Separation Anxiety

Total Page:16

File Type:pdf, Size:1020Kb

Separation Anxiety NEWS & VIEWS regions, one nuclear and two mitochon- drial, whereas Voelker’s was based on a single mitochondrial region. The new phylogeny provides some surprises, but also confirms recent argu- ments about the questionable validity of the two species described from Kimber- ley. Specifically, the analysis of the mul- tiple gene regions supports the view of Greg Davies, Faansie Peacock and others that Kimberley Pipits are in fact African Pipits A. cinnamomeus and Long-tailed Pipits are actually Buffy Pipits A. vaal- ensis. Birders mourning the likely demise of two species on their lists may, however, take some consolation from the study’s findings concerning Long-billed Pipit A. similis. It turns out that the geo- graphically separated populations of PETER RYAN this species in East and southern Africa are sufficiently distinct to warrant con- sidering the southern African popula- tion a separate species, Nicholson’s Pipit separation A. nicholsoni. In addition, the new data confirm that Wood Pipit A. nyassae is a distinct species and not conspecific with anxiety Long-billed, as has sometimes been ar- gued in the past. Untangling the pipit family tree Another key finding of the Pietersen et al. study concerns Yellow-breasted ipits. The mere mention of these from live birds, toe pads from museum Pipit and the taxonomically enigmatic quintessential LBJs is enough to specimens and GenBank sequence data. Golden Pipit Tmetothylacus tenellus. induce feelings of trepidation and The final dataset comprised 56 currently Debate surrounding the affinities of the Pinadequacy in all but the most competent recognised species, including 28 of the 32 latter species goes back more than a cen- birders. The difficulty of identifying pipits species occurring in Africa. The results tury, with it originally being described in the field has contributed to their tax- of this study, which involved research- as a longclaw, but then subsequently be- onomy remaining contentious, with the ers from the University of Pretoria, the ing transferred to Anthus, with Austin number of recognised species forming the National Zoological Gardens, Tshwane Roberts arguing in 1922 that the spe- basis for long-standing and often heated University of Technology and the En- cies represents a link between pipits and debate. A prime case in point concerns dangered Wildlife Trust, were recently longclaws. The new genetic data, how- the Kimberley Pipit Anthus pseudosimilis published in the British ornithological ever, reveal that both these ‘yellow pipits’ and the Long-tailed Pipit A. longicaudatus. journal Ibis. are longclaws in the genus Macronyx. These two species were described in the The Pietersen et al. analysis differs in ANDREW McKECHNIE late 1990s and early 2000s but their validity several respects from earlier molecu- has subsequently been called into question lar assessments of relationships among References (see African Birdlife 2(1): 61–66). the pipits, the most important of which Pietersen DW, McKechnie AE, Jansen R, As part of a Fitztitute-funded PhD on was published by Gary Voelker in 1999. Little IT, Bastos ADS. 2018. ‘Multi-locus the Yellow-breasted Pipit A. chloris, Dar- One difference is that whereas Voelker’s phylogeny of African pipits and longclaws ren Pietersen recently reassessed the phy- (1999) phylogeny was based on 45 speci- (Aves: Motacillidae) highlights taxo- logeny of African pipits and longclaws. mens representing 31 species, the new nomic inconsistencies.’ Ibis doi: 10.1111/ The analysis was based on blood samples phylogeny is based on 277 samples rep- ibi.12683. resenting 56 species, not including the Voelker G. 1999. ‘Molecular evolutionary Long-billed Pipits in southern Africa are suf- GenBank sequences. In addition to more relationships in the avian genus Anthus ficiently distinct from those in East Africa to extensive sampling, the Pietersen et al. (Pipits: Motacillidae).’ Molecular Phylo- be considered a separate species. study involved analyses of three gene genetics and Evolution 11: 84–94. 12 AFRICAN BIRDLIFE.
