WO 2017/120601 Al 13 July 2017 (13.07.2017) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/120601 Al 13 July 2017 (13.07.2017) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/120601 Al 13 July 2017 (13.07.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 39/395 (2006.01) A61P 27/02 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, PCT/US2017/012757 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, January 2017 (09.01 .2017) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (25) Filing Language: English NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (26) Publication Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (30) Priority Data: ZA, ZM, ZW. 62/276,543 8 January 2016 (08.01 .2016) 62/324,708 19 April 2016 (19.04.2016) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: CLEARSIDE BIOMEDICAL, INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, [US/US]; 1220 Old Alpharetta Road, Suite 300, Alphar- TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, etta, Georgia 30005 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventor: PATEL, Samirkumar; 1329 Liberty Parkway, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Atlanta, Georgia 30318 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (74) Agents: TEAGUE, Meghann K. et al; Cooley LLP, 1299 GW, KM, ML, MR, NE, SN, TD, TG). Pennsylvania Avenue, NW, Suite 700, Washington, Dis Published: trict of Columbia 20004 (US). — with international search report (Art. 21(3)) (54) Title: METHODS AND DEVICES FOR TREATING POSTERIOR OCULAR DISORDERSWITH AFLIBERCEPT AND OTHER BIOLOGICS 20 - 15 =+7,6 113 10 Month 3 Month 3 o Control Eylea Active Clearside o FIG. 4 2 (57) Abstract: The present invention relates to methods and devices for treating wet AMD, CNV, wet AMD associated with CNV o and/or wet AMD associated with RVO in a human subject in need thereof. In certain aspects, devices provided herein include a medicament container defining a lumen configured to contain a medicament, a distal end portion of the medicament container in cluding a coupling portion configured to be removably coupled to a needle assembly, a proximal end portion of the medicament con - tainer including a flange and a longitudinal shoulder; a piston assembly including a distal end portion movably disposed within the lumen of the medicament container; and a handle coupled to a proximal end portion of the piston assembly. METHODS AND DEVICES FOR TREATING POSTERIOR OCULAR DISORDERSWITH AFLIBERCEPT AND OTHER BIOLOGICS CROSS REFERENCE TO RELATED APPLICATIONS [1001] This application claims priority to U . S. Provisional Application No. 62/276,543, filed January 8, 2016; and U.S. Provisional Application No. 62/324,708, filed on April 19, 2016, each of which is incorporated herein by reference in its entirety. BACKGROUND OF THE INVENTION [1002] Treatment of chronic retinal diseases, such as neovascular (wet) age related macular degeneration (AMD), often require intravitreal injections of a biological drug, such as Lucentis, Eylea or Avastin to prevent vision loss. Additionally, wet AMD patients often show new blood vessel formation from the choroid. Wet AMD affects the choroid and retina and specific targeting of these tissues might is therefore needed in modulating disease progression. [1003] RVO is a condition that affects vision, resulting from a blockage in one of the veins returning blood flow from the retina. RVO is the second most common cause of vision loss due to retinal vascular disease. RVO affects 16.4 million adults worldwide, according to a 2010 study published in the journal Ophthalmology (Rogers et al. (2010). Ophthalmology 117, pp. 313-319)). Inadequately treated macular edema associated with RVO can cause significant loss in visual acuity and eventually lead to blindness. [1004] The present invention provides novel methodology and devices for the treatment of macular edema associated with uveitis, macular edema following retinal vein occlusion (RVO) (also referred to herein as wet AMD associated with RVO), wet AMD, diabetic macular edema (DME), choroidal neovascularization (CNV), and/or wet AMD associated with CNV, thereby addressing key needs in the field of ocular therapeutics. SUMMARY OF THE INVENTION [1005] This invention is generally related to ophthalmic therapies, and more particularly to methods and devices that allow for infusion of a fluid drug formulation into posterior ocular tissues for targeted, localized treatment, for