Ülkemizde Ilk X-Bloc Uygulama Örneği: Filyos Limani Dalgakirani

Total Page:16

File Type:pdf, Size:1020Kb

Ülkemizde Ilk X-Bloc Uygulama Örneği: Filyos Limani Dalgakirani 9. Kıyı Mühendisliği Sempozyumu ÜLKEMİZDE İLK X-BLOC UYGULAMA ÖRNEĞİ: FİLYOS LİMANI DALGAKIRANI Mehmet SAĞ, Su Yolları Dairesi Başkanı, Ulaştırma ve Altyapı Bakanlığı Altyapı Yatırımları Genel Müdürlüğü, Ankara Merih Özcan, Genel Müdür, ARTI Proje Dubai Branch, Dubai, BAE [email protected] ÖZET Dünya ölçeğinde bakıldığında, daha iyi stabilite katsayıları veren ACCROPODE, CORE-Loc, XBLOC gibi yeni nesil blokların uzun süredir dalgakıran inşaatlarında kullanımda olduğu bilinmektedir. Hemen hemen hepsi lisanslarla korunan bu ürünlerin ülkemizde uygulanması mümkün olamamıştır. Kamu projelerinde yer bulamayan bu ürünler özel sektör projelerinde de tecrübe eksikliği nedeniyle kullanılamamıştır. Yapılan araştırma ve analizler sonucunda sağladığı teknik ve ekonomik faydalar göz önünde bulundurularak Altyapı Yatırımları Genel Müdürlüğü (AYGM) tarafından ilk XBLOC uygulamasının Filyos Limanı’nda yapılmasına karar verilmiştir. Halihazırda inşaat çalışmaları devam etmekte olan limanda, ana ve tali dalgakıranda XBLOC elemanlarla koruma yapılmaktadır. İstanbul Yeni Havalimanı İkmal Limanı gibi benzer projelerde de XBLOC kullanılmaktadır. Ayrıca Rize-Artvin Havalimanının koruma tabakalarında da XBLOC kullanımı için çalışmalar yapılmaktadır. Bu bildiride, XBLOC elemanlar ile dalgakıran koruma tabakası tasarım esasları anlatılacak, ANTİFER blok, TETRAPOD ve ACCROPODE gibi diğer koruma blokları ile kıyaslaması yapılacak ve yapım ile uygulama süreçlerinde sağladığı faydalar ele alınacaktır. Anahtar Kelimeler: Xbloc, Tetrapod, Accropode, Dalgakıran, Hidrolik stabilite FIRST XBLOC APPLICATION IN TURKEY: FILYOS PORT BREAKWATERS It is known that new generation armour blocks such as Accropode, Core-Loc and Xbloc, which give better stability coefficients, have been used in breakwater constructions around the world for a long time. Almost all of these products protected by licenses and haven’t implemented in our country. These products, which could not be included in public projects, could not be used in private sector projects either due to lack of experience. 194 9. Kıyı Mühendisliği Sempozyumu Considering the technical and economic benefits provided by the extensive research and analysis, it was decided by the General Directorate of Infrastructure Investments to implement the first Xbloc application at Filyos Port. Construction works of the main and the secondary breakwaters protected with Xbloc elements are currently in progress at the port. Xbloc is being used in similar projects such as New Istanbul Airport Supply Port. In addition, the studies continue for the usage of Xbloc armour units in the armour layer design of Rize – Artvin Airport. In this paper, Xbloc elements and breakwater armour layer design principles will be explained and compared with other armour blocks such as Antifer block, Tetrapod and Accropode, the benefits at the processes of design and application will be discussed. Keywords: Xbloc, Tetrapod, Accropode, Breakwater, Hydraulic stability SUNUŞ Ülkemizde dalgakıran ve tahkimat inşaatlarında koruma tabakasında iri ocak taşı kullanımı, uygun özellik ve boyutta malzeme temininin kolay ve dalga şartlarının uygun olduğu bölgelerde en ekonomik alternatif olarak öne çıkmaktadır. Başta Karadeniz olmak üzere, tasarım dalgalarının yüksek değerlere ulaştığı bölgelerde ise dalgakıranların koruyucu tabakalarında küp beton blok ve Tetrapod elemanlar, ocak taşından sonra ülkemizde en çok kullanılan kaplama bloğu olagelmiştir. 