The RR Lyrae Distance Scale from Near-Infrared Photometry

Total Page:16

File Type:pdf, Size:1020Kb

The RR Lyrae Distance Scale from Near-Infrared Photometry Università degli Studi di Roma “Tor Vergata” Facoltà di Scienze Matematiche, Fisiche e Naturali. Dottorato di ricerca in Astronomia – XVII ciclo The RR Lyrae distance scale from Near-Infrared photometry Massimo Dall’Ora Coordinatore Relatore Prof. Roberto Buonanno Prof. Roberto Buonanno Tutore Prof. Giuseppe Bono Contents Abstract 1 1 The Scientific Problem 7 1.1 RR Lyrae stars as distance indicators 7 1.2 The PhD project 8 2 RR Lyrae stars 12 2.1 Observational properties 12 2.2 Evolutionary properties 15 2.3 Pulsation Physics 16 2.3.1 Generalities 16 2.3.2 Kappa and Gamma mechanisms 19 2.4 Pulsation Periods 21 2.5 Oosterhoff dichotomy 22 2.6 The Blazhko effect 24 2.7 Mean magnitudes 25 2.8 RR Lyrae stars as distance indicators: the MV −[ Fe / H ] relation 25 2.8.1 Pros and Cons 25 2.8.2 Outline of the current calibrations 28 2.9 RR Lyrae stars as distance indicators: the FOBE method 30 2.10 RR Lyrae stars as distance indicators: the PLK relation 31 2.10.1 Empirical evidence and theory 31 2.10.2 PLK relation: fine tuning 37 2.10.3 The MK −[ FeH / ] − log P relation 40 1 3 Data reduction 42 3.1 Near-infrared arrays 42 3.2 Array operation 43 3.3 The sky in the infrared 44 3.4 SOFI – Son OF ISAAC 46 3.4.1 Optical arrangement 46 3.4.2 The Detector 49 3.5 Observational techniques in the IR 49 3.6 Data pre-reduction 50 3.7 Photometric reduction 52 3.7.1 Overview 52 3.7.2 Calculus of the PSF – DAOPHOT 53 3.7.3 Photometry – ALLFRAME 54 3.7.4 The photometric calibration 56 4 Observations and Color Magnitude Diagrams 61 4.1 The LMC Cluster Reticulum 61 4.1.1 Introduction 61 4.1.2 Observations and data reduction 61 4.1.3 Color-Magnitude Diagram 65 4.2 The Galactic Globular Cluster M68 66 4.2.1 Introduction 66 4.2.2 Observations and data reduction 67 4.2.3 Color-Magnitude Diagram 70 4.3 The Galactic Globular Cluster NGC 3201 71 4.3.1 Introduction 71 4.3.2 Observations and data reductions 73 4.3.3 Color-Magnitude Diagram 75 2 5 Discussion of the results: distance estimates 77 5.1 The distance to Reticulum 77 5.2 The distance to LMC 84 5.3 The distance to M68 86 5.4 The distance to NGC 3201 91 5.5 The RGB Bump 95 Conclusions 97 Bibliography 101 Acknowledgments 107 3 4 Abstract The work carried out in this thesis is part of a long-term project aimed at measuring accurate near-infrared magnitudes of RR Lyrae stars in a sample of Galactic globular clusters that cover a wide metallicity range ( −≤2.3 [Fe / H ] ≤− 1.3 ) and host a sizable population of RR Lyrae stars ( NRR ≥ 10 ). In this thesis we will present the result obtained for the Galactic globular clusters M68 and NGC3201, and for the Large Magellanic Cloud cluster Reticulum. The results for these clusters are all based on the observations carried out with SOFI/NTT. The data collected allowed us to provide accurate estimates of J, K mean magnitudes for a large portion of the cluster RR Lyrae variables, and in turn to derive in a homogeneous context the slope of the K-band Period-Luminosity relation ( PLK ). The slope of the observed PLK relation agrees quite well with theoretical pulsational predictions. On the basis of this agreement between our empirical PLK relations and the theoretical ones, we adopted the latter for estimating the absolute distances to the target clusters. The distances obtained for M68, NGC 3201, and Reticulum disclose a fairly good agreement with the most recent and accurate independent estimates (Baade-Wesselink calibration, FOBE method, δ Scuti Period-Luminosity relation). Current data, together with near-infrared data already collected, will allow us to