example, for the treatment of wet AMD or wet AMD associated with RVO or wet AMD associated with choroidal neovascularization. In some embodiments, the drug formulation includes aflibercept and is injected into SCS to provide localized drug in the choroid and retina. In some embodiments, the methods comprise administering an anti-inflammatory, an anti-VEGF, an anti-PDGF, or an anti- angiopoetin drug formulation to the SCS of a subject. In further embodiments, the methods comprise administering a biologic to a subject concomitantly or sequentially with the administration of the anti-inflammatory, anti-VEGF, anti-PDGF, or anti-angiopietin to the SCS. In some embodiments, the biologic is administered intravitreally. In some embodiments, the biologic is a VEGF modulator (e.g., aflibercept). In some embodiments, the anti-inflammatory drug formulation comprises triamcinolone acetonide (TA). Surprisingly, the SCS administration of an anti-inflammatory, anti-VEGF, anti-PDGF, or anti-angiopietin enhances or improves the effectiveness of a biologic in the treatment of an ocular disease. [1006] In some embodiments, the drug formulation administered SCS and the biologic act synergistically to improve treatment of an ocular disease in a subject. [1007] In one embodiment of the method for treating wet AMD, choroidal neovascularization (CNV) and/or the method for treating wet AMD associated with CNV, subsequent to at least one dosing session, e.g., from about 1 week to about 14 weeks after at least one dosing dession, e.g., about 12 weeks after a dosing session, the patient experiences an improvement in visual acuity as measured by best corrected visual acuity of > 10 letters, > 15 letters or > 25 letters, as compared to patient's visual acuity prior to the at least one dosing session. In one embodiment of the method for treating macular edema associated with uveitis, subsequent to at least one dosing session, e.g., from about 1 week to about 14 weeks after at least one dosing dession, e.g., about 4 weeks, about 8 weeks or about 12 weeks after at least one dosing session, the patient experiences a decrease in retinal thickness (e.g., central subfield thickness) as compared to the patient's retinal thickness prior to the at least one dosing session. In one embodiment, the decrease in retinal thickness is > 25 µιτι, > 50 µ ι, > 75 µ or > 100 µ ΐ η some embodiments, the methods set forth herein are carried out by inserting a distal end portion of a needle of a medical injector into a target tissue to define a delivery passageway within the target tissue and such that a distal end surface of a hub of the medical injector is in contact with a target surface of the target tissue. A force is exerted (e.g., a manual force by a user) on an actuator of the medical injector when the distal end surface of the hub is in contact with the target surface. The medical injector is configured such that the force is sufficient to move a distal end portion of the actuator within the medicament container when the distal end portion of the needle is disposed within a first region of the target tissue. The medical injector is configured such that the force is insufficient to move the distal end portion of the actuator within the medicament container when the distal end portion of the needle is disposed within a second region of the target tissue. In some embodiments, the force has a magnitude of less than about 6 N . A substance, e.g., a drug formulation, in response to the exertion, is conveyed from the medicament container into the target tissue via the needle when the distal end portion of the needle is disposed within the first region of the target tissue. The first region can be, for example, a suprachoroidal space of the eye, a lower portion of the sclera and/or an upper portion of the choroid. In some embodiments, the first region can be a retina of the eye. [1008] In some embodiments of the methods provided herein, a distal end portion of a needle of a medical injector is inserted into a target tissue to define a delivery passageway within the target tissue. The insertion is performed such that a centerline of the needle and a surface line tangent to a target surface of the target tissue define an angle of entry of between about 75 degrees and about 105 degrees. A distal end surface of a hub of the medical injector is placed into contact with a target surface of the target tissue to fluidically isolate the delivery passageway.
