Phytochemical Screening and Antimicrobial Activity of Carica Papaya L, Citrus Paradisi L, Citrus Sinensis L, and Vernonia Amygdalina Del

Total Page:16

File Type:pdf, Size:1020Kb

Phytochemical Screening and Antimicrobial Activity of Carica Papaya L, Citrus Paradisi L, Citrus Sinensis L, and Vernonia Amygdalina Del Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Research Article Dairy and Vet Sci J Volume 9 Issue 4 - January 2019 Copyright © All rights are reserved by Nduche MU DOI: 10.19080/JDVS.2019.09.555768 Phytochemical Screening and Antimicrobial Activity of Carica Papaya L, Citrus Paradisi L, Citrus Sinensis L, and Vernonia Amygdalina Del. Cent Nduche MU*, Nkaa FA and Onyebinime A Department of Plant Science and Biotechnology, Michael Okpara University of Agriculture, Nigeria Submission: January 12, 2019 ; Published: January 30, 2019 *Corresponding author: Nduche MU, Department of Plant Science and Biotechnology, Michael Okpara University of Agriculture, Umudike PMB 7267 Umuahia Abia State, Nigeria Abstract The antimicrobial activity and phytochemical analysis were carried out on the leaves of Carica papaya L, Citrus paradise L Citrus sinensis L and Vernonia amygdalina. The aim of the work is to determine the phytochemical contents, diameter of inhibition and minimum inhibition proportions. The phytochemical contents of C. papaya (Pawpaw) were as follows: alkaloid (1.11 ± 0.02%), saponins (0.53 ± 0.04%), tannin (0.43 ±concentration of the grasses± 0.01%) studied. and The phenols four-plant (0.91 species ± 0.03%). were For found Citrus to Paradisi contain (Grape) alkaloid, alkaloid saponin, content tannins, was flavonoid (0.31 ± 0.05),and phenols saponins in varying(0.19 ± 0.01), tannins (0.25 ± ± 0.02), phenol (0.52 ± 0.04). In Citrus sinensis (Orange), alkaloid was (0.23 ± 0.01), saponin (0.23 ± 0.01), 0.4%), tannin flavonoid (0.15 ±(0.67 ± 0.01) and phenol (0.59 ± 0.07). For Vernonia amygdalina Del. Cent (Bitter leaf), alkaloid (1.31 ± 0.03), saponin (1.15 ± 0.01), flavonoid ±(0.36 0.02), tannin (0.43 ± 0.01), phenol (1.15 ± 0.01). 0.01), flavonoid (0.33 The anti-microbial 0.01), flavonoid activity of (0.71 the ethanolic and aqueous extracts of leaves of the plants were tested against four microorganisms; Salmonella pullorum, Klebsiella pneumonia, Enterobacter aerogenes and Proteus vulgaris. The susceptibility of the microorganisms was determined using the disk diffusion method. The leaf extract of these plants inhibited the growth of these pathogens. All the ethanolic leaf extracts of the plants inhibited the clinical isolates. The minimum inhibitory concentration was analyzed using agar well diffusion method with values ranging between 50 mg/ml and 200 mg/ml against all the clinical isolates. There were variations in the lowest concentrations of the different plant extracts that caused inhibitions against the various microorganisms. Keywords: Antimicrobial; Microorganisms; Medicinal; Phytochemicals; Nigeria Introduction [5]. In developing countries, the situation is even worse because Plants are rich in a wide variety of secondary metabolites with of poor sanitation and ignorance of good hygiene practice thus ex- posing many people to infectious agents. alkaloids [1]. The study of most research recently is to evaluate the anti-microbial properties such as flavonoid, tannins, phenols and anti-microbial activity of some local natural plants which have po- Phytochemicals are chemical compounds that occur naturally tential of treating infectious diseases and with reduced side effects in plants. They are chemicals produced by plants through prima- compared to the synthetic drug agents [2]. The use of plant ex- ry or secondary metabolism [6-8]. Some are responsible for col- tracts and phytochemicals, both with known antimicrobial prop- or and other organoleptic properties, such as the deep purple of blueberries and the smell of ginger. Plants are composed entirely Many plants have been used because of their anti-microbial prop- of chemicals of various kinds Phytochemical has bio-active consti- erties can be