accomplish the following goals: • to derive, on the basis of the new empirical calibration of the PLK , absolute distances for field RR Lyrae stars for which are available mean K magnitudes and to compare them with distances based on Baade-Wesselink method; • to provide, on the basis of predicted and observed PL(J-K) relations, independent estimates of the reddening toward the target clusters; • to supply an independent test on a wide metallicity range of the accuracy of both evolutionary and pulsational predictions adopted to construct the PLK and the PL(J-K) relations; • to obtain accurate optical/near-infrared Color-Magnitude diagrams (CMDs) for the target clusters by adopting the new data and the optical data available in the literature. 5 These CMDs will allow us to compare theory and observations by using color indexes (V-J), ( V-K), which are only marginally affected by systematic uncertainties; • to use ( V-K) colors to derive accurate estimates of the effective temperatures of the globular clusters RR Lyrae stars, which in turn can be used to provide an estimate of the helium abundance. This result is particularly interesting, because globular clusters are among the oldest objects that can be found in the Galaxy, and therefore the estimated helium estimates can give a hint on the primordial helium abundance. 6 Chapter 1 The Scientific Problem 1.1 RR Lyrae stars as distance candles Since the first trigonometric distance measurement performed by Bessel on the star P Cygni in 1838, one of the major problems in the Galactic and in the extragalactic astronomy is the development of robust methods to provide accurate estimates of the cosmic distances. Together with the development of the spectroscopic observations, Astronomy became Astrophysics with the advent of distance measurements, the third dimension in our vision of the sky. Indeed, the knowledge of the physics of the celestial objects, and of the Universe as a whole, is tied to the knowledge of the absolute distances. Connected to the distance scale problem is the building of a comprehensive framework of the formation and evolution of the galaxies, and first of all of the Milky Way. Indeed, the calibration of robust standard candles allows us to trace the 3-D structure of our system and of the group of galaxies to which the Galaxy belongs, the Local Group. Moreover, correct estimates of the stellar distances allow us, via a comparison with the theoretical models of stellar evolution, to give an idea of the ages of the stellar populations and, together with chemical abundances, to trace back the history of their formation and evolution. In this context, RR Lyrae stars are particularly important, since they are standard candles that can be observed in all the old components of the stellar systems: Galactic and extragalactic globular clusters, Galactic halo, Galactic Bulge, ancient populations of the nearby galaxies, such as the Magellanic Clouds and the dwarf spheroidal galaxies of the Local Group. These systems were among the first formed in the Universe, and therefore it is crucial to have accurate estimates 7 of their distances and ages, in order have strong constraints on the formation and evolution of the structures in the Universe. Without entering into a detailed discussion on the calibration of the standard candles, here we mention only the fact that the use of the RR Lyrae stars as distance indicators is still hampered by several uncertainties, both on the empirical and on the theoretical side, mainly connected to the dependence of their absolute V-band magnitude on the chemical composition and on the uncertainty on the evolutionary status. Current uncertainties on the absolute visual magnitude of the RR Lyrae stars are of the order of 0.2-0.3 mag. Details will be given in chapter 2. At the same time, RR Lyrae stars in the photometric K-band (centered on the effective wavelength λeff = 2.2 µ m ) do obey to a tight linear period-luminosity relation ( PLK ). This relation offers several advantages, both theoretical and observational, when compared to other techniques. Once calibrated, this relation could be a powerful and sound tool to gain accurate and homogeneous distances for old stellar components. 