Recommended publications
  • Point Reyes National Seashore Bird List
    Birds of Point Reyes National Seashore Gaviidae (Loons) Alcedinidae (Kingfishers) Podicipedidae (Grebes) Picidae (Woodpeckers) Diomedeidae (Albatrosses) Tyrannidae (Tyrant Flycatcher) Procellariidae (Shearwaters, Petrels) Alaudidae (Larks) Hydrobatidae (Storm Petrels) Hirundinidae (Swallows) Sulidae (Boobies, Gannets) Laniidae (Shrikes) Pelecanidae (Pelicans) Vireonidae (Vireos) Phalacrocoracidae (Cormorants) Corvidae (Crows, Jays) Fregatidae (Frigate Birds) Paridae (Chickadees, Titmice) Ardeidae (Herons, Bitterns, & Egrets) Aegithalidae (Bushtits) Threskiornithidae (Ibises, Spoonbills) Sittidae (Nuthatches) Ciconiidae (Storks) Certhiidae (Creepers) Anatidae (Ducks, Geese, Swans) Troglodytidae (Wrens) Cathartidae (New World Vultures) Cinclidae (Dippers) Accipitridae (Hawks, Kites, Eagles) & Regulidae (Kinglets) Falconidae (Caracaras, Falcons) Sylviidae (Old World Warblers, Gnatcatchers) Odontophoridae (New World Quail) Turdidae (Thrushes) Rallidae (Rails, Gallinules, Coots) Timaliidae (Babblers) Gruidae (Cranes) Mimidae (Mockingbirds, Thrashers) Charadriidae (Lapwings, Plovers) Motacillidae (Wagtails, Pipits) Haematopodidae (Oystercatcher) Bombycillidae (Waxwings) Recurvirostridae (Stilts, Avocets) Ptilogonatidae (Silky-flycatcher) Scolopacidae (Sandpipers, Phalaropes) Parulidae (Wood Warblers) Laridae (Skuas, Gulls, Terns, Skimmers) Cardinalidae (Cardinals) Alcidae (Auks, Murres, Puffins) Emberizidae (Emberizids) Columbidae (Pigeons, Doves) Fringillidae (Finches) Cuculidae (Cuckoos, Road Runners, Anis) NON-NATIVES Tytonidae (Barn Owls)
    [Show full text]
  • South Puget Sound Streaked Horned Lark (Eremophila Alpestris Strigata) Genetic Rescue Study Report for Year 2
    South Puget Sound Streaked Horned Lark (Eremophila alpestris strigata) Genetic Rescue Study Report for Year 2 Spring/Summer 2012 Photo credit: Rod Gilbert South Puget Sound Streaked Horned Lark (Eremophila alpestris strigata) Genetic Rescue Study Draft Report for Year 2 September 2012 Prepared by Adrian Wolf THE CENTER FOR NATURAL LANDS MANAGEMENT The Center for Natural Lands Management 120 East Union Avenue, suite 215 Olympia, WA 98501 Tel. 360-742-8212 Email: [email protected] Abstract Hatchability of Streaked Horned Lark (Eremophila alpestris strigata) eggs in the Puget Lowlands of Washington State is extremely low relative to other grassland nesting birds at the same site and generally. Because genetic factors (inbreeding depression) appear to be a likely explanation, an effort to increase genetic diversity was initiated in 2011. 2012 was the second year of the genetic rescue effort initiated at the 13th Division Prairie on Joint Base Lewis-McChord. A total of eight breeding lark pairs and one unpaired male were detected within the study area. Nest building was first detected on 25 April; the first eggs were observed on 16 May; the first nestlings hatched on or around 27 May, the first fledgling was observed on 20 June. Twenty nests were located, which produced a total of 49 eggs (2.9 eggs/nest ± 0.9 SD). Mean number of eggs per completed clutch (n = 15) was 3.1 ± 0.6 (SD), an increase from 2.3 in 2011. A total of 14 local nestlings were color-banded, and at least four of the fourteen were observed foraging independently. Hatchability of the Puget Sound nests increased to 84% in 2012, from 61% in 2011.