of great significance in the treatment of diseases. erties. This is mostly due to synthesis of secondary metabolism by the plants [3]. Discovery of new antimicrobial compounds with compounds [9]. The medicinal values of some plants lie in these diverse chemical structures and novel mechanism of action be- tutes such as alkaloids, tannis, flavonoids, saponins and phenolic comes of urgent attention. Currently, the development of resistant the human body. Many of these indigenous medicinal plants are chemical substances that produce definite physiological actions in strains of bacteria has increased the need for new antibiotics the used as spices and food plants [10]. Plant serves as rich resourc- antimicrobial compounds produced by plants are active against plants and human pathogenic microorganism [4]. Isolation of bac- medicinal effects of plant materials typically result from the com- es of natural drugs for research and development. The beneficial teria less susceptible to regular antibiotics and recovery of resis- binations of secondary products present in plants. The medicinal tant isolates during antibacterial therapy is now a global problem actions of plants are unique to plant species or groups as the com- Dairy and Vet Sci J 9(3): JDVS.MS.ID.555768 (2019) 001 Journal of Dairy & Veterinary Sciences bination of secondary products in a plant are often taxonomically of 2012, sweet orange accounted for approximately 70% of cit- distinct [11]. rus production. In 2014, 70.9million tones of orange were grown worldwide, with Brazil producing 24% of the world total followed The Aim and Objectives of this Work are by China and India. The orange peel is used as a dried seasoning, a. To determine the phytochemicals of Citris paradisi orange is effective in the management of asthma, arthritis, cholera (grape), Citrus sinensis C. (orange), Carica papaya (paw-paw) and etc. Citrus sinensis - Vernonia amygdalina (bitter leaf). (orange) peel extracts contain bioflavonoids in and hypolipodemic effects [16]. b. To determine antimicrobial activities of the aqueous and cluding poly methoxylated flavors, which have anti-inflammatory ethanolic leaf extracts of Carica papaya, Citris paradisi, Citrus sin- Vernonia amygdalina, a member of the Asteraceae family, is a ensis and Vernonia amygdalina, on Salmonella pullorum, Klebsiella shrub or small tree of 2-5m with petiolate leaf of about 6mm di- pneumonia, Enterobacter aerogenes and Proteus vulgaris ameter and elliptic shape. The leaves are green with a character- istic’s odor and a bitter taste. No seeds are produced and the tree The genus belongs to the family which is Carica Caricaceae has therefore to be distributed through cutting. It grows under a usually a single-stemmed, semi-woody giant herb with fast, inde- range of ecological zones in Africa, the leaves are washed before is Carica papaya eating to get rid of the bitter taste. They are used as vegetable and a sole species of the genus Carica. Caricaeceae, a family well rep- terminate growth;3m during the first year [12]. stimulate the digestive system, as well as to reduce fever. resented in the neotropics that includes six genera with at least 35 species It is spread to many tropical and subtropical regions They are used in medicine as anti-malarial, anti-microbial lax- around the world [13]. The plant produces large palmate leaves ative, anthelmintic, antithrombotic and both hypoglycemic and (0.6m2 hypohpidaemic effect in diabetics. It is also used in breast cancer 40 to 60cm the papaya plant develops very fast taking 3-8 months treatment Vernonia amygdalina can also be used alone or in com- ) with five to none pinnate lobes of various widths between bination with known drugs. Vernonia amygdalina extracts may Stem grows from 5 to 10m (16 to 33ft) tall, with spirally arranged help suppress, delay or kill cancerous cell in many ways, such as from seed germination to flowering and 9-15 months for harvest. - induction of apoptosis as determined in cell culture and animal uously scarred when the leaves and fruit were borne. The