The Potential of Wobble Plate Opposed Piston Axial Engines for Increased Efficiency
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conseil International
Prof. Günter Elsbett: Controlled shift-liners for optimized scavenging, improved thermal efficiency and multi- stroke capability for opposed piston engines and conventional engines Page 2 Prof. Günter Elsbett: Controlled shift-liners for optimized scavenging, improved thermal efficiency and multi- stroke capability for opposed piston engines and conventional engines INTRODUCTION they are guided and supported by the surrounding cylinder material, leading to Opposed Piston Engines (OPEs) are low oscillating liner masses during shifting. looking back to 120 years of history and have been produced as Otto and Diesel engines, offering a promising challenge in specific output and thermal efficiency. Diesel-OPEs have been used regularly for commercial aircraft due to excellent power/weight ratio, but powering also merchant ships with big engines of several thousands of kW. Already 75 years ago a brake efficiency of more than 40% could be achieved. In recent decades these Fig.1 Cross-section of the 4SOPE engines seem to be forgotten while the research and development engineers put The presented experimental-OPE was just their main focus on emission improvement. created demonstrating the functions of the Conventional OPE-technology is known for hydraulically shifted liners in a fired engine. emission problems, especially caused by The parts are machined from full pieces of scraping lubrication oil into in- and outlet material. This OPE is applied with a simple ports, as common OPEs scavenging is mechanical fuel injection system, single- limited for use in 2-stroke engines only. hole pintle-nozzles and electric governor. Any emission treatment is not applied. Now some new developments in OPE- Data: Single-cylinder, 4-stroke, natural technology show their relevance to future aspirated, 108mm bore, 2x118mm stroke, power-train challenges. -
Modernizing the Opposed-Piston, Two-Stroke Engine For
Modernizing the Opposed-Piston, Two-Stroke Engine 2013-26-0114 for Clean, Efficient Transportation Published on 9th -12 th January 2013, SIAT, India Dr. Gerhard Regner, Laurence Fromm, David Johnson, John Kosz ewnik, Eric Dion, Fabien Redon Achates Power, Inc. Copyright © 2013 SAE International and Copyright@ 2013 SIAT, India ABSTRACT Opposed-piston (OP) engines were once widely used in Over the last eight years, Achates Power has perfected the OP ground and aviation applications and continue to be used engine architecture, demonstrating substantial breakthroughs today on ships. Offering both fuel efficiency and cost benefits in combustion and thermal efficiency after more than 3,300 over conventional, four-stroke engines, the OP architecture hours of dynamometer testing. While these breakthroughs also features size and weight advantages. Despite these will initially benefit the commercial and passenger vehicle advantages, however, historical OP engines have struggled markets—the focus of the company’s current development with emissions and oil consumption. Using modern efforts—the Achates Power OP engine is also a good fit for technology, science and engineering, Achates Power has other applications due to its high thermal efficiency, high overcome these challenges. The result: an opposed-piston, specific power and low heat rejection. two-stroke diesel engine design that provides a step-function improvement in brake thermal efficiency compared to conventional engines while meeting the most stringent, DESIGN ATTRIBUTES mandated emissions -
The “Michell” Crankless Engine – Why Was It Not a Commercial Success?
The Piston Engine Revolution The “Michell” Crankless Engine – Why was it not a commercial success? John A. Anning At the beginning of the twentieth century, when the internal combustion engine was being developed for automobiles and aircraft, some designers arranged for the cylinders to be parallel to the output shaft. These became known as axial or barrel engines. They utilised either the swash plate or wobbleplate principles. The most promising was the Michell Crankless Engine, which was patented in 1917. AGM Michell FRS (1870-1959) was an Australian engineer best known for the design of the “Michell” tilting pad thrust bearing, patented in the UK and Australia in 1905. By the end of WWI Michell was a wealthy man from royalties and applied the tilting pad principle to an axial engine. The principle was first applied to compressors and by 1920 the first IC engine was made. An advantage is that perfect primary and secondary balance can be achieved at all rotational speeds. Michell formed Crankless Engines (Australia) Pty Ltd. A number of engines were built and installed in existing production vehicles. He realised that for the future commercialisation an overseas involvement was essential so offices were opened in London and New York. The Michell crankless principle still remains the most efficient method of converting linear into rotary motion. By the late 1920s with the world depression the Australian company was forced into receivership. A business analysis is given as to the possible reasons for its failure to achieve commercial success. It deserves its place in the panoply of IC engine history. -