90’lı yıllardan itibaren Tetrapod bloklardan daha çok antifer bloklarla çeşitli projeler yapılmaya başlanmıştır. Gerek Dalga Atlası gibi çalışmalarla tasarım dalgalarının güncellenmiş olması, gerekse yeni şartnamelerle tasarımda 100 yıllık yineleme dönemli dalgaların kullanılması gereğinin ortaya konmasıyla, koruma tabakasında kullanılması gereken antifer blok veya Tetrapod boyutlarında büyük artışlar ortaya çıkmış, 30 ton ve üstündeki antifer blok veya Tetrapod elemanlar kullanan projeler yapılmaya başlanmıştır. Bu boyutlardaki Tetrapod’ların kullanımı, ekipman ihtiyaçları, beton dayanımları, durabilite vb. pek çok konuda sorunlar getirmektedir. Boyutları arttıkça Tetrapod bacaklarının çarpma nedeniyle kırılma riski artmaktadır ve bu konu çok sayıda araştırmaya da konu olmuştur (Burcharth, 1995). Dünya uygulamalarına bakıldığında, son 30 yıllık dönemde Tetrapod uygulamalarının terkedilmeye başlandığı ve bunun yerine geliştirilen yeni nesil olarak adlandırılabilecek (Accropode, Xbloc, Core-Loc gibi) beton elemanların kullanıldığı gözlenmektedir. Tetrapod’a göre büyük avantajlar içeren bu yeni koruma elemanlarını kullanımının ülkemizde de yaygınlaşması önemli görülmektedir. Tetrapod’dan farklı olarak iki yerine tek sıra yerleştirilen yeni nesil elemanlar, yüksek kilitlenme özellikleri nedeniyle de birim ağırlıkta da önemli avantajlar sağlamaktadır. 195 9. Kıyı Mühendisliği Sempozyumu BETON KORUMA ELEMANLARI İlk yapay koruma elemanları küp olarak üretilmişlerdir. Zaman içinde küp elemanların stabilitelerini ve porositeleri arttırılırken beton ihtiyacını azaltmak için yapılan çalışmalar sonucu 2 tip yapay koruma elemanı sınıfı ortaya çıkmıştır. Bunlar aşağıda gösterildikleri üzere: • Rastgele yerleştirilen ve birbirine kenetlenen koruma elemanları • Düzenli yerleştirilen ve sürtünme ile çalışan koruma elemanlarıdır. Tablo 1. Beton Koruma Elemanları Yerleşim: Rastgele Yerleşim: Rastgele Yerleşim: Rastgele Yerleşim: Düzenli Stabilite: Ağırlık Stabilite: Ağırlık ve kilitlenme Stabilite: Kilitlenme Stabilite: Sürtünme Çift Tabakalı Koruma Tek Tabakalı Koruma Küp Tetrapod Accropode Cob Fransa,1950 Fransa,1980 İngiltere,1969 Modifiye Küp Akmon Core-loc Diahitis ABD,1959 Hollanda,1962 ABD,1996 İrlanda,1998 Antifer Küp Tribar A-Jack Seabee Fransa,1973 ABD,1958 ABD,1998 Avustralya,1078 Haro Stabit Xbloc Shed Belçika,1984 İngiltere,1961 Hollanda,2003 İngiltere,1982 Tripod Dolos Hollanda,1962 G.Afrika,1963 Küp, modifiye küp ve Antifer küp gibi düzensiz yerleştirilen hacimli elemanların stabiliteleri büyük çoğunlukla kendi ağırlıklarına ve bir miktar diğer elemanlara tutunmalarına bağlıdır. 1950’lerden sonra koruma elemanı gelişimi, görece basit geometriye sahip ve kilitlenme özelliği zayıf elemanlardan (Tetrapod, Akmon), daha ekonomik, karmaşık şekilleri sayesinde kilitlenme özelliği daha yüksek elemanlara (Dolos, Stabit) doğru kaymıştır. Blok şeklinin optimize edilmesiyle kilitlenme özelliği arttırılmıştır fakat bu artış yanında kırılganlığı da getirmiştir. 