leaves studies [17]. Other medicinal importance includes, it helps in di- leaves confined to the top of the trunk. The lower trunk is conspic are large, 50 -70cm (20-28m) in diameter, deeply palmately lobed, gestion and reduce fever. Vernonia amygalina also enhances che- with seven lobes, all parts of the plant contain latex [14]. The ripe motherapy sensitivity, extract may render cancerous cells to be fruit of papaya is usually eaten raw without skin or seeds. The un- more sensitive to chemotherapy [18]. ripe green fruit can be eaten cooked, usually in curries, salads and stew. The leaves are used in herbal medicine to remove intestinal Materials and Methods worms Collection of Plant Materials and Identification Citrus paradise (grape) belong to the family Rutaceae, order The fresh and healthy leaves of the plant species - bitter leaf, Sapindales and species Citrus paradisi, it is a subtropical citrus paw-paw, grape, orange was obtained from different premise. Car- tree known for its sour to semi-sweet somewhat bitter fruit The ica papaya, Citrus paradise, Citrus sinensis and Vernonia amgydali- evergreen grape fruit trees usually grow to around 5-6 meters (16- na were obtained from the premises of Michael Okpara Universi- 20ft) tall, though they can reach 13-15m (43-49ft), the leaves are ty of Agriculture, Umudike, Abia State. Citrus paradisi was gotten glossy dark green, long (up to 15 centimeters (5.9inches) and thin. from the premises of National Root Crop Research Institute, Umu- The fruit is yellow-orange skinned and generally an oblate spher- - oid in shape, it ranges in diameter from 10-15cm (3.9 – 5.9inches). partment of Plant Science and Biotechnology, Michael Okpara Uni- dike Abia State. It was identified in the taxonomic unit of the De versity of Agriculture Umudike, Abia State. the cultivars which include, white, pink and red pulps of varying The flesh is segmented and acidic varying in color depending on sweetness. Grape has been investigated in cancer medicine phar- Preparation of the Sample for Analysis macodynamics and good source of vitamin C [15]. The extraction of the plant leaves was carried out using known The genus citrus belongs to the family Rutaceae.
Recommended publications
  • Antioxidative and Chemopreventive Properties of Vernonia Amygdalina and Garcinia Biflavonoid
    Int. J. Environ. Res. Public Health 2011, 8, 2533-2555; doi:10.3390/ijerph8062533 OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Review Antioxidative and Chemopreventive Properties of Vernonia amygdalina and Garcinia biflavonoid Ebenezer O. Farombi 1,* and Olatunde Owoeye 2 1 Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria 2 Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mails: [email protected]; [email protected]; Tel.: +234-8023470333; Fax: +234-2-8103043. Received: 27 November 2010; in revised form: 12 January 2011 / Accepted: 13 January 2011 / Published: 23 June 2011 Abstract: Recently, considerable attention has been focused on dietary and medicinal phytochemicals that inhibit, reverse or retard diseases caused by oxidative and inflammatory processes. Vernonia amygdalina is a perennial herb belonging to the Asteraceae family. Extracts of the plant have been used in various folk medicines as remedies against helminthic, protozoal and bacterial infections with scientific support for these claims. Phytochemicals such as saponins and alkaloids, terpenes, steroids, coumarins, flavonoids, phenolic acids, lignans, xanthones, anthraquinones, edotides and sesquiterpenes have been extracted and isolated from Vernonia amygdalina. These compounds elicit various biological effects including cancer chemoprevention. Garcinia kola (Guttiferae) seed, known as ―bitter kola‖, plays an important role in African ethnomedicine and traditional hospitality. It is used locally to treat illnesses like colds, bronchitis, bacterial and viral infections and liver diseases. A number of useful phytochemicals have been isolated from the seed and the most prominent of them is the Garcinia bioflavonoids mixture called kolaviron.