Military Vehicle Options Arising from the Barrel Type Piston Engine
Journal of Power Technologies 101 (1) (2021) 22–33 Military vehicle options arising from the barrel type piston engine Pawe l Mazuro1 and Cezary Chmielewski1,B 1Warsaw University of Technology B [email protected] Abstract in terms of efficiency, meaning that piston engines can deliver enhanced range and endurance. This is benefi- The article reviews knowledge about requirements for engines in cial in missions requiring a stopover for refueling and state-of-the-art unmanned aerial vehicles and tanks. Analysis of particularly useful for unmanned supply, observation design and operational parameters was carried out on selected and maritime missions. turboshaft and piston engines generating power in the range of 500 - 1500 kW (0.5 - 1.5 MW). The data was compared In contrast, land combat vehicles have significantly with the performance of innovative, barrel type piston engines, different drive unit requirements. High mobility en- which are likely to become an alternative drive solution in the ables the vehicle to rapidly change location after de- target vehicle groups. tection. To this end, the torque curve as a function of the rotational speed of the shaft is of decisive im- portance. Keywords: military UAV, tanks, turboshaft engines, piston engines, barrel type piston engines The complexity of tank engines adds an additional layer of requirements, impacting the reliability and durability of the power unit, and they come with re- 1 Introduction lated manufacturing and operating costs. In military land vehicles, the engine should be as small This article consolidates knowledge on options and as possible; the space saved can be used for other capabilities arising from use of the barrel type piston purposes. -
Brazilian Tanks British Tanks Canadian Tanks Chinese Tanks
Tanks TANKS Brazilian Tanks British Tanks Canadian Tanks Chinese Tanks Croatian Tanks Czech Tanks Egyptian Tanks French Tanks German Tanks Indian Tanks Iranian Tanks Iraqi Tanks Israeli Tanks Italian Tanks Japanese Tanks Jordanian Tanks North Korean Tanks Pakistani Tanks Polish Tanks Romanian Tanks Russian Tanks Slovakian Tanks South African Tanks South Korean Tanks Spanish Tanks Swedish Tanks Swiss Tanks Ukrainian Tanks US Tanks file:///E/My%20Webs/tanks/tanks_2.html[3/22/2020 3:58:21 PM] Tanks Yugoslavian Tanks file:///E/My%20Webs/tanks/tanks_2.html[3/22/2020 3:58:21 PM] Brazilian Tanks EE-T1 Osorio Notes: In 1982, Engesa began the development of the EE-T1 main battle tank, and by 1985, it was ready for the world marketplace. The Engesa EE-T1 Osorio was a surprising development for Brazil – a tank that, while not in the class of the latest tanks of the time, one that was far above the league of the typical third-world offerings. In design, it was similar to many tanks of the time; this was not surprising, since Engesa had a lot of help from West German, British and French armor experts. The EE-T1 was very promising – an excellent design that several countries were very interested in. The Saudis in particular went as far as to place a pre- order of 318 for the Osorio. That deal, however, was essentially killed when the Saudis saw the incredible performance of the M-1 Abrams and the British Challenger, and they literally cancelled the Osorio order at the last moment. This resulted in the cancellation of demonstrations to other countries, the demise of Engesa, and with it a promising medium tank. -
Desenvolvimento De Um Motor Alternativo De Combustão Interna De Pistões Opostos
UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Desenvolvimento de um Motor Alternativo de Combustão Interna de Pistões Opostos Jorge Manuel Pereira Gregório Tese para obtenção do Grau de Doutor em Engenharia Aeronáutica (3º ciclo de estudos) Orientador: Professor Doutor Francisco Miguel Ribeiro Proença Brójo Covilhã, março de 2017 Desenvolvimento de um motor alternativo de combustão interna de pistões opostos Folha em branco ii Desenvolvimento de um motor alternativo de combustão interna de pistões opostos Dedicatória À Isabel, Ana Rita e Beatriz. Aos meus alunos de ontem e de hoje. Aos meus mestres de sempre Aos meus amigos iii Desenvolvimento de um motor alternativo de combustão interna de pistões opostos Folha em branco iv Desenvolvimento de um motor alternativo de combustão interna de pistões opostos “caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar. Al andar se hace el camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar. Caminante no hay camino sino estelas en la mar.” Proverbios y cantares XXIX in Campos de Castilla (1912) de António Machado “Valeu a pena? Tudo vale a pena Se a alma não é pequena.” Mar Português in Mensagem (1934) de Fernando Pessoa v Desenvolvimento de um motor alternativo de combustão interna de pistões opostos Folha em branco vi Desenvolvimento de um motor alternativo de combustão interna de pistões opostos Agradecimentos A vastidão do tema dos motores alternativos de combustão interna por si só é intimidante. Neste projeto dependi muito mais de outras pessoas que em trabalhos anteriores, família, colegas de trabalho, alunos, velhos e novos amigos, simples conhecidos e até desconhecidos, prestaram um contributo inestimável para a conclusão do desenvolvimento de um motor de pistões opostos, através da combinação feliz da partilha de conhecimentos com críticas construtivas, preciosas sugestões e o imprescindível incentivo sobretudo nas horas de maior esmorecimento. -