1980’e kadar hidrolik stabilitedeki belirsizlikler ve her bir elemanın yapısal bütünlüğü göz önüne alınarak koruma elemanları iki 196 9. Kıyı Mühendisliği Sempozyumu sıra halinde uygulanmıştır. Daha sonra ise, tekil elemanların sağlamlıklarının artması ve hidrolik tasarımda daha büyük emniyet katsayıları kullanımıyla tek sıralı uygulamalar yapılmaya başlanmıştır. İlk tek sıralı uygulama Accropode ile yapılmış sonrasında Core-Loc ve Xbloc uygulamaları takip etmiştir. Düzenli yerleştirilen koruma elemanları tipik olarak basit şekilli (Seabee, Diahitis) veya karmaşık şekilli (Cob, Shed) paralel-yüzlü, içi boş bloklardır. Stabilitelerini sağlayan en büyük etken diğer bloklarla etkileşimlerinden oluşan sürtünmedir. Dünyada en yaygın kullanımı olan Accropode’lar, özel şekilleri ve sahada yerleşim kuralları sayesinde tek sıra uygulanabilmeleriyle tek sıralı beton koruma elemanlarının ilk örneğidir (Muttray, 2008). Kilitlenebilirlik sayesinde, elemanların dalga etkisi altında sallanmaları en alt seviyede kalmakta ve ufalanma, kırılma gibi problemleri ortadan kalkmaktadır. Tasarımcı firma tarafından KD:15/12 (kırılmayan ve kırılan dalga için) stabilite kat sayısı kullanılması tavsiye edilmiştir. Bu stabilite katsayısı ile Accropode’lar %20- %30 arasında bir güvenlik payıyla uygulanabilirler. Çeşitli modifikasyonlarla geliştirilmiş olan Accropode-II versiyonu da son dönemlerde uygulamaya girmiştir. Xbloc 2001 yılında Hollanda kökenli Delta Marine Consultants firması tarafından geliştirilmeye başlanmıştır. Başlangıç noktası bir deniz yüklenici firmasının dışa bağımlılığını azaltarak projelerinde kullanabileceği bir koruma elemanı geliştirme arzusudur aynı zamanda Accropode ile teknik ve maliyet yönlerinden rekabet edebilmek hedefiyle yola çıkılmıştır. Şekil 1. Xbloc görünüşü Beton elemanlı koruma tabakası hesaplarında, dalgakıran tasarımında standart olarak Hudson veya Van der Meer denklemleri kullanılabilir. Elemanlar arasındaki farklılıkları ortaya koymak amacıyla, stabilite katsayılarının basit bir kıyaslaması aşağıdaki tablolarda verilmiştir. 197 9. Kıyı Mühendisliği Sempozyumu Tablo 2. Bazı beton koruma elemanları için stabilite katsayıları Stabilite katsayısı H /ΔD Referanslar s n Gövde kafa Koruma Kırılmayan Kırılan Kırılmayan Kırılan Hasar Elemanı dalga dalga dalga dalga %0 1.7 – 2.0 - Van der Meer (N =0) od (1988) Şev Eğimi: %5 2.3 – 2.9 - 1:1.5 (N =0.5) Tetrapod od 2.3 2.2 2.1 1.95 SPM (1984) 2.5 2.4 2.2 2.1 Şev Eğimi: 1:1.5 <%5 2.75 Şev Eğimi: 1:2.0 2.9 (7) 2.3 2.2 (8) Şev Eğimi: 1:3.0 2.5 2.3 Tasarım için Accropode - 2.7 (15) 2.5 (11.5) (12) (9.5) parantez içindeki Core-Loc - 2.8 (16.0) 2.6 (13.0) Hudson stabilite katsayıları, 3:4 Xbloc - 2.8 (16.0) 2.6 (13.0) şev eğimi için verilmiştir. Tablolarda görüldüğü üzere, Tetrapod için 8 olan stabilite katsayısı Xbloc için 16 olarak verilmektedir. Bunun anlamı, aynı şartlarda Tetrapod’a göre yarı ağırlıkta bir Xbloc elemanın yeterli olduğudur. Dalgakıranların kafa bölümlerinde Xbloc’un avantajı daha da artmaktadır ve ağırlık oranı 2 kattan 2.4 kata çıkmaktadır. Tek tabakalı koruma elemanları “sıfır hasar” için tasarlanırlar,
Recommended publications
  • Α Ρ Α Ρ Ρ Ρ Cot Cot 1 K H K H M ∆ = ⌋ ⌉