    [Show full text]
  • Dictionary of Ò,Nì,Chà Igbo
    Dictionary of Ònìchà Igbo 2nd edition of the Igbo dictionary, Kay Williamson, Ethiope Press, 1972. Kay Williamson (†) This version prepared and edited by Roger Blench Roger Blench Mallam Dendo 8, Guest Road Cambridge CB1 2AL United Kingdom Voice/ Fax. 0044-(0)1223-560687 Mobile worldwide (00-44)-(0)7967-696804 E-mail [email protected] http://www.rogerblench.info/RBOP.htm To whom all correspondence should be addressed. This printout: November 16, 2006 TABLE OF CONTENTS Abbreviations: ................................................................................................................................................. 2 Editor’s Preface............................................................................................................................................... 1 Editor’s note: The Echeruo (1997) and Igwe (1999) Igbo dictionaries ...................................................... 2 INTRODUCTION........................................................................................................................................... 4 1. Earlier lexicographical work on Igbo........................................................................................................ 4 2. The development of the present work ....................................................................................................... 6 3. Onitsha Igbo ................................................................................................................................................ 9 4. Alphabetization and arrangement..........................................................................................................
    [Show full text]
  • Chromosome Numbers and Karyotype in Certain Species of the Genus Vernonia Schreber in Southern Nigerian
    Vol. 7(11), pp. 538-542, November 2013 DOI: 10.5897/AJPS2013.1048 ISSN 1996-0824 ©2013 Academic Journals African Journal of Plant Science http://www.academicjournals.org/AJPS Full Length Research Paper Chromosome numbers and karyotype in three species of the genus Vernonia Schreber in Southern Nigerian Kemka-Evans, C. I.1* and Okoli, Bosa2 1Alvan Ikoku Federal College of Education Owerri, Imo State, Nigeria. 2Regional Centre for Bioresources and Biotechnology, Rivers State, Nigeria. Accepted 26 August, 2013 Detailed cytological studies were carried out on three species of the genus Vernonia namely Vernonia amygdalina (bitter leaf and non-bitter leaf), Vernonia cinerea and Vernonia conferta to ascertain their chromosome number. The taxa studied showed diploid number of chromosome for V. cinerea (2n = 18) and V. conferta (2n = 20) and tetraploid number for V. amygdalina (2n = 36). The karyotype show nine (9) pairs of submetacentric chromosomes in V. cinerea and 10 pairs of submetacentric chromosomes in V. conferta. The karyotype of V. amygdalina (bitter leaf) varied from that of V. amygalina (non-bitter) by being larger in size and with a pair of telocentric chromosome. The studies of the pollen fertility suggest that V. amygdalina is an amphidiploid. Key words: Chromosome numbers, karyotype, polyploidy, Vernonia. INTRODUCTION Vernonia is a large tropical genus with about 1,000 different taxa as members of the same species have species both in the old and new worlds (Jones, 1976, similarity in their chromosome sets and related species 1979). Vernonia belongs to the family compositae have related chromosome sets (Gill and Singhal, 1998; (Asteraceae). The family Asteraceae belongs to the order Stace, 2000).
