanation Aynechi and Kuntz, 2005a; Aynechi and Kuntz, 2005b), it is pre- is valid and understandable in terms of biological macromolecules sented here that equalizing the information contents of the protein such as DNA, RNA or proteins, wherein the nucleotides or amino and the coding part of the mRNA compensates for the degener- acids as the building blocks of the respective macromolecules are acy in the codon usage during protein translation. Further, the the symbols and the macromolecules themselves, namely the pro- concept is evaluated together with the concept of the reduced teins or mRNAs that code for proteins, are the messages. In relation, alphabet (Murphy et al., 2000; Solis and Rackovsky, 2000; Li et al., suitability of information theoretic approaches in biosciences was 2003; Bacardit et al., 2009; Hod et al., 2013), which can be used proved by the presence of redundancy in DNA (Battail, 2014). That for the computational approaches of the protein folding studies, redundancy serves well for reliable message transmission through or so. (Reduced alphabet refers to the least number of amino acid unreliable channels of the biological environments. In a review, by types that could be relied on for attaining all the present/available applying the formula equivalent to information transmission chan- structural variations in the proteins.) It is concluded that the alpha- nel capacity to molecular systems, the efficiency of protein binding bet size is somewhat optimal for the thermodynamic milieu of the was suggested to be 70% (Schneider, 2010). cell. The findings will further be discussed in relation to the codon Proteins are important functional components of the cells and bias and codon evolution concepts (Sorimachi and Okayasu, 2008; they take active roles in the molecular communication networks, Cannarozzi and Schneider, 2012). nanonetworks (Akyildiz et al., 2008; Dressler and Akan, 2010; Adiguzel, 2016a). They are also part of a network that involves 2. Calculation several other proteins and DNA and RNAs during their synthesis, namely the protein translation. Two entities of that network, mRNA Below in Eq. (1), H is the entropy in bits per residue, which would and proteins, are aimed to be dealt with an information theoretic also be the information amount in each residue. approach since information theory can be used for information 20 quantification in distinct type of messages. Information processing = − H Pilog2Pi (1) = capacities of various mechanisms can be related in the informa- i 1 tion contents’ determination of molecular structures (Sarkar et al., 1978; Sullivanet al., 2003; Aynechi and Kuntz, 2005a; Aynechi and The subscript i in Eq. (1) is the protein residues’ variation as the Kuntz, 2005b). Accordingly, we aim to implement the information amino acid type. The equation is the same but the upper limit will be communication theory in the calculation and balancing of the infor- 4 when the mRNA nucleotides are the variables and hence the cal- mation amounts of the messenger Ribonucleic Acid (mRNA) and culation is performed for the mRNA. Here calculation is performed protein macromolecules, which are part of the protein translation for the protein and therefore i goes up to 20 since there are 20 differ- machinery as the inputs (mRNA) and the outputs (protein). ent amino acids, any of which can be present at each residue. The Pi Information theoretic approaches has been applied to the prob- in Eqn. (1) stands for the probability distribution of the amino acid lem of protein structure determination (Orosz and Ovádi, 2011; types in the corresponding subsequence (Oliver et al., 1999). So, it Rocha et al., 2012) and calculating topological entropies (Koslicki, is the probability of the amino acids’ occurrence in the protein or 2011). Common to these approaches, Shannon’s communication peptide and it would have been the bases’ occurrence in the mRNA.
Recommended publications
  • Dissertation
    Dissertation submitted to the Combined Faculty of Natural Sciences and Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by M.Sc. Matilde Bertolini born in Parma, Italy Oral examination: 02/03/2021 Profiling interactions of proximal nascent chains reveals a general co-translational mechanism of protein complex assembly Referees: Prof. Dr. Bernd Bukau Prof. Dr. Caludio Joazeiro Preface Contributions The experiments and analyses presented in this Thesis were conducted by myself unless otherwise indicated, under the supervision of Dr. Günter Kramer and Prof. Dr. Bernd Bukau. The Disome Selective Profiling (DiSP) technology was developed in collaboration with my colleague Kai Fenzl, with whom I also generated initial datasets of human HEK293-T and U2OS cells. Dr. Ilia Kats developed important bioinformatics tools for the analysis of DiSP data, including RiboSeqTools and the sigmoid fitting algorithm. He also offered great input on statistical analyses. Dr. Frank Tippmann performed analysis of crystal structures. Table of Contents TABLE OF CONTENTS List of Figures ......................................................................................................V List of Tables ...................................................................................................... VII List of Equations .............................................................................................. VIII Abbreviations ....................................................................................................