    [Show full text]
  • Field Checklist (PDF)
    Surf Scoter Marbled Godwit OWLS (Strigidae) Common Raven White-winged Scoter Ruddy Turnstone Eastern Screech Owl CHICKADEES (Paridae) Common Goldeneye Red Knot Great Horned Owl Black-capped Chickadee Barrow’s Goldeneye Sanderling Snowy Owl Boreal Chickadee Bufflehead Semipalmated Sandpiper Northern Hawk-Owl Tufted Titmouse Hooded Merganser Western Sandpiper Barred Owl NUTHATCHES (Sittidae) Common Merganser Least Sandpiper Great Gray Owl Red-breasted Nuthatch Red-breasted Merganser White-rumped Sandpiper Long-eared Owl White-breasted Nuthatch Ruddy Duck Baird’s Sandpiper Short-eared Owl CREEPERS (Certhiidae) VULTURES (Cathartidae) Pectoral Sandpiper Northern Saw-Whet Owl Brown Creeper Turkey Vulture Purple Sandpiper NIGHTJARS (Caprimulgidae) WRENS (Troglodytidae) HAWKS & EAGLES (Accipitridae) Dunlin Common Nighthawk Carolina Wren Osprey Stilt Sandpiper Whip-poor-will House Wren Bald Eagle Buff-breasted Sandpiper SWIFTS (Apodidae) Winter Wren Northern Harrier Ruff Chimney Swift Marsh Wren Sharp-shinned Hawk Short-billed Dowitcher HUMMINGBIRDS (Trochilidae) THRUSHES (Muscicapidae) Cooper’s Hawk Wilson’s Snipe Ruby-throated Hummingbird Golden-crowned Kinglet Northern Goshawk American Woodcock KINGFISHERS (Alcedinidae) Ruby-crowned Kinglet Red-shouldered Hawk Wilson’s Phalarope Belted Kingfisher Blue-gray Gnatcatcher Broad-winged Hawk Red-necked Phalarope WOODPECKERS (Picidae) Eastern Bluebird Red-tailed Hawk Red Phalarope Red-headed Woodpecker Veery Rough-legged Hawk GULLS & TERNS (Laridae) Yellow-bellied Sapsucker Gray-cheeked Thrush Golden
    [Show full text]
  • Birds of Gus Engeling Wildlife Management Area
    TEXAS PARKS AND WILDLIFE BIRDS OF G U S E N G E L I N G WILDLIFE MANAGEMENT AREA A FIELD CHECKLIST “Act Natural” Visit a Wildlife Management Area at our Web site: http://www.tpwd.state.tx.us Cover: Illustration of Pileated Woodpecker by Rob Fleming. HABITAT DESCRIPTION he Gus Engeling Wildlife Management Area is located in the northwest corner of Anderson County, 20 miles Tnorthwest of Palestine, Texas, on U.S. Highway 287. The management area contains 10,958 acres of land owned by the Texas Parks and Wildlife Department. Most of the land was purchased in 1950 and 1951, with the addition of several smaller tracts through 1960. It was originally called the Derden Wildlife Management Area, but was later changed to the Engeling Wildlife Management Area in honor of Biologist Gus A. Engeling, who was killed by a poacher on the area in December 1951. The area is drained by Catfish Creek which is a tributary of the Trinity River. The topography is gently rolling to hilly, with a well-defined drainage system that empties into Catfish Creek. Most of the small streams are spring fed and normally flow year-round. The soils are mostly light colored, rapidly permeable sands on the upland, and moderately permeable, gray-brown, sandy loams in the bottomland along Catfish Creek. The climate is classified as moist, sub-humid, with an annual rainfall of about 40 inches. The vegetation consists of deciduous forest with an overstory made up of oak, hickory, sweetgum and elm; with associated understory species of dogwood, American beautyberry, huckleberry, greenbrier, etc.