1.2 The PhD Project The main goal of this thesis project is to substantially improve the distance estimates to the globular clusters with the PLK relation. Results have been produced for two Galactic globular clusters, namely M68 and NGC 3201, and for the Large Magellanic Cloud cluster Reticulum. Data presented in this thesis work are part of a more general project, which has a threefold objective: • we still lack an extensive K-band observational database for RR Lyrae stars. Indeed, empirical estimates of the PLK relation have been published only for nine Galactic globular clusters: M3, M4, M5, M15, M107, NGC 3201, NGC 5466, Ω Cen (Longmore et al. 1990), and IC 4499 (Storm 2004); M3 was observed also by Butler (2003). Unfortunately, the Longmore et al. (1990) measurements are heavily affected by observational uncertainties such as crowding, since their photometry was carried out with a fixed-aperture photometer and the derived PLK for the single clusters have uncertainty of the order of 10-15% on the slope. Butler (2003) observed only seven RR Lyrae stars in the innermost regions of the Galactic globular cluster M3. Storm used single-epoch observations to estimate a distance to IC4499, but the measurements are affected, on 8 average, by an error of the order of 10%. The fist objective of our project is therefore to supply a homogeneous photometric database to derive an accurate estimate of the empirical PLK ; • theory predicts a non-negligible dependence of the PLK on the chemical composition, which translates in a different zero-point of the relation.
Recommended publications
  • Apus Constellation Visible at Latitudes Between +5° and -90°
    Apus Constellation Visible at latitudes between +5° and -90°. Best visible at 21:00 (9 p.m.) during the month of July. Apus is a small constellation in the southern sky. It represents a bird-of-paradise, and its name means "without feet" in Greek because the bird-of-paradise was once wrongly believed to lack feet. First depicted on a celestial globe by Petrus Plancius in 1598, it was charted on a star atlas by Johann Bayer in his 1603 Uranometria. The French explorer and astronomer Nicolas Louis de Lacaille charted and gave the brighter stars their Bayer designations in 1756. The five brightest stars are all reddish in hue. Shading the others at apparent magnitude 3.8 is Alpha Apodis, an orange giant that has around 48 times the diameter and 928 times the luminosity of the Sun. Marginally fainter is Gamma Apodis, another ageing giant star. Delta Apodis is a double star, the two components of which are 103 arcseconds apart and visible with the naked eye. Two star systems have been found to have planets. Apus was one of twelve constellations published by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman who had sailed on the first Dutch trading expedition, known as the Eerste Schipvaart, to the East Indies. It first appeared on a 35-cm diameter celestial globe published in 1598 in Amsterdam by Plancius with Jodocus Hondius. De Houtman included it in his southern star catalogue in 1603 under the Dutch name De Paradijs Voghel, "The Bird of Paradise", and Plancius called the constellation Paradysvogel Apis Indica; the first word is Dutch for "bird of paradise".