    ARMOR POROSITY AND HYDRAULIC STABILITY OF MOUND BREAKWATERS Josep R. Medina1, Vicente Pardo2, Jorge Molines1, and M. Esther Gómez-Martín3 Armor porosity significantly affects construction costs and hydraulic stability of mound breakwaters; however, most hydraulic stability formulas do not include armor porosity or packing density as an explicative variable. 2D hydraulic stability tests of conventional randomly-placed double-layer cube armors with different armor porosities are analyzed. The stability number showed a significant 1.2-power relationship with the packing density, similar to what has been found in the literature for other armor units; thus, the higher the porosity, the lower the hydraulic stability. To avoid uncontrolled model effects, the packing density should be routinely measured and reported in small-scale tests and monitored at prototype scale. Keywords: mound breakwater; armor porosity; packing density; armor damage; armor unit; cubic block. INTRODUCTION When quarries are not able to provide stones of the adequate size and price, precast concrete armor units (CAUs) are required for the armor layer protecting large mound breakwaters. The first CAUs, introduced in the 19th century, were massive cubes and parallelepiped blocks with a very simple geometry. Since the invention of the Tetrapod in 1950, numerous precast CAUs with complex geometries have been invented to reduce the cost and to improve the armor layer performance. The overall breakwater construction cost depends on a variety of design and logistic factors, like armor material (reinforced concrete, quality of unreinforced concrete, granite rock, sandstone rock, etc.), armor unit geometry (cube, Tetrapod, etc.), armor unit mass (3, 10, 40, 150-tonne, etc.), casting, handling and stacking equipment, transportation and placement equipment, energy, materials and personnel costs.
    [Show full text]
  • Feasibility Study of an Artifical Sandy Beach at Batumi, Georgia
    FEASIBILITY STUDY OF AN ARTIFICAL SANDY BEACH AT BATUMI, GEORGIA ARCADIS/TU DELFT : MSc Report FEASIBILITY STUDY OF AN ARTIFICAL SANDY BEACH AT BATUMI, GEORGIA Date May 2012 Graduate C. Pepping Educational Institution Delft University of Technology, Faculty Civil Engineering & Geosciences Section Hydraulic Engineering, Chair of Coastal Engineering MSc Thesis committee Prof. dr. ir. M.J.F. Stive Delft University of Technology Dr. ir. M. Zijlema Delft University of Technology Ir. J. van Overeem Delft University of Technology Ir. M.C. Onderwater ARCADIS Nederland BV Company ARCADIS Nederland BV, Division Water PREFACE Preface This Master thesis is the final part of the Master program Hydraulic Engineering of the chair Coastal Engineering at the faculty Civil Engineering & Geosciences of the Delft University of Technology. This research is done in cooperation with ARCADIS Nederland BV. The report represents the work done from July 2011 until May 2012. I would like to thank Jan van Overeem and Martijn Onderwater for the opportunity to perform this research at ARCADIS and the opportunity to graduate on such an interesting subject with many different aspects. I would also like to thank Robbin van Santen for all his help and assistance for the XBeach model. Furthermore I owe a special thanks to my graduation committee for the valuable input and feedback: Prof. dr. ir. M.J.F. Stive (Delft University of Technology) for his support and interest in my graduation work; Dr. ir. M. Zijlema (Delft University of Technology) for his support and reviewing the report; ir. J. van Overeem (Delft University of Technology ) for his supervisions, useful feedback and help, support and for reviewing the report; and ir.
