A Floral Ontogenetic Study in Croton (Euphorbiaceae) with Special Emphasis on the Evolution of Petals

Total Page:16

File Type:pdf, Size:1020Kb

A Floral Ontogenetic Study in Croton (Euphorbiaceae) with Special Emphasis on the Evolution of Petals 1 A floral ontogenetic study in Croton (Euphorbiaceae) with special emphasis on the evolution of petals. Stuart Ritchie MSc Biodiversity and Taxonomy of Plants 2017/2018 Thesis submitted in partial fulfilment for the MSc in the Biodiversity and Taxonomy of Plants 2 Acknowledgments Sincerest thanks to my project supervisors Pakkapol Thaowetsuwan and Louis Ronse De Craene for their support, guidance and knowledge. I look forward to working together to publish the results presented here. Thank you also to Louis and all staff members at the Royal Botanic Garden Edinburgh who contributed to the MSc Biodiversity and Taxonomy of Plants over the last year. Learning from such respected botanists in a world class botanic garden has been a truly life changing experience. My love and appreciation to Emmy for her constant love and support, which has no limits, and to Mum, Dad and Gran J for their love and encouragement. Of course, thank you to my friends who have made the last year so special. It has been a great pleasure spending it with such a diverse group of people, all united by a love of plants! Finally, thank you The Scottish International Education Trust who awarded me a grant towards tuition fees and to The Stirlingshire Educational Trust for their grant towards travel expenses. Without these grants and generous contributions towards my course fees, travel and living expenses from family members, accepting a place on the course would not have been possible. Thank you. 3 Contents Abstract 1.Introduction 1.1. The history and principles of comparative morphology including arguments for its central role in the study of floral evolution. 1.2. Introduction to the angiosperm perianth with an emphasis on the evolution of petals. 1.3. Petal-like organs in the basal angiosperms. 1.4. Evolution of the core eudicot perianth with emphasis on petals. 1.5. Genetic control of floral organ identity. 1.6. An introduction to Croton: Diversity and ecology, morphology and taxonomy. 1.6.1. Diversity and Ecology 1.6.2. Morphology 1.6.3. Taxonomy 1.7. Research aims. 2.Methods 2.1. Dissection, Critical Point Drying and Scanning Electron Microscopy 2.2. Tissue clearing and viewing 3. Results 3.1. Organography of C. alabamensis 3.2. Organogeny in male flowers of C. alabamensis 3.3. Organogeny in female flowers of C. alabamensis 3.4. Perianth vasculature of male and female flowers of C. alabamensis 3.5. Organography of C. schiedeanus 3.6. Organogeny in male flowers of C. schiedeanus 3.7. Organogeny in female flowers of C. schiedeanus 4 3.8. Perianth vasculature of male and female flowers of C. schiedeanus 3.9. Organography of C. chilensis 3.10. Organogeny in male flowers of C. chilensis 3.11. Organogeny in female flowers of C. chilensis 3.12. Perianth vasculature of male and female flowers of C. chilensis 4. Discussion 4.1. Petal evolution in Croton 4.2. The identity of nectaries in Croton 4.3. Evolution of the androecium in Croton 5. Conclusions 6. References 5 Abstract Background and Aims: Croton is a megadiverse genus of over 1200 species within the family Euphorbiaceae. The unisexual flowers of Croton species show a particularly high diversity in the perianth, number and position of stamens and in the floral nectaries. In most Croton taxa, male flowers have well-developed petals which are generally reduced or absent in female flowers. However, in two New World Croton sections, petals are equally well developed in both male and female flowers. Due to a lack of developmental studies within the genus, the identity of these petals and of the filamentous petals occurrent throughout the genus remains unresolved. This study seeks to answer three main questions: Are the petals in male Croton flowers of tepaline origin like the sepals, or are they derived from sterilised and transformed stamens? Are the well-developed petals in female flowers of C. alabamensis and C. schiedeanus homologous to those in male flowers? What are the implications for the evolutionary identity of the filamentous petals found in C. chilensis and throughout the genus at large? Methods: The floral ontogeny and morphology of three Croton species, C. alabamensis, C. schiedeanus and C. chilensis were studied and examined using scanning electron microscopy. Perianth vasculature was examined using clearing and staining techniques. Key Results: The petals in male and female flowers of C. alabamensis and C. schiedeanus are confirmed as bracteopetals and are not derived from transformed staminodes. The floral ontogeny of C. chilensis supports earlier hypotheses that the filamentous petals in female flowers are reduced petals. These are shown to have a delayed