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Optical Astronomy Observatories
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES FY 1994 PROVISIONAL PROGRAM PLAN June 25, 1993 TABLE OF CONTENTS I. INTRODUCTION AND PLAN OVERVIEW 1 II. SCIENTIFIC PROGRAM 3 A. Cerro Tololo Inter-American Observatory 3 B. Kitt Peak National Observatory 9 C. National Solar Observatory 16 III. US Gemini Project Office 22 IV. MAJOR PROJECTS 23 A. Global Oscillation Network Group (GONG) 23 B. 3.5-m Mirror Project 25 C. WIYN 26 D. SOAR 27 E. Other Telescopes at CTIO 28 V. INSTRUMENTATION 29 A. Cerro Tololo Inter-American Observatory 29 B. Kitt Peak National Observatory 31 1. KPNO O/UV 31 2. KPNO Infrared 34 C. National Solar Observatory 38 1. Sacramento Peak 38 2. Kitt Peak 40 D. Central Computer Services 44 VI. TELESCOPE OPERATIONS AND USER SUPPORT 45 A. Cerro Tololo Inter-American Observatory 45 B. Kitt Peak National Observatory 45 C. National Solar Observatory 46 VII. OPERATIONS AND FACILITIES MAINTENANCE 46 A. Cerro Tololo 47 B. Kitt Peak 48 C. NSO/Sacramento Peak 48 D. NOAO Tucson Headquarters 49 VIII. SCIENTIFIC STAFF AND SUPPORT 50 A. CTIO 50 B. KPNO 50 C. NSO 51 IX. PROGRAM SUPPORT 51 A. NOAO Director's Office 51 B. Central Administrative Services 52 C. Central Computer Services 52 D. Central Facilities Operations 53 E. Engineering and Technical Services 53 F. Publications and Information Resources 53 X. RESEARCH EXPERIENCES FOR UNDERGRADUATES PROGRAM 54 XI. BUDGET 55 A. Cerro Tololo Inter-American Observatory 56 B. Kitt Peak National Observatory 56 C. National Solar Observatory 57 D. Global Oscillation Network Group 58 E.
    [Show full text]
  • II. Relative Ages and Distances for Six Ancient Globular Clusters
    Mon. Not. R. Astron. Soc. 000, 1{?? (2002) Printed 7 April 2018 (MN LATEX style file v2.2) Exploring the nature and synchronicity of early cluster formation in the Large Magellanic Cloud: II. Relative ages and distances for six ancient globular clusters R. Wagner-Kaiser1, Dougal Mackey2, Ata Sarajedini1;3, Brian Chaboyer4, Roger E. Cohen5, Soung-Chul Yang6, Jeffrey D. Cummings7, Doug Geisler8, Aaron J. Grocholski9 1University of Florida, Department of Astronomy, 211 Bryant Space Science Center, Gainesville, FL, 32611 USA 2Australian National University, Research School of Astronomy & Astrophysics, Canberra, ACT 2611, Australia 3Florida Atlantic University, Department of Physics, 777 Glades Rd, Boca Raton, FL, 33431 USA 4Dartmouth College, Department of Physics and Astronomy, Hanover, NH, 03755, USA 5Space Telescope Science Institute, Baltimore, MD 21218, USA 6Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348, Korea 7Center for Astrophysical Sciences, Johns Hopkins University, Baltimore MD 21218 8Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile 9Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA ABSTRACT We analyze Hubble Space Telescope observations of six globular clusters in the Large Magellanic Cloud from program GO-14164 in Cycle 23. These are the deepest available observations of the LMC globular cluster population; their uniformity facilitates a precise comparison with globular clusters in the Milky Way. Measuring the magnitude of the main sequence turnoff point relative to template Galactic globular clusters allows the relative ages of the clusters to be determined with a mean precision of 8.4%, and down to 6% for individual objects. We find that the mean age of our LMC cluster ensemble is identical to the mean age of the oldest metal-poor clusters in the Milky Way halo to 0.2 ± 0.4 Gyr.
    [Show full text]
  • Arxiv:2104.09523V2 [Astro-Ph.GA] 20 Jul 2021
    Accepted in The Astrophysical Journal Preprint typeset using LATEX style emulateapj v. 01/23/15 EVIDENCE OF A DWARF GALAXY STREAM POPULATING THE INNER MILKY WAY HALO Khyati Malhan1, Zhen Yuan2, Rodrigo A. Ibata2, Anke Arentsen2, Michele Bellazzini3, Nicolas F. Martin2,4 Accepted in The Astrophysical Journal ABSTRACT Stellar streams produced from dwarf galaxies provide direct evidence of the hierarchical formation of the Milky Way. Here, we present the first comprehensive study of the \LMS-1" stellar stream, that we detect by searching for wide streams in the Gaia EDR3 dataset using the STREAMFINDER algorithm. This stream was recently discovered by Yuan et al. (2020). We detect LMS-1 as a 60◦ long stream to the north of the Galactic bulge, at a distance of ∼ 20 kpc from the Sun, together with additional components that suggest that the overall stream is completely wrapped around the inner Galaxy. Using spectroscopic measurements from LAMOST, SDSS and APOGEE, we infer that the stream is very metal poor (h[Fe=H]i = −2:1) with a significant metallicity dispersion (σ[Fe=H] = 0:4), −1 and it possesses a large radial velocity dispersion (σv = 20 ± 4 km s ). These estimates together imply that LMS-1 is a dwarf galaxy stream. The orbit of LMS-1 is close to polar, with an inclination of 75◦ to the Galactic plane. Both the orbit and metallicity of LMS-1 are remarkably similar to the globular clusters NGC 5053, NGC 5024 and the stellar stream \Indus". These findings make LMS-1 an important contributor to the stellar population of the inner Milky Way halo.