    [Show full text]
  • Antimalarial Sesquiterpene Lactones from Distephanus Angulifolius
    Antimalarial sesquiterpene lactones from Distephanus angulifolius Pedersen, Martin M.; Chukwujekwu, Jude C.; Lategan, Carmen A.; van Staden, Johannes; Smith, Peter J.; Stærk, Dan Published in: Phytochemistry DOI: doi:10.1016/j.phytochem.2009.02.005 Publication date: 2009 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Pedersen, M. M., Chukwujekwu, J. C., Lategan, C. A., van Staden, J., Smith, P. J., & Stærk, D. (2009). Antimalarial sesquiterpene lactones from Distephanus angulifolius. Phytochemistry, 70(5), 601-607. https://doi.org/doi:10.1016/j.phytochem.2009.02.005 Download date: 07. apr.. 2020 Phytochemistry 70 (2009) 601–607 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Antimalarial sesquiterpene lactones from Distephanus angulifolius Martin M. Pedersen a, Jude C. Chukwujekwu b, Carmen A. Lategan c, Johannes van Staden b, Peter J. Smith c, Dan Staerk d,* a Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark b Research Centre for Plant Growth and Development, School of Biological and Conservation Science, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa c Department of Medicine, Division of Pharmacology, University of Cape Town, Observatory 7925, Capetown, South Africa d Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej
    [Show full text]
  • A Review on Antimicrobial Potential of Species of the Genus Vernonia (Asteraceae)
    Vol. 9(31), pp. 838-850, 17 August, 2015 DOI: 10.5897/JMPR2015.5868 Article Number: 3AC6F7C54895 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Review A review on antimicrobial potential of species of the genus Vernonia (Asteraceae) Antonio Carlos Nogueira Sobrinho 1*, Elnatan Bezerra de Souza 2 and Raquel Oliveira dos Santos Fontenelle 2 1Academic Master in Natural Resources, Center for Science and Technology, State University of Ceará, Campus do Itaperi, 60740-903 Fortaleza-CE, Brazil. 2Course of Biological Sciences, Center for Agricultural Sciences and Biological Sciences, State University Vale do Acaraú, Campus da Betânia, 62040-370 Sobral-CE, Brazil. Received 13 June, 2015; Accepted 4 August, 2015 Natural products are sources of various biologically active chemicals. Therefore, ethnopharmacological and ethnobotanical studies are essential to discover new substances for the treatment of diseases. In this context, many studies have been conducted of the Asteraceae family demonstrating medicinal properties of its representatives, such as species of the genus Vernonia , which are rich in bioactive substances like sesquiterpene lactones, flavonoids, tannins and steroids. This review presents an overview of Vernonia species with antimicrobial potential, their main phytochemical characteristics and ethnomedicinal uses. Key words: Compositae, Vernonieae, phytochemistry, biological activity, antimicrobial, antibacterial, antifungal. INTRODUCTION
    [Show full text]
  • Population Dynamic of Hilda Cameroonensis Tamesse & Dongmo
    Entomology and Applied Science Letters Volume 8, Issue 1, Page No: 66-76 Copyright CC BY-NC-ND 4.0 Available Online at: www.easletters.com ISSN No: 2349-2864 Population Dynamic of Hilda Cameroonensis Tamesse & Dongmo (Tettigometridae) Pest of Vernonia amygdalina Delile in Yaoundé-Cameroon Lidy Flore Dongmo1, Joseph Lebel Tamesse 1* 1Laboratory of Zoology, Department of Biological Science, College of Higher Teachers Training, University of Yaounde I, P.O. box 47 Yaounde, Cameroon. ABSTRACT Vernonia amygdalina Delile commonly called bitter leaf is a perennial shrub that belongs to the family of Asteraceae and grows throughout tropical Africa. It is probably the most used medicinal plant in the ge- nus Vernonia. Insect pests caused serious damages on the leaves. In Cameroon, a new species of Hilda genus (Tettigometridae) was reported and described recently, Hilda cameroonensis Tamesse & Dongmo, for the first time on V. amygdalina. This insect caused leaves to shrivel. The population dynamic of that pest species was conducted in a natural farm, in the Yaounde Region, from November 2014 to October 2016. During the study, eggs, larvae, and adults were surveyed and counted once a week. Seven different generations of H. cameroonensis were recorded during the first years and six during the second years. The pest population was correlated with climatic parameters, mostly with relative humidity, temperature, wind speed, and rainfall. The main factors influencing the numerical fluctuation of the pest, and the out- break periods of each of the developmental stages of the pest in the Yaounde region will be take into con- sideration by the integrated pest management.