development. The development of the androecium is highly varied in the three species studied. Stamen initiation is centripetal in C. schiedeanus leading to an obdiplostemonous configuration at maturity. The number, size and shape of floral nectaries is variable between species. They develop late in the floral ontogeny indicating that they are of receptacular origin. Discussion: The case for a process of repeated reduction of female petals throughout the genus is presented and discussed with regard to heterochrony, genetics and spatial pressures imposed during the floral ontogeny. The identity of the floral nectaries of receptacular origin is discussed. The special case of centripetal obdiplostemony in C. schiedeanus is discussed in the context of the angiosperms at large. 6 7 1. Introduction 1.1. The history and principles of comparative morphology including arguments for its central role in the study of floral evolution. Goethe coined the term ‘morphology’. He also introduced the concept of the ‘leaf’ (phyllome of Troll) as the primary plant organ, which undergoes ‘metamorphosis’ to create each of the distinct floral organs that we now call sepals, petals, stamens and carpels (Goethe, 1790; Claßen-Bockhoff, 2001). Later, Takhtajan with an understanding of Darwinian evolution and early genetic studies, discussed the evolutionary origin of floral organs from modified laminar, leaf-like structures through developmental processes acting on the reproductive shoots of a seed-fern-like ancestor (Takhtajan, 1976; Takhtajan, 1991). Since Takhtajan, several floral morphologists have argued that once the ancestral angiosperm flower had evolved, all extant floral diversity could be generated through the modification of a few major developmental processes, as influenced by a combination of external and internal pressures. The first is heterochrony, a term introduced by Haeckel which has since been modified by several morphologists (Haeckel, 1875). It is a change in the timing or rate of development of ancestral features, such that the modified ontogeny becomes fixed in descendants (Li and Johnston, 2000). The second is heterotopy, defined as a change in the position of structures during development. Finally, there is homeosis, which whilst variously defined means transference of attributes of one structure, to the position normally occupied by a structure with different attributes (Ronse De Craene, 2003). When studied within the context of evolutionary history, evolutionary genetics (Evo-Devo) and plant physiology, knowledge of developmental processes provides great potential for understanding the evolution of flowers and floral diversity (Ronse De Craene, 2018). Li and Johnston (2000) wrote that these processes can be summarised into four elements governing the development of flowers. These are size, shape, timing and rate. Ronse De Craene (2018) argued that heterotopy is a superfluous term as it can both be caused by homeosis, and is a direct consequence of heterochrony due to the change in available space on the floral meristem at the time of organ initiation. He argues that pressure is an element overlooked by Li and Johnston in that it governs the shape and size of floral organs. As such, it is suggested the combination of just three factors, time, size and pressure acting during floral development can explain the resulting morphology (Ronse De Craene, 2018). 8 From a Neo-Darwinian perspective, it is reasonable to believe that that changes in floral developmental processes must be preceded by genetic mutations, which subsequently become fixed due to selective forces imposed by pollinators. However, it is recognised that different floral morphologies may be created based on similar genetics. Most of the genes that are well studied are floral organ identity genes, the expression of which may be shifted in space-time, resulting in homeosis. These genes do not govern the position of organs within flowers (Jaramillo and Kramer, 2007). Instead, of central importance to the study of floral evolution is an understanding of how mechanical forces (pressure), geometry (size and shape) and growth (time) act as cues for cellular behaviour and the initiation of different genetic pathways. Several inter-disciplinary studies have demonstrated the importance of these factors, particularly pressure, in regulating other processes during plant development. For example, mechanical pressures are responsible for auxin transport and accumulation during all stages of plant growth. The phytohormone auxin is the primary regulator of growth patterns in plants. It induces cell growth at very specific sites such as organ primordia during flower and shoot development (Nakayama et al., 2012). Shoot morphogenesis, which depends on coordinated growth of the cellular microtubule cytoskeleton, is also closely regulated by mechanical pressures at all stages (Hamant et al., 2008).