    [Show full text]
  • Properties of Stellar Generations in Globular Clusters and Relations With
    Astronomy & Astrophysics manuscript no. carretta c ESO 2018 November 9, 2018 Properties of stellar generations in Globular Clusters and relations with global parameters ⋆ E. Carretta1, A. Bragaglia1, R.G. Gratton2, A. Recio-Blanco3, S. Lucatello2,4, V. D’Orazi2, and S. Cassisi5 1 INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy 2 INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 3 Laboratoire Cassiop´ee UMR 6202, Universit`ede Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d’Azur, BP 4229, 06304 Nice Cedex 4, France 4 Excellence Cluster Universe, Technische Universit¨at M¨unchen, Boltzmannstr. 2, D-85748, Garching, Germany 5 INAF-Osservatorio Astronomico di Collurania, via M. Maggini, I-64100 Teramo, Italy Received .....; accepted ..... ABSTRACT We revise the scenario of the formation of Galactic globular clusters (GCs) by adding the observed detailed chemical composition of their different stellar generations to the set of their global parameters. We exploit the unprecedented set of homogeneous abundances of more than 1200 red giants in 19 clusters, as well as additional data from literature, to give a new definition of bona fide globular clusters, as the stellar aggregates showing the presence of the Na-O anticorrelation. We propose a classification of GCs according to their kinematics and location in the Galaxy in three populations: disk/bulge, inner halo, and outer halo. We find that the luminosity function of globular clusters is fairly independent of their population, suggesting that it is imprinted by the formation mechanism, and only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs.
    [Show full text]
  • Stellar Streams Discovered in the Dark Energy Survey
    Draft version January 9, 2018 Typeset using LATEX twocolumn style in AASTeX61 STELLAR STREAMS DISCOVERED IN THE DARK ENERGY SURVEY N. Shipp,1, 2 A. Drlica-Wagner,3 E. Balbinot,4 P. Ferguson,5 D. Erkal,4, 6 T. S. Li,3 K. Bechtol,7 V. Belokurov,6 B. Buncher,3 D. Carollo,8, 9 M. Carrasco Kind,10, 11 K. Kuehn,12 J. L. Marshall,5 A. B. Pace,5 E. S. Rykoff,13, 14 I. Sevilla-Noarbe,15 E. Sheldon,16 L. Strigari,5 A. K. Vivas,17 B. Yanny,3 A. Zenteno,17 T. M. C. Abbott,17 F. B. Abdalla,18, 19 S. Allam,3 S. Avila,20, 21 E. Bertin,22, 23 D. Brooks,18 D. L. Burke,13, 14 J. Carretero,24 F. J. Castander,25, 26 R. Cawthon,1 M. Crocce,25, 26 C. E. Cunha,13 C. B. D'Andrea,27 L. N. da Costa,28, 29 C. Davis,13 J. De Vicente,15 S. Desai,30 H. T. Diehl,3 P. Doel,18 A. E. Evrard,31, 32 B. Flaugher,3 P. Fosalba,25, 26 J. Frieman,3, 1 J. Garc´ıa-Bellido,21 E. Gaztanaga,25, 26 D. W. Gerdes,31, 32 D. Gruen,13, 14 R. A. Gruendl,10, 11 J. Gschwend,28, 29 G. Gutierrez,3 B. Hoyle,33, 34 D. J. James,35 M. D. Johnson,11 E. Krause,36, 37 N. Kuropatkin,3 O. Lahav,18 H. Lin,3 M. A. G. Maia,28, 29 M. March,27 P. Martini,38, 39 F. Menanteau,10, 11 C.