    [Show full text]
  • Phylogeny Recapitulates Learning: Self-Optimization of Genetic Code
    bioRxiv preprint doi: https://doi.org/10.1101/260877; this version posted February 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Phylogeny Recapitulates Learning: Self-Optimization of Genetic Code Oliver Attie1, Brian Sulkow1, Chong Di1, and Wei-Gang Qiu1,2,3,* 1Department of Biological Sciences, Hunter College & 2Graduate Center, City University of New York; 3Department of Physiology and Biophysics & Institute for Computational Biomedicine, Weil Cornell Medical College, New York, New York, USA Emails: Oliver Attie [email protected]; Brian Sulkow [email protected]; Chong Di [email protected]; *Correspondence: [email protected] Abstract Learning algorithms have been proposed as a non-selective mechanism capable of creating complex adaptive systems in life. Evolutionary learning however has not been demonstrated to be a plausible cause for the origin of a specific molecular system. Here we show that genetic codes as optimal as the Standard Genetic Code (SGC) emerge readily by following a molecular analog of the Hebb’s rule (“neurons fire together, wire together”). Specifically, error-minimizing genetic codes are obtained by maximizing the number of physio-chemically similar amino acids assigned to evolutionarily similar codons. Formulating genetic code as a Traveling Salesman Problem (TSP) with amino acids as “cities” and codons as “tour positions” and implemented with a Hopfield neural network, the unsupervised learning algorithm efficiently finds an abundance of genetic codes that are more error- minimizing than SGC.
    [Show full text]
  • Effect of Correlated TRAN Abundances on Translation Errors and Evolution of Codon Usage Bias
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Ecology and Evolutionary Biology Ecology and Evolutionary Biology 9-2010 Effect of Correlated TRAN Abundances on Translation Errors and Evolution of Codon Usage Bias Premal Shah University of Tennessee - Knoxville Michael A. Gilchrist Follow this and additional works at: https://trace.tennessee.edu/utk_ecolpubs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Shah, Premal and Gilchrist, Michael A., "Effect of Correlated TRAN Abundances on Translation Errors and Evolution of Codon Usage Bias" (2010). Faculty Publications and Other Works -- Ecology and Evolutionary Biology. https://trace.tennessee.edu/utk_ecolpubs/37 This Article is brought to you for free and open access by the Ecology and Evolutionary Biology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Ecology and Evolutionary Biology by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Effect of Correlated tRNA Abundances on Translation Errors and Evolution of Codon Usage Bias Premal Shah1,2*, Michael A. Gilchrist1,2 1 Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America, 2 National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, United States of America Abstract Despite the fact that tRNA abundances are thought to play a major role in determining translation error rates, their distribution across the genetic code and the resulting implications have received little attention. In general, studies of codon usage bias (CUB) assume that codons with higher tRNA abundance have lower missense error rates.
    [Show full text]
  • The RNA Code and Protein Synthesis
    Downloaded from symposium.cshlp.org on January 18, 2014 - Published by Cold Spring Harbor Laboratory Press The RNA Code and Protein Synthesis M. Nirenberg, T. Caskey, R. Marshall, et al. Cold Spring Harb Symp Quant Biol 1966 31: 11-24 Access the most recent version at doi:10.1101/SQB.1966.031.01.008 References This article cites 37 articles, 24 of which can be accessed free at: http://symposium.cshlp.org/content/31/11.refs.html Article cited in: http://symposium.cshlp.org/content/31/11#related-urls Email alerting Receive free email alerts when new articles cite this article - sign up in service the box at the top right corner of the article or click here To subscribe to Cold Spring Harbor Symposia on Quantitative Biology go to: http://symposium.cshlp.org/subscriptions Copyright © 1966 Cold Spring Harbor Laboratory Press Downloaded from symposium.cshlp.org on January 18, 2014 - Published by Cold Spring Harbor Laboratory Press The RNA Code and Protein Synthesis M. NIRENBERG, T. CASKEY, R. MARSHALL, R. BRIMACOMBE, D. KELLOGG, B. DOCTOIr D. HATFIELD, J. LEVIN, F. ROTTMAN, S. PESTKA, M. WILCOX, AND F. ANDERSON Laboratory of Biochemical Genetics, National Heart Institute, National Institutes of Health, Bethesda, Maryland and t Division of Biochemistry, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington, D.C. Many properties of the RNA code which were TABLE 1. CHARACTERISTICS OF AA-sRI~A BINDING TO RIBOSOMES discussed at the 1963 Cold Spring Harbor meeting were based on information obtained with randomly C14-Phe-sRNA bound to ribo- ordered synthetic polynucleotides.