Recommended publications
  • 2017 American College of Rheumatology/American Association
    Arthritis Care & Research Vol. 69, No. 8, August 2017, pp 1111–1124 DOI 10.1002/acr.23274 VC 2017, American College of Rheumatology SPECIAL ARTICLE 2017 American College of Rheumatology/ American Association of Hip and Knee Surgeons Guideline for the Perioperative Management of Antirheumatic Medication in Patients With Rheumatic Diseases Undergoing Elective Total Hip or Total Knee Arthroplasty SUSAN M. GOODMAN,1 BRYAN SPRINGER,2 GORDON GUYATT,3 MATTHEW P. ABDEL,4 VINOD DASA,5 MICHAEL GEORGE,6 ORA GEWURZ-SINGER,7 JON T. GILES,8 BEVERLY JOHNSON,9 STEVE LEE,10 LISA A. MANDL,1 MICHAEL A. MONT,11 PETER SCULCO,1 SCOTT SPORER,12 LOUIS STRYKER,13 MARAT TURGUNBAEV,14 BARRY BRAUSE,1 ANTONIA F. CHEN,15 JEREMY GILILLAND,16 MARK GOODMAN,17 ARLENE HURLEY-ROSENBLATT,18 KYRIAKOS KIROU,1 ELENA LOSINA,19 RONALD MacKENZIE,1 KALEB MICHAUD,20 TED MIKULS,21 LINDA RUSSELL,1 22 14 23 17 ALEXANDER SAH, AMY S. MILLER, JASVINDER A. SINGH, AND ADOLPH YATES Guidelines and recommendations developed and/or endorsed by the American College of Rheumatology (ACR) are intended to provide guidance for particular patterns of practice and not to dictate the care of a particular patient. The ACR considers adherence to the recommendations within this guideline to be volun- tary, with the ultimate determination regarding their application to be made by the physician in light of each patient’s individual circumstances. Guidelines and recommendations are intended to promote benefi- cial or desirable outcomes but cannot guarantee any specific outcome. Guidelines and recommendations developed and endorsed by the ACR are subject to periodic revision as warranted by the evolution of medi- cal knowledge, technology, and practice.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • [Product Monograph Template
    PRODUCT MONOGRAPH PrXELJANZ® tofacitinib, tablets, oral 5 mg tofacitinib (as tofacitinib citrate) 10 mg tofacitinib (as tofacitinib citrate) PrXELJANZ® XR tofacitinib extended-release, tablets, oral 11 mg tofacitinib (as tofacitinib citrate) ATC Code: L04AA29 Selective Immunosuppressant Pfizer Canada ULC Date of Preparation: 17,300 Trans-Canada Highway October 24, 2019 Kirkland, Quebec H9J 2M5 TMPF PRISM C.V. c/o Pfizer Manufacturing Holdings LLC Pfizer Canada ULC, Licensee © Pfizer Canada ULC 2019 Submission Control No: 230976 XELJANZ/XELJANZ XR Page 1 of 80 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION.........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 INDICATIONS AND CLINICAL USE..............................................................................3 CONTRAINDICATIONS ...................................................................................................4 ADVERSE REACTIONS..................................................................................................15 DRUG INTERACTIONS ..................................................................................................29 DOSAGE AND ADMINISTRATION..............................................................................34 OVERDOSAGE ................................................................................................................38 ACTION AND CLINICAL PHARMACOLOGY ............................................................38
    [Show full text]
  • Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
    The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11.
    [Show full text]
  • JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: a Focus on the Present and an Outlook on the Future
    biomolecules Review JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future 1, 2, , 3 1,4 Jacopo Angelini y , Rossella Talotta * y , Rossana Roncato , Giulia Fornasier , Giorgia Barbiero 1, Lisa Dal Cin 1, Serena Brancati 1 and Francesco Scaglione 5 1 Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, 20133 Milan, Italy; [email protected] (J.A.); [email protected] (G.F.); [email protected] (G.B.); [email protected] (L.D.C.); [email protected] (S.B.) 2 Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU “Gaetano Martino”, University of Messina, 98100 Messina, Italy 3 Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pordenone, 33081 Aviano, Italy; [email protected] 4 Pharmacy Unit, IRCCS-Burlo Garofolo di Trieste, 34137 Trieste, Italy 5 Head of Clinical Pharmacology and Toxicology Unit, Grande Ospedale Metropolitano Niguarda, Department of Oncology and Onco-Hematology, Director of Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, 20162 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-090-2111; Fax: +39-090-293-5162 Co-first authors. y Received: 16 May 2020; Accepted: 1 July 2020; Published: 5 July 2020 Abstract: Janus kinase inhibitors (JAKi) belong to a new class of oral targeted disease-modifying drugs which have recently revolutionized the therapeutic panorama of rheumatoid arthritis (RA) and other immune-mediated diseases, placing alongside or even replacing conventional and biological drugs.