    [Show full text]
  • 1.4 the Magellanic Clouds
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University THE STRUCTURE OF THE LARGE MAGELLANIC CLOUD By Oyirwoth Patrick Abedigamba Town A dissertation submitted in partial fulfillmentCape of the requirements for the degree M.Sc. in the Departmentof of Astronomy, as part of the National Astrophysics and Space Science Programme UNIVERSITY OF CAPE TOWN AUGUST 2010 University Supervisors: Honorary. Prof. Michael Feast1,2 Prof. Patricia Whitelock2,1 1Astronomy Department, University of Cape Town 2South African Astronomical Observatory Key words Large Magellanic Cloud, RR Lyrae stars, Optical Gravitational Lensing Experiment, Fourier parameters, metallicity [Fe/H]. Town Cape of University i Abstract This work gives an account of the study of the metallicity [Fe/H] distribution (gradient) in the oldest population in the Large Magellanic Cloud (LMC), by making use of the available RR Lyrae data from the Optical Gravitational Lensing Experiment III (OGLE III). RR Lyrae stars are amongst the oldest objects in the universe and they have a range in element (metal) abundances. Measuring the distribution of metallicities of RR Lyrae stars in a galaxy gives one clues to the origin of galaxies. It is known that the pulsation periods of RR Lyraes is broadly correlated with their metallicity. This fact has been used for investigating the metallicity distribution of RR Lyrae stars in the LMC.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • ANDREA KUNDER an Der Sternwarte 16 14482 Potsdam, Germany B: [email protected] Curriculum Vitae : +49-331-58395304 M
    Leibniz Institut für Astrophysik ANDREA KUNDER An der Sternwarte 16 14482 Potsdam, Germany B: [email protected] Curriculum Vitae : +49-331-58395304 m: www.aip.de/∼akunder EDUCATION June 2009 Dartmouth College; Hanover, NH PhD in Physics & Astronomy Advisor: Dr. Brian C. Chaboyer Thesis: RR Lyrae stars as tracers of stellar populations in the Galactic bulge and satellite galaxies May 2003 Willamette University; Salem, OR Bachlelors of Arts in Chemistry and German; GPA: 3.73/4.00 2000 - 2001 Ludwig-Maximillians Universität München; Munich, Germany Immersion program in language, culture, and history. 2002 Columbia University’s Biosphere 2; Oracle, AZ Universe Semester; Researched RR Lyrae stars with local telescopes. CURRENT EMPLOYMENT Independent Postdoctoral Fellow, Leibniz Institut für Astrophysik, Potsdam (AIP) PI of a Deutsche Forschungsgemeinschaft (DFG) fully-funded grant to research the Galactic bulge RESEARCH INTERESTS The formation and evolution of Local Group galaxies and the Milky Way through detailed chemical and dynamical studies of individual stars; RR Lyrae stars and distance indicators; Globular clusters and resolved stellar populations. HONORS/AWARDS • 2016 “Eigene Stelle" Deutsche Forschungsgemeinschaft Science Grant (269,650 Euros) • 2013 NOAO Science Excellence Award • 2013 NOAO DECam Installation, Commissioning and Scientific Verification Team Award • 2009 The Dartmouth College Arts and Sciences Graduate Student Research Presentation Award • 2007 Honorable Mention Chambliss Award (AAS) • Mary L. Collins Graduate Scholarship
    [Show full text]