Recommended publications
  • Shrubs, Trees and Contingent Evolution of Wood Anatomical Diversity Using Croton (Euphorbiaceae) As a Model System
    Annals of Botany 119: 563–579, 2017 doi:10.1093/aob/mcw243, available online at www.aob.oxfordjournals.org Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system Rafael Are´valo1,2,*, Benjamin W. van Ee3, Ricarda Riina4, Paul E. Berry5 and Alex C. Wiedenhoeft1,2 1Center for Wood Anatomy Research, USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA, 2Department of Botany, University of Wisconsin, Madison, WI 53706, USA, 3University of Puerto Rico at Mayagu¨ez Herbarium, Department of Biology, Universidad de Puerto Rico, Call Box 9000, Mayagu¨ez, 00680, Puerto Rico, 4Real Jardın Botanico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain and 5University of Michigan, Ecology and Evolutionary Biology Department and Herbarium, Ann Arbor, MI 48108, USA *For correspondence. E-mail [email protected] Received: 7 July 2016 Returned for revision: 3 September 2016 Accepted: 5 October 2016 Published electronically: 8 January 2017 Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phy- logeny of the genus to date. Key Results Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit.
    [Show full text]
  • 261 Comparative Morphology and Anatomy of Few Mangrove Species
    261 International Journal of Bio-resource and Stress Management 2012, 3(1):001-017 Comparative Morphology and Anatomy of Few Mangrove Species in Sundarbans, West Bengal, India and its Adaptation to Saline Habitat Humberto Gonzalez Rodriguez1, Bholanath Mondal2, N. C. Sarkar3, A. Ramaswamy4, D. Rajkumar4 and R. K. Maiti4 1Facultad de Ciencias Forestales, Universidad Autonoma de Nuevo Leon, Carr. Nac. No. 85, Km 145, Linares, N.L. Mexico 2Department of Plant Protection, Palli Siksha Bhavana, Visva-Bharati, Sriniketan (731 236), West Bengal, India 3Department of Agronomy, SASRD, Nagaland University, Medziphema campus, Medziphema (PO), DImapur (797 106), India 4Vibha Seeds, Inspire, Plot#21, Sector 1, Huda Techno Enclave, High Tech City Road, Madhapur, Hyderabad, Andhra Pradesh (500 081), India Article History Abstract Manuscript No. 261 Mangroves cover large areas of shoreline in the tropics and subtropics where they Received in 30th January, 2012 are important components in the productivity and integrity of their ecosystems. High Received in revised form 9th February, 2012 variability is observed among the families of mangroves. Structural adaptations include Accepted in final form th4 March, 2012 pneumatophores, thick leaves, aerenhyma in root helps in surviving under flooded saline conditions. There is major inter- and intraspecific variability among mangroves. In this paper described morpho-anatomical characters helps in identification of family Correspondence to and genus and species of mangroves. Most of the genus have special type of roots which include Support roots of Rhizophora, Pnematophores of Avicennia, Sonneratia, Knee *E-mail: [email protected] roots of Bruguiera, Ceriops, Buttress roots of Xylocarpus. Morpho-anatomically the leaves show xerophytic characteristics.
    [Show full text]
  • International Standard Iso 4720:2018(E)
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80006399 INTERNATIONAL ISO STANDARD 4720 Fourth edition 2018-08 Essential oils — Nomenclature Huiles essentielles — Nomenclature Reference number ISO 4720:2018(E) © ISO 2018 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80006399 ISO 4720:2018(E) COPYRIGHT PROTECTED DOCUMENT © ISO 2018 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax:Website: +41 22www.iso.org 749 09 47 Email: [email protected] iiPublished in Switzerland © ISO 2018 – All rights reserved This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80006399 ISO 4720:2018(E) Contents Page Foreword ........................................................................................................................................................................................................................................iv Introduction ..................................................................................................................................................................................................................................v
    [Show full text]