    [Show full text]
  • Capability Statement Coastal Engineering Delta Marine Consultants Delta Marine Consultants
    Capability Statement Coastal Engineering Delta Marine Consultants Delta Marine Consultants Delta Marine Consultants (DMC) was founded in 1978 for the purpose of providing consultancy, project management and engineering design services to clients on a worldwide basis. The company has expertise in the fields of urban infrastructure, large-scale transport infrastructure, ports and harbour development and coastal engineering. The company holds strong links with the construction industry through its parent company, the Royal BAM Group. This contributes to the ability to provide solutions to practical problems and to blend innovation with reliability in design. DMC has been rebranded into ‘BAM Infraconsult’ and is working under that name in the home market. DMC is still used as a trade name for international projects and referred to as such in this Design Capability Statement. DMC has well over 300 employees working in various offices worldwide. The head office is in Gouda (the Netherlands) and apart from several other offices in the Netherlands, local offices are also located in Singapore, Dubai, Jakarta and Perth. DMC is or has been active in a great number of other countries on project basis, often together with BAM contracting companies. Our Core Business Coastal engineering, is one of the core expertise areas of DMC. The interaction between land and water creates complex environments. Coastal areas and river banks have always been important to trade and are therefore vital links in the economic chain. Coastal works, just like ports, are very much influenced by natural phenomena such as tidal change, wave action and extreme weather conditions, which is why they call for specialized expertise.
    [Show full text]
  • Adapting to Climate Change in Coastal Communities of the Atlantic Provinces, Canada: Land Use Planning and Engineering and Natural Approaches
    ADAPTING TO CLIMATE CHANGE IN COASTAL COMMUNITIES OF THE ATLANTIC PROVINCES, CANADA: LAND USE PLANNING AND ENGINEERING AND NATURAL APPROACHES PART 3 ENGINEERING TOOLS ADAPTATION OPTIONS INCENT EYS NG V L , P.E . DANIEL BRYCE ATLANTIC CLIMATE ADAPTATION SOLUTIONS ASSOCIATION SOLUTIONS D'ADAPTATION AUX CHANGEMENTS CLIMATIQUES POUR L'ATLANTIQUE March 2016 Prepared by ISO 9001 Registered Company ADAPTING TO CLIMATE CHANGE IN COASTAL COMMUNITIES OF THE ATLANTIC PROVINCES, CANADA: LAND USE PLANNING AND ENGINEERING AND NATURAL APPROACHES Prepared for ACASA (Atlantic Climate Adaptation Solutions Association) No. AP291: Coastal Adaptation Guidance – Developing a Decision Key on Planning and Engineering Guidance for the Selection of Sustainable Coastal Adaptation Strategies. PART 1 GUIDANCE FOR SELECTING ADAPTATION OPTIONS Saint Mary’s University Lead: Dr. Danika van Proosdij Research Team and Authors: Danika van Proosdij, Brittany MacIsaac, Matthew Christian and Emma Poirier Contributor: Vincent Leys, P Eng., CBCL Limited PART 2 LAND USE PLANNING TOOLS ADAPTATION OPTIONS Dalhousie University Lead: Dr. Patricia Manuel, MCIP LPP Research Team and Authors: Dr. Patricia Manuel, MCIP LPP, Yvonne Reeves and Kevin Hooper Advisor: Dr. Eric Rapaport, MCIP LPP PART 3 ENGINEERING TOOLS ADAPTATION OPTIONS CBCL Limited Lead: Vincent Leys, P Eng. Research Team and Authors: Vincent Leys, P Eng. and Daniel Bryce (formerly CBCL) Reviewers: Alexander Wilson, P Eng., Archie Thibault, P Eng. and Victoria Fernandez, P Eng., CBCL Limited Editing Team: Dr. Patricia Manuel, MCIP, LPP and Penelope Kuhn, Dalhousie University ADAPTING TO CLIMATE CHANGE IN COASTAL COMMUNITIES OF THE ATLANTIC PROVINCES, CANADA: LAND USE PLANNING AND ENGINEERING AND NATURAL APPROACHES PART 3 ENGINEERING TOOLS ADAPTATION OPTIONS CBCL Limited Lead: Vincent Leys, P Eng.