    [Show full text]
  • The Evolutionary History of the White Wagtail Species Complex, (Passeriformes: Motacillidae: Motacilla Alba)
    Contributions to Zoology 88 (2019) 257-276 CTOZ brill.com/ctoz The evolutionary history of the white wagtail species complex, (Passeriformes: Motacillidae: Motacilla alba) Maliheh Pirayesh Shirazinejad Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran Mansour Aliabadian Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran Research Department of Zoological Innovations, Institute of Applied Zoology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran [email protected] Omid Mirshamsi Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran Research Department of Zoological Innovations, Institute of Applied Zoology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran Abstract The white wagtail (Motacilla alba) species complex with its distinctive plumage in separate geographical areas can serve as a model to test evolutionary hypotheses. Its extensive variety in plumage, despite the genetic similarity between taxa, and the evolutionary events connected to this variety are poorly under- stood. Therefore we sampled in the breeding range of the white wagtail: 338 individuals were analyzed from 74 areas in the Palearctic and Mediterranean. We studied the white wagtail complex based on two mitochondrial DNA markers to make inferences about the evolutionary history. Our phylogenetic trees highlight mtDNA sequences (ND2, CR), and one nuclear marker (CHD1Z), which partly correspond to earlier described clades: the northern Palearctic (clade N); eastern and central Asia (clade SE); south- western Asia west to the British Isles (clade SW); and Morocco (clade M). The divergence of all clades occurred during the Pleistocene. We also used ecological niche modelling for three genetic lineages (ex- cluding clade M); results showed congruence between niche and phylogenetic divergence in these clades.
    [Show full text]
  • Zambia and Namibia a Tropical Birding Custom Trip
    Zambia and Namibia A Tropical Birding Custom Trip October 31 to November 17, 2009 Guide: Ken Behrens All photos by Ken Behrens unless noted otherwise All Namibia and most Zambia photos taken during this trip INTRODUCTION Southern Africa offers a tremendous diversity of habitats, birds, and mammals, and this tour experienced nearly the full gamut: from the mushitus of northern Zambia, with their affinity to the great Congolese rainforests, to the bare dunes and gravel plains of the Namib desert. This was a custom tour with dual foci: a specific list of avian targets for Howard and good general mammal viewing for Diane. On both fronts, we were highly successful. We amassed a list of 479 birds, including a high proportion of Howard’s targets. Of course, this list could have been much higher, had the focus been general birding rather than target birding. ‘Mammaling’ was also fantastic, with 51 species seen. We enjoyed an incredible experience of one of the greatest gatherings of mammals on earth: a roost of straw-coloured fruit bats in Zambia that includes millions of individuals. In Namibia’s Etosha National Park, it was the end of the dry season, and any place with water had mammals in incredible concentrations. The undoubted highlight there was seeing lions 5 different times, including a pride with a freshly killed rhino and a female that chased and killed a southern oryx, then shared it with her pride. In Zambia, much of our birding was in miombo, a type of broadleaf woodland that occurs in a broad belt across south / central Africa, and that has a large set of specialty birds.
    [Show full text]
  • Miombo Ecoregion Vision Report
    MIOMBO ECOREGION VISION REPORT Jonathan Timberlake & Emmanuel Chidumayo December 2001 (published 2011) Occasional Publications in Biodiversity No. 20 WWF - SARPO MIOMBO ECOREGION VISION REPORT 2001 (revised August 2011) by Jonathan Timberlake & Emmanuel Chidumayo Occasional Publications in Biodiversity No. 20 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe PREFACE The Miombo Ecoregion Vision Report was commissioned in 2001 by the Southern Africa Regional Programme Office of the World Wide Fund for Nature (WWF SARPO). It represented the culmination of an ecoregion reconnaissance process led by Bruce Byers (see Byers 2001a, 2001b), followed by an ecoregion-scale mapping process of taxa and areas of interest or importance for various ecological and bio-physical parameters. The report was then used as a basis for more detailed discussions during a series of national workshops held across the region in the early part of 2002. The main purpose of the reconnaissance and visioning process was to initially outline the bio-physical extent and properties of the so-called Miombo Ecoregion (in practice, a collection of smaller previously described ecoregions), to identify the main areas of potential conservation interest and to identify appropriate activities and areas for conservation action. The outline and some features of the Miombo Ecoregion (later termed the Miombo– Mopane Ecoregion by Conservation International, or the Miombo–Mopane Woodlands and Grasslands) are often mentioned (e.g. Burgess et al. 2004). However, apart from two booklets (WWF SARPO 2001, 2003), few details or justifications are publically available, although a modified outline can be found in Frost, Timberlake & Chidumayo (2002). Over the years numerous requests have been made to use and refer to the original document and maps, which had only very restricted distribution.