  • Species Composition and Zonal Distribution of Mangrove Plants in the Myeik Coastal Areas of Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access Species composition and zonal distribution of mangrove plants in the Myeik coastal areas of Myanmar Abstract Volume 9 Issue 2 - 2020 The species composition and zonal distribution of mangroves in five research sites viz., Tin-Zar-Ni-Win,1 U Soe-Win2 Kapa, Masanpa, Panadoung, Kywe Ka Yan and Kyauk Phyar from Myeik coastal areas 1Marine Biologist, Fauna & Flora International (FFI), Myanmar were studied from December 2017 to July 2018. Transect lines in landward, seaward 2Department of Marine Science, Mawlamyine University, and shoreline, and plots based on Point Center Quarter Method (PCQM) were used. Myanmar A total of 21 species of true mangrove were recorded. Rhizophora apiculata and R. Mucronata were the most dominant species in the study sites, especially in the seaward Correspondence: Tin-Zar-Ni-Win, Marine Biologist, Fauna & areas. Among the recorded species, Aegiceras corniculatum, Avicennia officinalis, R. Flora International (FFI), Myanmar apiculata, R. mucronata, Sonneratia alba and Nypa fruticans were distributed in all study Email sites. Bruguiera gymnorhiza and B.cylindrica, were recorded only in shoreline areas and Heritiera littoralisis was found only in landward areas in all study sites. Among the Received: April 07, 2020 | Published: April 28, 2020 study sites, Kapa has been designated as the highest species composition, representing 17 species, whereas Kyauk Phyar, representing 12 species as the lowest species composition. The environmental parameters of mangrove forests were also provided in all study sites. The various salinity and temperature ranges of seawater (25.0-30.0‰ and 28.0-32.0ºC) and soil (25.0-33.0‰ and 27.6-31.4ºC) significantly controlled the distribution of mangrove species of mangroves.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Taxonomic Revision of Selected Problem Groups of the Genus Clutia in Kwazulu-Natal, South Africa by Andani Robert Madzinge (218024650)
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012). Title of the thesis or dissertation (Doctoral Thesis / Master’s Dissertation). Johannesburg: University of Johannesburg. Available from: http://hdl.handle.net/102000/0002 (Accessed: 22 August 2017). Taxonomic revision of selected problem groups of the genus Clutia in KwaZulu-Natal, South Africa By Andani Robert Madzinge (218024650) Dissertation Submitted in fulfilment of the requirements for the degree of Magister Scientiae (MSc) In Botany In the Faculty of Science at the University of Johannesburg South Africa Supervisor: Prof. A.N. Moteetee (UJ) Co-supervisor: Prof M. Van der Bank (UJ) Co-supervisor: Dr R.H. Archer (SANBI) January 2021 DECLARATION I, Andani Robert Madzinge, declare that this dissertation submitted by me for the degree of Masters of Science in Botany at the department of Botany and Plant Biotechnology in the faculty of Science at the University of Johannesburg is my own work in design and in execution. It has not been submitted before for any degree or examination at this or any other academic institution and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references.
    [Show full text]
  • HANDBOOK of Medicinal Herbs SECOND EDITION
    HANDBOOK OF Medicinal Herbs SECOND EDITION 1284_frame_FM Page 2 Thursday, May 23, 2002 10:53 AM HANDBOOK OF Medicinal Herbs SECOND EDITION James A. Duke with Mary Jo Bogenschutz-Godwin Judi duCellier Peggy-Ann K. Duke CRC PRESS Boca Raton London New York Washington, D.C. Peggy-Ann K. Duke has the copyright to all black and white line and color illustrations. The author would like to express thanks to Nature’s Herbs for the color slides presented in the book. Library of Congress Cataloging-in-Publication Data Duke, James A., 1929- Handbook of medicinal herbs / James A. Duke, with Mary Jo Bogenschutz-Godwin, Judi duCellier, Peggy-Ann K. Duke.-- 2nd ed. p. cm. Previously published: CRC handbook of medicinal herbs. Includes bibliographical references and index. ISBN 0-8493-1284-1 (alk. paper) 1. Medicinal plants. 2. Herbs. 3. Herbals. 4. Traditional medicine. 5. Material medica, Vegetable. I. Duke, James A., 1929- CRC handbook of medicinal herbs. II. Title. [DNLM: 1. Medicine, Herbal. 2. Plants, Medicinal.] QK99.A1 D83 2002 615′.321--dc21 2002017548 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.