    [Show full text]
  • Coastal and Ocean Engineering
    May 18, 2020 Coastal and Ocean Engineering John Fenton Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria URL: http://johndfenton.com/ URL: mailto:[email protected] Abstract This course introduces maritime engineering, encompassing coastal and ocean engineering. It con- centrates on providing an understanding of the many processes at work when the tides, storms and waves interact with the natural and human environments. The course will be a mixture of descrip- tion and theory – it is hoped that by understanding the theory that the practicewillbemadeallthe easier. There is nothing quite so practical as a good theory. Table of Contents References ....................... 2 1. Introduction ..................... 6 1.1 Physical properties of seawater ............. 6 2. Introduction to Oceanography ............... 7 2.1 Ocean currents .................. 7 2.2 El Niño, La Niña, and the Southern Oscillation ........10 2.3 Indian Ocean Dipole ................12 2.4 Continental shelf flow ................13 3. Tides .......................15 3.1 Introduction ...................15 3.2 Tide generating forces and equilibrium theory ........15 3.3 Dynamic model of tides ...............17 3.4 Harmonic analysis and prediction of tides ..........19 4. Surface gravity waves ..................21 4.1 The equations of fluid mechanics ............21 4.2 Boundary conditions ................28 4.3 The general problem of wave motion ...........29 4.4 Linear wave theory .................30 4.5 Shoaling, refraction and breaking ............44 4.6 Diffraction ...................50 4.7 Nonlinear wave theories ...............51 1 Coastal and Ocean Engineering John Fenton 5. The calculation of forces on ocean structures ...........54 5.1 Structural element much smaller than wavelength – drag and inertia forces .....................54 5.2 Structural element comparable with wavelength – diffraction forces ..56 6.
    [Show full text]
  • Hydraulic Structures General
    Course CIE3330 Hydraulic Structures General November 2009 Faculty of Civil Engineering and Faculty Geosciences Contributions to these lecture notes were made by: dr. ir. S. van Baars ir. K.G. Bezuyen ir. W.Colenbrander ir. H.K.T. Kuijper ir. W.F. Molenaar ir. C. Spaargaren prof. ir. drs. J.K. Vrijling Delft University of Technology Artikelnummer 06917290037 CT3330 Hydraulic Structures 1 (empty page) ©Department of Hydraulic Engineering Faculty of Civil Engineering ii Nov 2009 Delft University of Technology CT3330 Hydraulic Structures 1 TABLE OF CONTENTS PREFACE..................................................................................................................................................... v READER TO THESE LECTURE NOTES .................................................................................................... v THE COURSE HYDRAULIC STRUCTURES 1 – CT3330 ......................................................................... vi 1. Introduction to Hydraulic Structures................................................................................................. 1-1 1.1 Piers ................................................................................................................................................. 1-2 1.2 Artificial islands ................................................................................................................................ 1-5 1.3 Breakwaters ....................................................................................................................................
    [Show full text]
  • Offshore Wind Farms: Their Impacts, and Potential Habitat Gains As Artificial Reefs, in Particular for Fish
    THE UNIVERSITY OF HULL Offshore wind farms: their impacts, and potential habitat gains as artificial reefs, in particular for fish being a dissertation submitted in partial fulfilment of the requirements for the Degree of MSc In Estuarine and Coastal Science and Management By Jennifer Claire Wilson BSc (Hons) Marine and Freshwater Biology, University of Hull September 2007 1 Abstract Due to both increased environmental concern and an increased reliance on energy imports, there has been a significant increase in investment in, and the use of, wind energy, including offshore wind farms, with twenty-nine developments built or proposed developments off the United Kingdom’s coastline alone. Despite the benefits of cleaner energy generation, since the earliest planning stages there have been concerns about the environmental impacts of wind farms, including fears for bird mortalities and noise affecting marine mammals. Many of these impacts have now been shown to have fewer detrimental effects that originally expected, and therefore the aim of this report is to try and determine whether another environmental concern – that of a loss of seabed due to turbine installation – is as significant as originally predicted. Using details of the most commonly used turbine foundation, the monopile, and the methods of scour protection used around their bases – gravel, boulders and synthetic fronds – calculations for net changes in the areas and types of habitat were produced. It was found that gravel and boulder protection provide the maximum increase in habitat surface area (650m2 and 577m2 respectively), and although the use of synthetic fronds results in a loss of surface area of 12.5m2, it would be expected that the ecological usefulness and carrying capacity of the area would increase, therefore it would still be environmentally beneficial.