    [Show full text]
  • Infrared Studies and Mineral Element Analysis of the Leaf of Vernonia Amygdalina
    Available online at www.worldnewsnaturalsciences.com WNOFNS 13 (2017) 1-9 EISSN 2543-5426 Infrared Studies and Mineral Element Analysis of the leaf of Vernonia amygdalina Duru Ijeoma Akunna1 and Duru Chidi Edbert2,* 1Department of Chemistry, Federal University of Technology Owerri, P.M.B. 1526, Imo State, Nigeria 2Department of Chemistry, Imo State University Owerri, P.M.B. 2000, Imo State, Nigeria *E-mail address: [email protected] ABSTRACT Used in traditional medicine, infrared characterization of column eluates and elemental analysis of V. amygdalina was carried out to establish preliminary views of the chemical and mineral element composition of the leaf of this plant. In the five pure eluates obtained, we found that they contained saturated aliphatic esters, nitro-groups conjugated with benzene ring, secondary amines/nitrogen heterocycles, 1,3-disubstituted benzene and oxazine/oxazoline fragments, respectively. Moreover, we established that potassium, magnesium and sodium were the major minerals in the leaf, while copper, zinc, iron, nickel, manganese and chromium occurred in trace amounts. Research attention should therefore be focused on this plant for the full exploration and exploitation of its obvious antibiotic and mineral values. Keywords: V. amygdalina, Infrared, Elemental analysis, Aliphatic esters, Secondary amines, Oxazine 1. INTRODUCTION Vernonia amygdalina belongs to the Kingdom Plantae. It is an angiosperm, of the order Asterales, of the family Asteraceae, genus Vernonia, and species V. amygdalina. Its binomial name is Vernonia amygdalina (Akah and Ekekwe 1995). It is called bitter leaf in English, “oriwo” in Edo, “ewuro” in Yoruba, “shikawa” in Hausa and “olugbu” in Igbo (Oboh and Masodje 2009). It occurs as a small shrub with height ranging from 2-5 m.
    [Show full text]
  • Significance of Bitter Leaf
    rapy Con he tro t l o & m e E l h i m C i Malaria Chemotherapy Control a n i a r t a l i o a n M & Elimination Clement E et al., Malar Chemoth Cont 2014, 3:1 ISSN: 2090-2778 DOI: 10.4172/2090-2778.1000120 Research Article Open Access Significance of Bitter Leaf (Vernonia Amagdalina) In Tropical Diseases and Beyond: A Review Clement Egharevba1, Erharuyi Osayemwenre2, Vincent Imieje2, Joy Ahomafor3, Christopher Akunyuli2, Anthony Adeyanju Udu-Cosi2, Onyekaba Theophilus3,Osakue James4, Iftikhar Ali5 and Abiodun Falodun6* 1Department of Pharmacognosy, Faculty of Pharmacy, University of Benin, Nigeria 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Nigeria 3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria 4Department of Physiology, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria 5Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059 Rostock, Germany 6Department of Pharmacognosy, School of Pharmacy, University of Mississippi, 38655 Oxford, Mississippi, USA *Corresponding author: Abiodun Falodun, Department of Pharmacognosy, School of Pharmacy, University of Mississippi, 38655 Oxford, Mississippi, USA, Tel: 662-638-5786, +2348073184488; E-mail: [email protected] Received date: April 04, 2014; Accepted date: June 3, 2014; Published date: June 10, 2014 Copyright: © 2014 Abiodun F et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Vernonia amygdalina Delile (VA), family Asteraceae or Compositae is plants that is consumed locally as food and serve important ethnomedicinal uses.