    [Show full text]
  • Plants and Parts of Plants Used in Food Supplements: an Approach to Their
    370 ANN IST SUPER SANITÀ 2010 | VOL. 46, NO. 4: 370-388 DOI: 10.4415/ANN_10_04_05 ES I Plants and parts of plants used OLOG D in food supplements: an approach ETHO to their safety assessment M (a) (b) (b) (b) D Brunella Carratù , Elena Federici , Francesca R. Gallo , Andrea Geraci , N (a) (b) (b) (a) A Marco Guidotti , Giuseppina Multari , Giovanna Palazzino and Elisabetta Sanzini (a)Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare; RCH (b) A Dipartimento del Farmaco, Istituto Superiore di Sanità, Rome, Italy ESE R Summary. In Italy most herbal products are sold as food supplements and are subject only to food law. A list of about 1200 plants authorised for use in food supplements has been compiled by the Italian Ministry of Health. In order to review and possibly improve the Ministry’s list an ad hoc working group of Istituto Superiore di Sanità was requested to provide a technical and scientific opinion on plant safety. The listed plants were evaluated on the basis of their use in food, therapeu- tic activity, human toxicity and in no-alimentary fields. Toxicity was also assessed and plant limita- tions to use in food supplements were defined. Key words: food supplements, botanicals, herbal products, safety assessment. Riassunto (Piante o parti di piante usate negli integratori alimentari: un approccio per la valutazione della loro sicurezza d’uso). In Italia i prodotti a base di piante utilizzati a scopo salutistico sono in- tegratori alimentari e pertanto devono essere commercializzati secondo le normative degli alimenti. Le piante che possono essere impiegate sono raccolte in una “lista di piante ammesse” stabilita dal Ministero della Salute.
    [Show full text]
  • Threatened Jott
    Journal ofThreatened JoTT TaxaBuilding evidence for conservation globally PLATINUM OPEN ACCESS 10.11609/jott.2020.12.3.15279-15406 www.threatenedtaxa.org 26 February 2020 (Online & Print) Vol. 12 | No. 3 | Pages: 15279–15406 ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Information Liaison Development Society Zoo Outreach Organization www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetting Dr. Neelesh Dahanukar Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communications Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms. Sally Walker Dr. B.
    [Show full text]
  • Fungal Biofilms As a Valuable Target for the Discovery of Natural
    antibiotics Review Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi—Latest Findings Estefanía Butassi 1,†, Laura Svetaz 1,†, María Cecilia Carpinella 2, Thomas Efferth 3 and Susana Zacchino 1,* 1 Pharmacognosy Area, School of Biochemical and Pharmaceutical Sciences, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; [email protected] (E.B.); [email protected] (L.S.) 2 Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Córdoba 5016, Argentina; [email protected] 3 Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these enti- ties. The present review provides an update (2017–May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Citation: Butassi, E.; Svetaz, L.; Carpinella, M.C.; Efferth, T.; Zacchino, Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. S. Fungal Biofilms as a Valuable Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them in- Target for the Discovery of Natural cluding studies of the mechanism of action and five dealing with natural compounds included in Products That Cope with the nanosystems.
    [Show full text]
  • Mangrove Guidebook for Southeast Asia
    RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat.
    [Show full text]
  • Comparative Study on Foliar and Petiole Anatomy of the Genus Bruguiera L
    Journal of Academia and Industrial Research (JAIR) Volume 5, Issue 7 December 2016 92 ISSN: 2278-5213 RESEARCH ARTICLE Comparative Study on Foliar and Petiole Anatomy of the Genus Bruguiera L. in Mangrove Forest of Kerala S. Surya* and N. Hari Department of Botany, C.M.S. College, Kottayam, Kerala-686001, India [email protected]*, [email protected]; +91 9400094355*, 8547591199 ______________________________________________________________________________________________ Abstract Leaf and petiole anatomical profiling of three species of Bruguiera L. occurring in the mangrove forest of Kerala was investigated in this study. The study aims to search for the stable features marking out Bruguiera species. Anatomical characters in all three taxa showed similarities because of its generic closeness. Three species were distinguished based on the difference in the number of vascular bundles in midrib and petiole, number of palisade layer and type of stomata. Nevertheless the three Bruguiera species can be grouped anatomically based on the type and pattern of sclereids. Brachy sclereids present in all three taxa but the astero sclereids were found only in B. gymnorrhiza. Through this anatomical study, we concluded that all the species have some unique features to withstand extreme environmental habitat. Keywords: Anatomical characters, anticlinal walls, astero sclereids, Bruguiera, environmental habitat. Introduction Bruguiera parviflora has wide distribution in the northern Bruguiera is the largest genus in the Rhizophoraceae parts of Kerala which is not present in Trivandrum, (Hou, 1958; Tomlinson, 1986; Hogarth, 1999; Saenger, Kollam, Alappuzha and Kottayam (Mohandas, 2012). 2002; Sheue, 2003) and all six described Bruguiera Considering the above facts in view, leaf and petiole species belong to the “Indo-Malayan” group of anatomical profiling of three species of Bruguiera L.
    [Show full text]