    [Show full text]
  • Stability Design of Coastal Structures (Seadikes, Revetments, Breakwaters and Groins)
    Note: Stability of coastal structures Date: August 2016 www.leovanrijn-sediment.com STABILITY DESIGN OF COASTAL STRUCTURES (SEADIKES, REVETMENTS, BREAKWATERS AND GROINS) by Leo C. van Rijn, www.leovanrijn-sediment.com, The Netherlands August 2016 1. INTRODUCTION 2. HYDRODYNAMIC BOUNDARY CONDITIONS AND PROCESSES 2.1 Basic boundary conditions 2.2 Wave height parameters 2.2.1 Definitions 2.2.2 Wave models 2.2.3 Design of wave conditions 2.2.4 Example wave computation 2.3 Tides, storm surges and sea level rise 2.3.1 Tides 2.3.2 Storm surges 2.3.3 River floods 2.3.4 Sea level rise 2.4 Wave reflection 2.5 Wave runup 2.5.1 General formulae 2.5.2 Effect of rough slopes 2.5.3 Effect of composite slopes and berms 2.5.4 Effect of oblique wave attack 2.6 Wave overtopping 2.6.1 General formulae 2.6.2 Effect of rough slopes 2.6.3 Effect of composite slopes and berms 2.6.4 Effect of oblique wave attack 2.6.5 Effect of crest width 2.6.6 Example case 2.7 Wave transmission 1 Note: Stability of coastal structures Date: August 2016 www.leovanrijn-sediment.com 3 STABILITY EQUATIONS FOR ROCK AND CONCRETE ARMOUR UNITS 3.1 Introduction 3.2 Critical shear-stress method 3.2.1 Slope effects 3.2.2 Stability equations for stones on mild and steep slopes 3.3 Critical wave height method 3.3.1 Stability equations; definitions 3.3.2 Stability equations for high-crested conventional breakwaters 3.3.3 Stability equations for high-crested berm breakwaters 3.3.4 Stability equations for low-crested, emerged breakwaters and groins 3.3.5 Stability equations for submerged breakwaters
    [Show full text]
  • Guidance for Coastal Protection Works in Pacific Island Countries
    Guidance for coastal protection works in Pacific island countries DESIGN GUIDANCE REPORT This report is published by the Pacific Region Infrastructure Facility (PRIF). PRIF is a multi-development partner coordination, research and technical assistance facility that supports infrastructure development in the Pacific. PRIF member agencies include the Asian Development Bank (ADB), Australian Department of Foreign Affairs and Trade (DFAT), European Investment Bank (EIB), European Union (EU), Japan International Cooperation Agency (JICA), New Zealand Ministry of Foreign Affairs and Trade (NZMFAT), and the World Bank. The views expressed in this report are those of the authors and do not necessarily reflect the views and policies of ADB, its Board of Governors, the governments they represent, or any of the other PRIF member agencies. Furthermore, the above parties neither guarantee the accuracy of the data included in this publication, nor do they accept responsibility for any consequence of their application. The use of information contained in this report is encouraged, with appropriate acknowledgement. The report may only be reproduced with the permission of the PRIF Coordination Office on behalf of its members. Acknowledgements The report, based on a research study published by PRIF in February 2017 – Affordable Coastal Protection in the Pacific islands - was prepared by Dr Tom Shand, Coastal Engineer, Tonkin and Taylor and Matt Blacka, Water Research Laboratory, University of New South Wales, under the guidance of Lorena Estigarribia, Technical Assistance Officer, PRIF Coordination Office, and Oliver Whalley, Transport Analyst, World Bank. The Asian Development Bank provided administrative support. The authors thank the PRIF project team, members of the PRIF committees and working groups, external technical reviewers and editors.