    [Show full text]
  • A Numerical Representation and Classification of Codons To
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.971036; this version posted March 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A Numerical Representation and Classication of Codons to Investigate Codon Alternation Patterns during Genetic Mutations on Disease Pathogenesis Antara Senguptaa, Pabitra Pal Choudhuryd, Subhadip Chakrabortyb,e, Swarup Royc,∗∗, Jayanta Kumar Dasd,∗, Ditipriya Mallicke, Siddhartha S Janae aDepartment of Master of Computer Applications, MCKV Institute of Engineering, Liluah, India bDepartment of Botany, Nabadwip Vidyasagar College, Nabadwip, India cDepartment of Computer Applications,Sikkim University, Gangtok, Sikkim, India dApplied Statistical Unit, Indian Statistical Institute, Kolkata, India eSchool of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India 1. Introduction Genes are the functional units of heredity [4]. It is mainly responsible for the structural and functional changes and for the variation in organisms which could be good or bad. DNA (Deoxyribose Nucleic Acid) sequences build the genes of organisms which in turn encode for particular protein us- ing codon. Any uctuation in this sequence (codons), for example, mishaps during DNA transcription, might lead to a change in the genetic code which alter the protein synthesis. This change is called mutation. Mutation diers from Single Nucleotide Polymorphism(SNP) in many ways [23]. For instance, occurrence of mutation in a population should be less than 1% whereas SNP occurs with greater than 1%. Mutation always occurs in diseased group whereas SNP is occurs in both diseased and control population. Mutation is responsible for some disease phenotype but SNP may or may not be as- sociated with disease phenotype.
    [Show full text]
  • Genetic Code Degeneracy Is Established by the Decoding Center
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.16.444340; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genetic code degeneracy is established by the decoding center of the ribosome 2 3 Shixin Ye and Jean Lehmann* 4 5 INSERM U1195 unit, University of Paris-Saclay, 94276, Le Kremlin Bicêtre, France 6 Institute for InteGrative BioloGy of tHe Cell (I2BC), CEA, CNRS, University of Paris-Saclay, 7 91198 Gif-sur-Yvette, France 8 9 *Corresponding author 10 Emails: [email protected]; [email protected] 11 12 SUMMARY 13 The degeneracy of the genetic code confers a wide array of properties to coding sequences. Yet, 14 its origin is still unclear. A structural analysis has shown that the stability of the Watson-Crick 15 base pair at the second position of the anticodon-codon interaction is a critical parameter 16 controlling the extent of non-specific pairings accepted at the third position by the ribosome, a 17 flexibility at the root of degeneracy. Based on recent cryo-EM analyses, the present work shows 18 that residue A1493 of the decoding center provides a significant contribution to the stability of 19 this base pair, revealing that the ribosome is directly involved in the establishment of 20 degeneracy. Building on existing evolutionary models, we show the evidence that the early 21 appearance of A1493 and A1492 established the basis of degeneracy when an elementary 22 kinetic scheme of translation was prevailing.
    [Show full text]
  • New Horizon College of Engineering Departmrnt of Biotechnology
    NEW HORIZON COLLEGE OF ENGINEERING DEPARTMRNT OF BIOTECHNOLOGY UNIT 4: TRANSLATION Introduction to Genetic code: Elucidation of genetic code, Codon degeneracy, Wobble hypothesis and its importance, Prokaryotic and eukaryotic ribosomes. Components of translation. Activation of tRNA. Mechanism of translation: Initiation, Elongation and Termination of protein synthesis, Differences between prokaryotic and eukaryotic protein synthesis. Post-translational modifications and its importance. Protein splicing. Protein targeting: signal hypothesis and cotranslational processing, transportation. Inhibitors of protein synthesis. The Genetic Code Elucidating the Genetic Code • A triplet code is required: 43 = 64, but 42 = 16 - not enough for 20 amino acids • But is the code overlapping? • And is the code punctuated? The Nature of the Genetic Code • A group of three bases codes for one amino acid • The code is not overlapping • The base sequence is read from a fixed starting point, with no punctuation • The code is degenerate (in most cases, each amino acid can be designated by any of several triplets Assignment of "codons" to their respective amino acids was achieved by in vitro biochemistry • Marshall Nirenberg and Heinrich Matthaei showed that poly-U produced polyphenylalanine in a cell-free solution from E. coli • Poly-A gave polylysine • Poly-C gave polyproline • Poly-G gave polyglycine • But what of others? Features of the Genetic Code • All the codons have meaning: 61 specify amino acids, and the other 3 are "nonsense" or "stop" codons • The code is unambiguous - only one amino acid is indicated by each of the 61 codons • The code is degenerate - except for Trp and Met, each amino acid is coded by two or more codons • Codons representing the same or similar amino acids are similar in sequence • 2nd base pyrimidine: usually nonpolar amino acid ,2nd base purine: usually polar or charged aa .