    [Show full text]
  • White Wagtails Motacilla Alba in Victoria
    VOL. 16 (1) MARCH 1995 21 AUSTRALIAN BIRD WATCHER 1995, 16, 21-33 White Wagtails Motacilla alba in Victoria by MIKE CARTER1, ROBERT FARNES2 and NEVILLE PAMMENP 130 Canadian Bay Road, Mt Eliza, Victoria 3930 2P.O. Box 475, Portland, Victoria 3305 3Department of Chemical Engineering, University of Melbourne, Parkville, Victoria 3052 Summary Two White' Wagtails Motacilla alba seen in Victoria in 1992 constitute the first fully authenticated records for the state and the third and fourth acceptable records for Australia. One was identified subspecifically as leucopsis and the other as baicalensis or an intergrade with that form, whereas a previous Western Australian record was ocularis. This is an account of these occurrences together with discussion of their likely provenance and the features used for identification to subspecific level, age and sex. It is suggested that one bird was moulting on a revised timetable now in phase with the austral rather than boreal seasons. Introduction Five species of wagtails (Motacillidae) have been recorded in Australia but only one is generally recognised as appearing regularly. The Yellow Wagtail Motacilla jlava is an annual non-breeding summer visitor which occurs most abundantly in the tropical wet areas of Western Australia and the Northern Territory, and more occasional! y in. Queensland. A second species, the Grey Wagtail M. cinerea, is probably also a regular but rare summer visitor to Arnhem Land, N.T. (Carter 1993a). Elsewhere both are only rare vagrants. The other species, Citrine (Yellow-headed) Wagtail M. citreola, White Wagtail M. alba and Black-backed Wagtail M. lugens, are very rare vagrants.
    [Show full text]
  • Longbilled Pipit Ground to Feed on Incapacitated Insects
    382 Motacillidae: wagtails, pipits and longclaws Habitat: It generally frequents slopes in rela- tively arid and eroded, broken veld, often steppe- like with erosion scars, stones and outcrop rock interspersed with grass clumps and low scrub. It is often among low trees and light woodland on stony ground, but will visit adjacent well-grazed areas and bare or burnt ground liberally scattered with the droppings of stock. It is sparse at the coast with populations most numerous c. 500– 2500 m, penetrating some way into desert in the western parts of the range, e.g. the lower Orange River and along the inland edge of the Namib. Movements: It is more sedentary than other sympatric pipits of comparable size, and not sub- ject to the well-defined seasonal altitudinal shifts seen in some other species. This is reflected in the models. Breeding: Atlas breeding records indicate a spring/summer season with a September–Decem- ber peak, which agrees with published informa- tion (Dean 1971; Irwin 1981; Tarboton et al. 1987b; Maclean 1993b). Interspecific relationships: The Wood Pipit is this species’ counterpart in the Brachystegia woodland of much of southcentral Africa. It is believed to be allopatric with the Wood Pipit (Clancey 1988b), but further research is needed, particularly in the eastern highlands in Zimbabwe where the Wood Pipit occurs in rocky grassland habitat (Irwin 1981) normally typical of Long- billed Pipit. This pipit frequently consorts with other pipits, longclaws and rockthrushes on recently burnt Longbilled Pipit ground to feed on incapacitated insects. Nicholsonse Koester Historical distribution and conservation: As it largely inhabits land unsuitable for agriculture, it has probably Anthus similis suffered little from habitat loss and degradation.
    [Show full text]
  • Multi-Locus Phylogeny of African Pipits and Longclaws (Aves: Motacillidae) Highlights Taxonomic Inconsistencies
    Running head: African pipit and longclaw taxonomy Multi-locus phylogeny of African pipits and longclaws (Aves: Motacillidae) highlights taxonomic inconsistencies DARREN W. PIETERSEN,1* ANDREW E. MCKECHNIE,1,2 RAYMOND JANSEN,3 IAN T. LITTLE4 AND ARMANDA D.S. BASTOS5 1DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa 2South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa 3Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa 4Endangered Wildlife Trust, Johannesburg, South Africa 5Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa *Corresponding author. Email: [email protected] 1 Abstract The globally distributed avian family Motacillidae consists of 5–7 genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognised species, of which 32 species in four genera occur in sub- Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than what is currently (five genera and 67 species) recognised. Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognised motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub-Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large-bodied Anthus clade, and a sixth widespread genus, Motacilla.