    [Show full text]
  • 2006 Bruce Vandermeer.Pdf
    A COMPARISON OF OVERTOPPING PERFORMANCE OF DIFFERENT RUBBLE MOUND BREAKWATER ARMOUR Tom Bruce1, Jentsje van der Meer2, Leopoldo Franco3 and Jonathan M. Pearson4 This paper describes a major programme of tests to establish better the influence of armour roughness and permeability on overtopping. Specifically, the tests determined the relative difference in overtopping behaviour for various types of armour units. Roughness factors γf for the database and for use in the neural network prediction of overtopping were determined for rock (two layers), cubes (single-layer and two-layers), Tetrapod, Antifer, Haro, Accropode, Core-Loc and Xbloc. INTRODUCTION The overtopping database of the CLASH project (Steendam et al., 2004) contains more than 10000 test results on wave overtopping at coastal structures worldwide and is therefore considerably larger than initially foreseen. The database was used as input for a neural network which resulted in a generic prediction method for overtopping at coastal structures (Pozueta et al., 2004, Van der Meer et al., 2005). Interim analysis of the overtopping database indicated that there were some “white spots” where further model tests would be advantageous. Test programmes to fill these “white spots” were devised. This paper describes a major programme of 2D model tests to better establish the influence of roughness or permeability on overtopping. Specifically, the objective was to determine the relative difference in overtopping behaviour for various types of armour units leading to roughness factors γf for the database and for use in the neural network prediction of overtopping. TECHNICAL BACKGROUND Run-up on sloping structures What is a good definition of relative overtopping? A complete smooth structure could be considered as a structure giving maximum overtopping (no friction, no porosity).
    [Show full text]
  • Set-Up to Design Guidance for the Crablock Armour Unit Comparison of Single Layer Armour Units Investigation
    Set-up to design guidance for the Crablock armour unit Comparison of single layer armour units investigation The Netherlands, 26/09/2014 Dutch Professor: J.W Van der Meer Tutor: Ali Dastgheib Student: Flavia Bonfantini Design guidance for a new single layer armour unit as result of a comparison in previous investigation on Accropode and Xbloc. Contents 1 Introduction .................................................................................................................................. 7 1.1 General .................................................................................................................................. 7 1.2 Objectives .............................................................................................................................. 8 1.3 Approach ............................................................................................................................... 8 2 Existing knowledge .................................................................................................................... 10 2.1 History of types ................................................................................................................... 10 2.2 Single layer units ................................................................................................................. 11 2.3 Xbloc as lead for Crablock .................................................................................................. 13 2.3.1 Introduction of Crablock .............................................................................................
    [Show full text]
  • Simulation and Experimental Studies of a Multi-Tubular Floating Sea Wave Damper
    energies Article Simulation and Experimental Studies of a Multi-Tubular Floating Sea Wave Damper Leszek Chybowski ID , Zenon Grz ˛adzieland Katarzyna Gawdzi ´nska* ID Faculty of Marine Engineering, Maritime University of Szczecin, 70-500 Szczecin, Poland; [email protected] (L.C.); [email protected] (Z.G.) * Correspondence: [email protected]; Tel.: +48-914-809-941 Received: 26 March 2018; Accepted: 11 April 2018; Published: 20 April 2018 Abstract: This article explores the issue of shore protection from sea waves and has presented the main methods used for coastal protection. It discusses the construction and operation of the multi-tubular floating sea wave damper that has been developed at the Maritime University of Szczecin by Professor Bolesław Ku´zniewski.This paper presents the results of the research project aimed at creating and examining a prototype of the device. The research aimed to confirm the two hypotheses: “the largest damping force should occur when the damping units are placed at an optimal distance equal to half the length of the wave to be damped” and “a compensation of the horizontal forces caused by the rippling of water should occur in the damping device”. Simulation studies of the behaviour of the device’s buoyancy elements when floating on waves were performed using the ANSYS AQWAWB and AQWA software. The buoyancy components were modelled as TUBE elements with a diameter of 0.11 m and a length of 1.5 m and as triangular and square surface elements. The results of the experimental research and the computer simulation of the operation of the prototype device have also been presented.
    [Show full text]