Modern Battle Tanks
MODERN! BATTLE k r * m^&-:fl 'tWBH^s £%5»-^ a $ Oft > . — n*- ^*M. S»S Ll^MfiB bjfitai 'Si^. ~i • ^-^HflH Lf. O Q MODERN BATTLE TANKS Edited by Duncan Crow Published by ARCO PUBLISHING COMPANY, INC. New York Published 1978 by Arco Publishing Company, Inc. 219 Park Avenue South, New York, N.Y. 10003 Copyright © 1978 PROFILE PUBLICATIONS LIMITED. Library of Congress Cataloging in Publication Data MODERN BATTLE TANKS 1. Tanks (Military science) I. Crow, Duncan. UG446.5.M55 358'. 18 78-4192 ISBN 0-668-04650-3 pbk All rights reserved Printed in Spain by Heraclio Fournier, S.A. Vitoria Spain Contents PAGE Introduction by Duncan Crow Centurion VI Swiss Pz61 and Pz68 VII Vickers Battle Tank VII Japanese Type 61 and STB VIII Soviet Mediums T44, T54, T55 and T62 by Lt-Col Michael Norman, Royal Tank Regiment T44 2 T54 3 Water Crossing 9 Fighting at Night 10 T55 and T62 ... 12 Variants 12 Tactical Doctrine 15 The M48-M60 Series of Main Battle Tanks by Col Robert J. Icks, AUS (Retired) In Battle 19 M48 Development 22 M48 Description 24 Hybrids 26 The M60 32 The Shillelagh 32 The M60 Series 38 Chieftain and Leopard Main Battle Tanks by Lt-Col Michael Norman, Royal Tank Regiment Development Histories 41 Chieftain (FV4201) 41 Leopard Standard Panzer 52 Chieftain and Leopard Described 60 Later Developments by Duncan Crow ... 78 . S-Tank by R. M. Ogorkiewicz Origins of the Design 79 Preliminary Investigations 80 Component Development 81 Suspension and Steering 83 Armament System 87 Engine Installation 88 Probability of Survival 90 Pre-Production Vehicles 90 Production Model 96 Tactical performance . -
Design of an Opposed-Piston, Opposed-Stroke Diesel Engine for Use in Utility Aircraft
University of Dayton eCommons Honors Theses University Honors Program 5-2017 Design of an Opposed-piston, Opposed-stroke Diesel Engine for Use in Utility Aircraft Luke Kozal University of Dayton Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons eCommons Citation Kozal, Luke, "Design of an Opposed-piston, Opposed-stroke Diesel Engine for Use in Utility Aircraft" (2017). Honors Theses. 113. https://ecommons.udayton.edu/uhp_theses/113 This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Design of an Opposed-piston, Opposed-stroke Diesel Engine for Use in Utility Aircraft Honors Thesis Luke Kozal Department: Mechanical Engineering Advisors: Andrew Murray, Ph.D. David Myszka, Ph.D. Paul Litke, AFRL/RQTC May 2017 Design of an Opposed-piston, Opposed-stroke Diesel Engine for Use in Utility Aircraft Luke Kozal Department: Mechanical Engineering Advisor: Andrew Murray, Ph.D. David Myszka, Ph.D. Paul Litke, AFRL/RQTC May 2017 Abstract The objective of this thesis was to determine the feasibility of using an opposed-piston, opposed-stroke, diesel engine in utility aircraft. Utility aircraft are aircraft that have a maximal takeoff weight of 12,500lbs. These aircraft are often used for transportation of cargo and other goods. In order to handle that weight, many of the aircraft are powered by turboprop engines. Turboprop engines are a style of jet engine with power capabilities ranging from 500 to several thousand horsepower (hp). -
Re'search Memorandum
c~~ififf$\? --A- CANC&LLtk, -j&$&+u 7&Czte-/ - &St , Au / 7 B ‘@. El4 3 5 is RE’SEARCH MEMORANDUM STUDY OF COMPRESSOR SYSTEMS FOR A GAS-GENERATOR ENGINE c .-? By Bernard I. Sather and Max J. Tauschek I I Lewis Flight Propulsion Laboratory i I’; Cleveland, Ohio Th~5oxulxa- -Lb-I EiE?ia p$g$p~gyg”~ym”& n&dmccdaat*Lnuj-mr. mM.a~-y yn 1L ,rO.Lblt.d m Irr. -wb!me sty I p.r.*ll. In th mm&y md mnl mwrvb.althabEd~.~ Ct*Ur omM~~~mycmarra~~ . SC- M*. aml Lil --.2iHmMMkDZD= L?hudd!szatl:r*d-munba NATIONAL ADVISORY COM M FOR AERONAUTICS WASHINGTON April 13, 1949 viJ!=s-! $ AC .c 3mkuy - --m!sv Awcf+AlrlliAL -km --L \ WV F-a-3 VI - --- --S~~l~~~~~~~lll~ NACA RM No. RCA28 ._..-___- -- .-.--- NATIONAL ADvIsaaY colNEEE Fak AERo~mIcs ByBernardI.SatheramdMaxJ.T'auschek Various methods of providing omessor-capacity and pressure- ratio control in the gas-generatm type of compound engine over a range of altitudes frcm sea level to 50,000 feet ax8 presented. The analythal results indicated that the best method of con- trol is that in which the first stage cf compression is carried out in a variable-speed supercharger driven by a hydmulio slip coupling. The second stage of oc~apression oould be either a rotazy constant-pressure-ratio-type cmpressor or a piston-type ccaspressor, both driven at oonstant speed. The a.n3lysis also iradioatedthat the variation Crp the value of the load coefficient for the first and second stages cd? the rotary constant-pressure-tgpe cqessor combination was within reasonable limits and that the valve timing . -