    [Show full text]
  • A Comprehensive Review on Phytochemistry and Pharmacological Activities of Vernonia Amygdalina
    Journal of Pharmacognosy and Phytochemistry 2019; 8(3): 2629-2636 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(3): 2629-2636 A comprehensive review on phytochemistry and Received: 09-03-2019 Accepted: 13-04-2019 pharmacological activities of Vernonia amygdalina Divneet Kaur G.H.G. Khalsa College of Divneet Kaur, Navpreet Kaur and Anuja Chopra Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India Abstract Vernonia amygdalina Delile is a small tree with brittle branches, up to 10 m tall and commonly called as Navpreet Kaur bitter leaf due to its bitter taste. It is native of tropical Africa but widely found on riverside and lakes G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar, areas, in woodland and grassland up to 2800 m altitude, in areas where the average rainfall is 750-2000 Ludhiana, Punjab, India mm. The plant is considered as a medicinal herb and mostly used in traditional medicine system. The principal phytoconstituents of the plant are oxalate, phytates, tannins, saponins, flavonoids, cyanogenic Anuja Chopra glycosides, alkaloids, terpenes, anthraquinone, steroid, coumarins, lignans, xanthones, edotides and G.H.G. Khalsa College of sesquiterpenes and phenol. The plant attributed with anti-cancer, antidiabetic, anti-malarial, anti- Pharmacy, Gurusar Sadhar, inflammatory, cathartic, hepatoprotective, antimicrobial, antioxidant, chemo protective and cytotoxic, Ludhiana, Punjab, India Analgesic, anthelmintic, Anti-pyretic, hypolipidaemic properties and also used as Hemolytic, Antimutagenic, Anti-leishmanial, Spermatogenic, anti-platelet and abortifacient agent. The plant was traditionally used as appetizer and against the problems like constipation and diarrhoea. It is considered as a treatment for alcohol induced hepatotoxicity. Keywords: bitter leaf, flavonoids, anti-diabetic, Vernonia amygdalina Delile Introduction Vernonia amygdalina Delile (Gymnanthemum amygdalinum (Delile) (VA) is a native to tropical Africa and commonly known as ‘African bitter leaf’ or bitter leaf plant.
    [Show full text]
  • Current Perspectives on the Medicinal Potentials of Vernonia Amygdalina Del
    Journal of Medicinal Plants Research Vol. 5(7), pp. 1051-1061, 4 April, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals Review Current perspectives on the medicinal potentials of Vernonia amygdalina Del. Ifeoma I. Ijeh* and Chukwunonso E. C. C. Ejike Department of Biochemistry, College of Natural and Applied Sciences, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, Umuahia, Abia State, Nigeria. Accepted 27 September, 2010 Vernonia amygdalina Del., commonly called bitter leaf, is a perennial shrub that belongs to the family Asteraceae and grows throughout tropical Africa. It is probably the most used medicinal plant in the genus Vernonia. Traditional medicine practitioners use the plant as an anti-helminth, anti-malarial, laxative, digestive tonic, appetizer, febrifuge and for the topical treatment of wounds. Scientific research in the last few decades has scrutinized these claims and found that extracts from the plant have numerous phytotherapeutic properties. Extracts from V. amygdalina Del. have been shown to have antimicrobial (antibacterial, antifungal, antiplasmodial etc), anti-cancer/tumor, antioxidant, hypoglycemic/anti-diabetic, oxytocic, hepato- and nephro- protective, serum lipid modulation, and other properties. These properties are believed to be mediated by different phytochemicals found in the plant, acting singly or in concert. This paper critically reviews the present state of scientific knowledge on the medicinal and nutritional potentials of V. amygdalina Del. It concludes that future research must aim at characterizing the active principle(s) responsible for each effect, and determining if they act singly or synergistically with other principles present in the plant. Key words: Vernonia amygdalina , medicinal uses, nutrient composition.