    [Show full text]
  • Bt6504 – Molecular Biology Question Bank
    JEPPIAAR ENGINEERING COLLEGE B.TECH – BIOTECHNOLOGY (R- 2013) BT6504 – MOLECULAR BIOLOGY III YEAR & V SEM BATCH: 2016-2020 QUESTION BANK PREPARED BY Mr. G. GOMATHI SANKAR G. Gomathi Sankar S.N TOPIC REFER PAGE O ENCE NO UNIT I – CHEMISTRY OF NUCLEIC ACIDS 1 Introduction to nucleic acids TB1 79 2 Nucleic acids as genetic material TB1 79 3 Structure and physicochemical properties of elements in DNA and RNA TB1 80-82 4 Biological significance of differences in DNA and RNA TB1 84-92 5 Primary structure of DNA: Chemical and structural qualities of 3’,5’- TB1 94-96 Phosphodiester bond 6 Secondary Structure of DNA: Watson & Crick model TB1 97-100 7 Chargaff’s rule TB1 109 8 X–ray diffraction analysis of DNA, Forces stabilizes DNA structure TB1 110-112 9 Conformational variants of double helical DNA, Hogsteen base pairing TB1 114 10 Triple helix, Quadruple helix, Reversible denaturation and hyperchromic effect TB1 112-114 11 Tertiary structure of DNA: DNA supercoiling. TB1 148 UNIT II – DNA REPLICATION & REPAIR 1 Overview of Central dogma TB1 208 2 Organization of prokaryotic and eukaryotic chromosomes DNA replication: TB1 209 Meselson & Stahl experiment, bi–directional DNA replication 3 Okazaki fragments TB1 210 4 Proteomics of DNA replication, Fidelity of DNA replication TB1 224-231 5 Inhibitors of DNA replication TB1 232-235 6 Overview of differences in prokaryotic and eukaryotic DNA replication TB1 271-273 7 Telomere replication in eukaryotes TB1 239-246 8 D-loop and rolling circle mode of replication TB1 255-258 9 Mutagens, DNA mutations
    [Show full text]
  • The Graph, Geometry and Symmetries of the Genetic Code with Hamming Metric
    Symmetry 2015, 7, 1211-1260; doi:10.3390/sym7031211 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article The Graph, Geometry and Symmetries of the Genetic Code with Hamming Metric Reijer Lenstra Route Cantonale 103, Saint Sulpice VD 1025, Switzerland; E-Mail: [email protected]; Tel.: +41-798-535-889 Academic Editor: David Becker Received: 28 April 2015 / Accepted: 7 July 2015 / Published: 14 July 2015 Abstract: The similarity patterns of the genetic code result from similar codons encoding similar messages. We develop a new mathematical model to analyze these patterns. The physicochemical characteristics of amino acids objectively quantify their differences and similarities; the Hamming metric does the same for the 64 codons of the codon set. (Hamming distances equal the number of different codon positions: AAA and AAC are at 1-distance; codons are maximally at 3-distance.) The CodonPolytope, a 9-dimensional geometric object, is spanned by 64 vertices that represent the codons and the Euclidian distances between these vertices correspond one-to-one with intercodon Hamming distances. The CodonGraph represents the vertices and edges of the polytope; each edge equals a Hamming 1-distance. The mirror reflection symmetry group of the polytope is isomorphic to the largest permutation symmetry group of the codon set that preserves Hamming distances. These groups contain 82,944 symmetries. Many polytope symmetries coincide with the degeneracy and similarity patterns of the genetic code. These code symmetries are strongly related with the face structure of the polytope with smaller faces displaying stronger code symmetries. Splitting the polytope stepwise into smaller faces models an early evolution of the code that generates this hierarchy of code symmetries.