    [Show full text]
  • Kruger Comprehensive
    Complete Checklist of birds of Kruger National Park Status key: R = Resident; S = present in summer; W = present in winter; E = erratic visitor; V = Vagrant; ? - Uncertain status; n = nomadic; c = common; f = fairly common; u = uncommon; r = rare; l = localised. NB. Because birds are highly mobile and prone to fluctuations depending on environmental conditions, the status of some birds may fall into several categories English (Roberts 7) English (Roberts 6) Comments Date of Trip and base camps Date of Trip and base camps Date of Trip and base camps Date of Trip and base camps Date of Trip and base camps # Rob # Global Names Old SA Names Rough Status of Bird in KNP 1 1 Common Ostrich Ostrich Ru 2 8 Little Grebe Dabchick Ru 3 49 Great White Pelican White Pelican Eu 4 50 Pinkbacked Pelican Pinkbacked Pelican Er 5 55 Whitebreasted Cormorant Whitebreasted Cormorant Ru 6 58 Reed Cormorant Reed Cormorant Rc 7 60 African Darter Darter Rc 8 62 Grey Heron Grey Heron Rc 9 63 Blackheaded Heron Blackheaded Heron Ru 10 64 Goliath Heron Goliath Heron Rf 11 65 Purple Heron Purple Heron Ru 12 66 Great Egret Great White Egret Rc 13 67 Little Egret Little Egret Rf 14 68 Yellowbilled Egret Yellowbilled Egret Er 15 69 Black Heron Black Egret Er 16 71 Cattle Egret Cattle Egret Ru 17 72 Squacco Heron Squacco Heron Ru 18 74 Greenbacked Heron Greenbacked Heron Rc 19 76 Blackcrowned Night-Heron Blackcrowned Night Heron Ru 20 77 Whitebacked Night-Heron Whitebacked Night Heron Ru 21 78 Little Bittern Little Bittern Eu 22 79 Dwarf Bittern Dwarf Bittern Sr 23 81 Hamerkop
    [Show full text]
  • Western Yellow Wagtail
    # 014 Bird-o-soar 21 March 2018 WESTERN YELLOW WAGTAIL Photographic record of leucistic Motacilla flava from Porbandar, Gujarat IUCN Red List: Global: Least Concern (Birdlife International 2017) Aberrantly coloured Western Yellow Wagtail (Photo: Dhaval Vargiya) The sighting of Leucistic Western yellow wagtail Motacilla flava at Karly II Wetland (21.6320300N & 69.6508750E) of Aves [Class of Birds] Mokarsagar Wetland Complex of Porbandar District, Gujarat, on 22 March 2015, is probably the first known published record of Passeriformes [Order of perching birds] leucism in Western Yellow Wagtail from India. Records of colour Motacillidae aberrations in Indian birds between 1886–2015 have been already [Family of Pipits and published but do not include Wagtail sp. (Mahabal et al. 2016). Wagtails] Western Yellow Wagtail is a common winter visitor to Motacilla flava [Western Yellow Wagtail] Gujarat and seen in suitable habitats across the state (Ganpule 2016). Head, nape and ear-coverts are dark slate-grey, sometimes Species described by Linnaeus in 1758 with a trace of a white supercilium. Back is olive and wings brown with two yellowish bars. Tail is dark brown with white outer edge. Zoo’s Print Vol. 33 | No. 3 37 # 014 Bird-o-soar 21 March 2018 The bird is bright yellow from chin to under Global Distribution: Native: Afghanistan; Albania; Algeria; Angola; Armenia; Austria; tail-coverts. Winter plumage is duller, with Azerbaijan; Bahrain; Bangladesh; Belarus; Belgium; Benin; Bhutan; Bosnia and Herzegovina; Botswana; Bulgaria; Burkina Faso; the grey on head mixed with olive. Sexes Burundi; Cameroon; Central African Republic; Chad; China; Congo; Congo, The Democratic Republic of the; Côte d’Ivoire; Croatia; are more or less alike.
    [Show full text]