    [Show full text]
  • Dissecting Intratumor Heterogeneity of Nodal B Cell Lymphomas on the Transcriptional, Genetic, and Drug Response Level
    bioRxiv preprint doi: https://doi.org/10.1101/850438; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Dissecting intratumor heterogeneity of nodal B cell lymphomas on the 2 transcriptional, genetic, and drug response level 3 4 Tobias Roider1-3, Julian Seufert4-5, Alexey Uvarovskii6, Felix Frauhammer6, Marie Bordas4,7, 5 Nima Abedpour8, Marta Stolarczyk1, Jan-Philipp Mallm9, Sophie Rabe1-3,5,10, Peter-Martin 6 Bruch1-3, Hyatt Balke-Want11, Michael Hundemer1, Karsten Rippe9, Benjamin Goeppert12, 7 Martina Seiffert7, Benedikt Brors13, Gunhild Mechtersheimer12, Thorsten Zenz14, Martin 8 Peifer8, Björn Chapuy15, Matthias Schlesner4, Carsten Müller-Tidow1-3, Stefan Fröhling10,16, 9 Wolfgang Huber2,3, Simon Anders6*, Sascha Dietrich1-3,10* 10 11 1 Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, 12 Germany, 13 2 Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany, 14 3 European Molecular Biology Laboratory (EMBL), Heidelberg, Germany, 15 4 Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany, 16 5 Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany, 17 6 Center for Molecular Biology of the University of Heidelberg (ZMBH), Heidelberg, Germany, 18 7 Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany, 19 8 Department for Translational
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • XELJANZ (Tofacitinib)
    HIGHLIGHTS OF PRESCRIBING INFORMATION Psoriatic Arthritis (in combination with nonbiologic DMARDs) These highlights do not include all the information needed to use XELJANZ 5 mg twice daily or XELJANZ XR 11 mg once daily. (2.2) XELJANZ/XELJANZ XR safely and effectively. See full prescribing Recommended dosage in patients with moderate and severe renal information for XELJANZ. impairment or moderate hepatic impairment is XELJANZ 5 mg once daily. (2, 8.7, 8.8) ® XELJANZ (tofacitinib) tablets, for oral use Ulcerative Colitis ® XELJANZ XR (tofacitinib) extended-release tablets, for oral use XELJANZ 10 mg twice daily for at least 8 weeks; then 5 or 10 mg Initial U.S. Approval: 2012 twice daily. Discontinue after 16 weeks of 10 mg twice daily, if adequate therapeutic benefit is not achieved. Use the lowest effective dose to WARNING: SERIOUS INFECTIONS AND MALIGNANCY maintain response. (2.3) See full prescribing information for complete boxed warning. Recommended dosage in patients with moderate and severe renal impairment or moderate hepatic impairment: half the total daily dosage Serious infections leading to hospitalization or death, including recommended for patients with normal renal and hepatic function. (2, 8.7, tuberculosis and bacterial, invasive fungal, viral, and other 8.8) opportunistic infections, have occurred in patients receiving Dosage Adjustment XELJANZ. (5.1) See the full prescribing information for dosage adjustments by indication If a serious infection develops, interrupt XELJANZ/XELJANZ XR for patients receiving CYP2C19 and/or CYP3A4 inhibitors; in patients until the infection is controlled. (5.1) with moderate or severe renal impairment or moderate hepatic Prior to starting XELJANZ/XELJANZ XR, perform a test for latent impairment; and patients with lymphopenia, neutropenia, or anemia.
    [Show full text]
  • Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
    REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet.