    [Show full text]
  • Dependency of Codon Usage on Protein Sequence Patterns: a Statistical Study
    Foroughmand-Araabi et al. Theoretical Biology and Medical Modelling 2014, 11:2 http://www.tbiomed.com/content/11/1/2 RESEARCH Open Access Dependency of codon usage on protein sequence patterns: a statistical study Mohammad-Hadi Foroughmand-Araabi1,BahramGoliaei1*, Kasra Alishahi2 and Mehdi Sadeghi3 *Correspondence: [email protected] Abstract 1 Institute of Biochemistry and Background: Codon degeneracy and codon usage by organisms is an interesting and Biophysics, University of Tehran, Tehran, Iran challenging problem. Researchers demonstrated the relation between codon usage Full list of author information is and various functions or properties of genes and proteins, such as gene regulation, available at the end of the article translation rate, translation efficiency, mRNA stability, splicing, and protein domains. Researchers usually represent segments of proteins responsible for specific functions or structures in a family of proteins as sequence patterns or motifs. We asked the question if organisms use the same codons in pattern segments as compared to the rest of the sequence. Methods: We used the likelihood ratio test, Pearson’s chi-squared test, and mutual information to compare these two codon usages. Results: We showed that codon usage, in segments of genes that code for a given pattern or motif in a group of proteins, varied from the rest of the gene. The codon usage in these segments was not random. Amino acids with larger number of codons used more specific codon ratios in these segments. We studied the number of amino acids in the pattern (pattern length). As patterns got longer, there was a slight decrease in the fraction of patterns with significant different codon usage in the pattern region as compared to codon usage in the gene region.
    [Show full text]
  • Synonymous Codons Influencing Gene Expression in Organisms
    Journal name: Research and Reports in Biochemistry Article Designation: REVIEW Year: 2016 Volume: 6 Research and Reports in Biochemistry Dovepress Running head verso: Mitra et al Running head recto: Synonymous codons influencing gene expression open access to scientific and medical research DOI: http://dx.doi.org/10.2147/RRBC.S83483 Open Access Full Text Article REVIEW Synonymous codons influencing gene expression in organisms Sutanuka Mitra1 Abstract: Nowadays, it is beyond doubt that synonymous codons are not the same with respect Suvendra Kumar Ray2 to expression of a gene. In favor of this, ribosome profiling experiments in vivo and in vitro Rajat Banerjee1 have suggested that ribosome occupancy time is not the same for different synonymous codons. Therefore, synonymous codons influence differently the speed of translation elongation, which 1Department of Biotechnology, University of Calcutta, Kolkata, West guides further cotranslational folding kinetics of a protein. It is now realized that the position Bengal, 2Department of Molecular of each codon in a coding sequence is important. The effect of synonymous codons on protein Biology and Biotechnology, Tezpur structure is an exciting field of research nowadays. This review discusses the recent develop- University, Napaam, Tezpur, Assam, India ments in this field. Keywords: codon usage bias, synonymous codons, ribosome profiling, cotranslational protein For personal use only. folding, protein structure Introduction In the standard genetic code table, of the 64 triplets or codons, 61 codons correspond to the 20 amino acids. While Met and Trp are encoded by one codon each, the other 18 amino acids are encoded by two to six different codons. This is called codon degeneracy.
    [Show full text]
  • Synonymous Codon Usage Bias in Plant Mitochondrial Genes Is Associated with Intron Number and Mirrors Species Evolution
    RESEARCH ARTICLE Synonymous Codon Usage Bias in Plant Mitochondrial Genes Is Associated with Intron Number and Mirrors Species Evolution Wenjing Xu☯, Tian Xing☯, Mingming Zhao, Xunhao Yin, Guangmin Xia, Mengcheng Wang* The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China ☯ These authors contributed equally to this work. * [email protected] Abstract Synonymous codon usage bias (SCUB) is a common event that a non-uniform usage of codons often occurs in nearly all organisms. We previously found that SCUB is correlated with both intron number and exon position in the plant nuclear genome but not in the plastid genome; SCUB in both nuclear and plastid genome can mirror the evolutionary specializa- OPEN ACCESS tion. However, how about the rules in the mitochondrial genome has not been addressed. Citation: Xu W, Xing T, Zhao M, Yin X, Xia G, Wang Here, we present an analysis of SCUB in the mitochondrial genome, based on 24 plant spe- M (2015) Synonymous Codon Usage Bias in Plant cies ranging from algae to land plants. The frequencies of NNA and NNT (A- and T-ending Mitochondrial Genes Is Associated with Intron codons) are higher than those of NNG and NNC, with the strongest preference in bryo- Number and Mirrors Species Evolution. PLoS ONE phytes and the weakest in land plants, suggesting an association between SCUB and plant 10(6): e0131508. doi:10.1371/journal.pone.0131508 evolution. The preference for NNA and NNT is more evident in genes harboring a greater Editor: Genlou Sun, Saint Mary's University, number of introns in land plants, but the bias to NNA and NNT exhibits even among exons.
    [Show full text]