Page 1 of 35 Diabetes Vazirani et al. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance Reema P. Vazirani1, Akanksha Verma2, L. Amanda Sadacca1, Melanie S. Buckman3, Belen Picatoste1, Muheeb Beg1, Christopher Torsitano1, Joanne H. Bruno1, Rajesh T. Patel1, Kotryna Simonyte4, Joao P. Camporez5, Gabriela Moreira5, Domenick J. Falcone6, Domenico Accili7, Olivier Elemento2, Gerald I. Shulman6,8, Barbara B. Kahn4 and Timothy E. McGraw1,3* 1Department of Biochemistry, Weill Cornell Medical College 2Department of Physiology and Biophysics, Weill Cornell Medical College 3Department of Cardiothoracic Surgery, Weill Cornell Medical College 4Beth Israel Deaconess Medical Center, Harvard Medical School 5Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University 6Department of Pathology, Weill Cornell Medical College 7Department of Medicine and Berrie Diabetes Center, Columbia University 8Howard Hughes Medical Institute, Yale University *Contact: Timothy E. McGraw, PhD 1300 York Ave New York, NY 10065 212-746-4982
[email protected] The authors have declared that no conflict of interest exists. 1 Diabetes Publish Ahead of Print, published online March 25, 2016 Diabetes Page 2 of 35 Vazirani et al. Abstract Insulin controls glucose uptake into adipose and muscle cells by regulating the amount of the Glut4 glucose transporter in the plasma membrane. The effect of insulin is to promote translocation of intracellular Glut4 to the plasma membrane. The small Rab GTPase Rab10 is required for insulin-stimulated Glut4 translocation in cultured 3T3-L1 adipocytes. Here we demonstrate that both insulin-stimulated glucose uptake and Glut4 translocation to the plasma membrane are reduced by about half in adipocytes from adipose-specific Rab10 knockout mice.