    [Show full text]
  • AND Ocimum Gratissimum Linn (Lamiaceae) in CYCLOPHOSPHAMIDE INDUCED UROTOXICITY and MYELOSUPPRESSION
    PROTECTIVE ROLE OF AQUEOUS LEAF EXTRACT OF Vernonia amygdalina Del. (Asteraceae) AND Ocimum gratissimum Linn (Lamiaceae) IN CYCLOPHOSPHAMIDE INDUCED UROTOXICITY AND MYELOSUPPRESSION BY IKEH, CHIBUEZE PG/MSC/09/51359 A RESEARCH SUBMITTED IN PARTIAL FULFILMENT FOR THE AWARD OF MASTER OF SCIENCE (M. Sc) DEGREE IN PHARMACOLOGY, FACULTY OF PHARMACEUTICAL SCIENCES, UNIVERSITY OF NIGERIA, NSUKKA. FEBRUARY, 2013. 1 CERTIFICATION PAGE PROTECTIVE ROLE OF AQUEOUS LEAF EXTRACT OF Vernonia amygdalina Del. (Asteraceae) AND Ocimum gratissimum Linn (Lamiaceae) IN CYCLOPHOSPHAMIDE INDUCED UROTOXICITY AND MYELOSUPPRESSION BY IKEH, CHIBUEZE PG/MSC/09/51359 A RESEARCH SUBMITTED IN PARTIAL FULFILMENT FOR THE AWARD OF MASTER OF SCIENCE (M. Sc) DEGREE IN PHARMACOLOGY, FACULTY OF PHARMACEUTICAL SCIENCES, UNIVERSITY OF NIGERIA, NSUKKA. CERTIFIED BY ------------------------------ --------------------------------- DR. A. C. EZIKE PROF P. A. AKAH (PROJECT SUPERVISOR) (PROJECT SUPERVISOR) ------------------------------------- DR. T. C. OKOYE (Ag. HEAD OF DEPARTMENT) 2 DEDICATION This work is dedicated to all patients currently suffering from various human malignancies and metastasizing cancers throughout the globe. I believe this work has provided yet another convenient solution to alleviate their suffering. 3 ACKNOWLEDGEMENT Without any reservation, I wish to express my warmest appreciation to the Almighty God for His eternal mercies and guidance throughout the course of this work without whom it wouldn’t have seen the light of the day. With utmost sincerity, many thanks to my supervisors Dr. (Mrs.) A. C. Ezike and Prof P.A Akah for their invaluable contributions; May God continue to bless you abundantly. I will forever be indebted to my God given parents Rev. Emmanuel and Mrs. Abigail Ike whose kindness and foundational education they provided me with has seen me through in the course of life’s journey.
    [Show full text]
  • Integrated Metabolome and Transcriptome Revealed the Flavonoid Biosynthetic Pathway in Developing Vernonia Amygdalina Leaves
    Integrated metabolome and transcriptome revealed the flavonoid biosynthetic pathway in developing Vernonia amygdalina leaves Lanya Shui*, Kaisen Huo*, Yan Chen, Zilin Zhang, Yanfang Li and Jun Niu Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China * These authors contributed equally to this work. ABSTRACT Background. Vernonia amygdalina as a tropical horticultural crop has been widely used for medicinal herb, feed, and vegetable. Recently, increasing studies revealed that this species possesses multiple pharmacological properties. Notably, V. amygdalina leaves possess an abundance of flavonoids, but the specific profiles of flavonoids and the mechanisms of fl avonoid bi osynthesis in developing leaves are largely unknown. Methods. The total flavonoids of V. amygdalina leaves were detected using ultraviolet spectrophotometer. The temporal flavonoid profiles of V. amygdalina leaves were analyzed by LC-MS. The transcriptome analysis of V. amygdalina leaves was performed by Illumina sequencing. Functional annotation and differential expression analysis of V. amygdalina genes were performed by Blast2GO v2.3.5 and RSEM v1.2.31, respectively. qRT-PCR analysis was used to verify the gene expressions in developing V. amygdalina leaves. Results. By LC-MS analysis, three substrates (p-coumaric acid, trans-cinnamic acid, and phenylalanine) for flavonoid biosynthesis were identified in V. amygdalina leaves. Additionally, 42 flavonoids were identified from V. amygdalina leaves, including six dihydroflavones, 14 flavones, eight isoflavones, nine flavonols, two xanthones, one chalcone, one cyanidin, and one dihydroflavonol. Glycosylation and methylation were Submitted 26 November 2020 common at the hydroxy group of C3, C7, and C4' positions.
    [Show full text]