Action Functional 266, 304, 305, 311, 342, 345, 347, 348, 350 Action
Index action functional 266, 304, 305, 311, 342, homogeneous 155 345, 347, 348, 350 inhomogeneous 153 action integral 267 integral equation of the second kind action principle 265 generalization 161 Feynman 266, 303–305, 308, 329, 370 inhomogeneous 157, 166 Hamilton 267, 272, 277 integral formula Schwinger 266 general decomposition problem 208, adjoint 211 boundary condition 9, 45 generalization 235 integral equation 282 review of complex analysis 21–24 matrix 9, 10, 12 Wiener–Hopf integral equation 196, operator 9–13, 17 218 problem 9, 11, 13, 15, 224–226, 233– Wiener–Hopf method 177 235 Wiener–Hopf sum equation 235 representation 343, 347 kernel Akhiezer, N.I. 368 Carleman integral equation 161 axion 356, 369 residue theorem Sturm–Liouville system 140 Bach, M. 365 singular integral equation 149 Bazant, M.Z. 366 causality 49, 50, 168 Belavin, A.A. 369 charge Bender, Carl M. 365 conserved matter 342 Bernoulli, Jacques and Jean 263 Bessel inequality 126 conserved Noether 344 Bethe–Salpeter equation 326, 370 group 345 bifurcation point 253–255 Collin, R.E. 366 Born approximation 312 complete 7 boundary terms 17 complete square 285 Brachistochrone 267, 270, 272–274 completeness of an orthonormal system of Broberg, K.B. 367 functions 8 concentrated load 20 Carleman conjugate point 284, 286–288, 295 integral equation conservation law homogeneous 161, 166 charge 339–342, 346 inhomogeneous 161, 162, 166 current 339–342, 345 Catenary 267, 276, 291 energy, momentum, and angular momen- Cauchy tum 348, 349, 352, 353 integral equation of the first kind Coulomb potential 312 374 Index Courant, R.
[Show full text]