    [Show full text]
  • Cimzia (Certolizumab Pegol) AHM
    Cimzia (Certolizumab Pegol) AHM Clinical Indications • Cimzia (Certolizumab Pegol) is considered medically necessary for adult members 18 years of age or older with moderately-to-severely active disease when ALL of the following conditions are met o Moderately-to-severely active Crohn's disease as manifested by 1 or more of the following . Diarrhea . Abdominal pain . Bleeding . Weight loss . Perianal disease . Internal fistulae . Intestinal obstruction . Megacolon . Extra-intestinal manifestations: arthritis or spondylitis o Crohn's disease has remained active despite treatment with 1 or more of the following . Corticosteroids . 6-mercaptopurine/azathioprine • Certollizumab pegol (see note) is considered medically necessary for persons with active psoriatic arthritis who meet criteria in Psoriasis and Psoriatic Arthritis: Biological Therapies. • Cimzia, (Certolizumab Pegol), alone or in combination with methotrexate (MTX), is considered medically necessary for the treatment of adult members 18 years of age or older with moderately-to-severely active rheumatoid arthritis (RA). • Cimzia (Certolizumab pegol is considered medically necessary for reducing signs and symptoms of members with active ankylosing spondylitis who have an inadequate response to 2 or more NSAIDs. • Cimzia (Certolizumab Pegol) is considered investigational for all other indications (e.g.,ocular inflammation/uveitis; not an all-inclusive list) because its effectiveness for indications other than the ones listed above has not been established. Notes • There are several brands of targeted immune modulators on the market. There is a lack of reliable evidence that any one brand of targeted immune modulator is superior to other brands for medically necessary indications. Enbrel (etanercept), Humira (adalimumab), Remicade (infliximab), Simponi (golimumab), Simponi Aria (golimumab intravneous), and Stelara (ustekinumab) brands of targeted immune modulators ("least cost brands of targeted immune modulators") are less costly to the plan.
    [Show full text]
  • Initial Safety Trial Results Find Increased Risk of Serious Heart-Related
    Initial safety trial results find increased risk of serious heart-related problems and cancer with arthritis and ulcerative colitis medicine Xeljanz, Xeljanz XR (tofacitinib) FDA will evaluate the trial results FDA previously communicated about the safety clinical trial with Xeljanz, Xeljanz XR (tofacitinib) in February 2019 and July 2019. 2-4-2021 FDA Drug Safety Communication The U.S. Food and Drug Administration (FDA) is alerting the public that preliminary results from a safety clinical trial show an increased risk of serious heart-related problems and cancer with the arthritis and ulcerative colitis medicine Xeljanz, Xeljanz XR (tofacitinib) compared to another type of medicine called tumor necrosis factor (TNF) inhibitors. FDA required the safety trial, which also investigated other potential risks including blood clots in the lungs and death. Those final results are not yet available. We will evaluate the clinical trial results we have received to date and will work with the drug manufacturer to obtain further information as soon as possible. We will communicate our final conclusions and recommendations when we have completed our review or have more information to share. Patients should not stop taking tofacitinib without first consulting with your health care professionals, as doing so may worsen your condition. Talk to your health care professionals if you have any questions or concerns. Health care professionals should consider the benefits and risks of tofacitinib when deciding whether to prescribe or continue patients on the medicine. Continue to follow the recommendations in the tofacitinib prescribing information. Tofacitinib was first approved in 2012 to treat adults with rheumatoid arthritis (RA) who did not respond well to the medicine methotrexate.
    [Show full text]
  • ¬Chronic Immune-Mediated Inflammatory Diseases And
    The Association Between Chronic Immune-Mediated Inflammatory Diseases and Cardiovascular Risk Jose Miguel Baena-Díez1,2,3, Maria Garcia-Gil4,5,6, Marc Comas-Cufí4,5, Rafel Ramos4,5,6,7, Daniel Prieto-Alhambra8,9, Betlem Salvador-González1,10, Roberto Elosua1, Irene R. Dégano1, Judith Peñafiel1, Maria Grau1,11* 1REGICOR Study Group - Cardiovascular Epidemiology and Genetics, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain 2La Marina Primary Care Centre and Primary Care Research Institute Jordi Gol, Catalan Institute of Health, Barcelona, Spain 3Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain 4Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Spain 5ISV Research Group, Research Unit in Primary Care, Primary Care Services, Girona, Catalan Institute of Health (ICS), Spain 6TransLab Research Group, Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain 7Biomedical Research Institute, Girona (IdIBGi), ICS, Spain 8Musculoskeletal diseases Research Group (GREMPAL), Primary Care Research Institute Jordi Gol, Universitat Autònoma de Barcelona, Barcelona, Spain 9Musculoskeletal Pharmaco- and Device Epidemiology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom 10Florida Sud Primary Care Centre and Primary Care Research Institute Jordi Gol, Catalan Institute of Health, L’Hospitalet de Llobregat, Spain 11University of Barcelona, Spain *Corresponding
    [Show full text]