Magnetospheric Multiscale Observations of Electron Scale

Total Page:16

File Type:pdf, Size:1020Kb

Magnetospheric Multiscale Observations of Electron Scale PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Magnetospheric Multiscale Observations 10.1002/2017GL075711 of Electron Scale Magnetic Peak Key Points: S. T. Yao1,2 ,Q.Q.Shi1, R. L. Guo3, Z. H. Yao4,5, A. M. Tian1, A. W. Degeling1, W. J. Sun3, J. Liu2, • Electron scale magnetic peak is X. G. Wang6, Q. G. Zong7, H. Zhang8 ,Z.Y.Pu7, L. H. Wang7,S.Y.Fu7, C. J. Xiao9, C. T. Russell10 , observed with the scale size of ~7 ρe 11 2 1 1 1 7 7 (~0.06 ρi) in the magnetosheath B. L. Giles , Y. Y. Feng , T. Xiao , S. C. Bai , X. C. Shen , L. L. Zhao , and H. Liu • Electron vortex is found perpendicular to the field line and the current system 1Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, is consistent with the magnetic peak Shandong University, Weihai, China, 2State Key Laboratory of Space Weather, National Space Science Center, Chinese • The magnetic peak is determined as 3 fl Academy of Sciences, Beijing, China, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, magnetic bottle shape rather than ux 4 rope by a new method Chinese Academy of Sciences, Beijing, China, Mullard Space Science Laboratory, University College London, Dorking, UK, 5Laboratoire de Physique Atmosphérique et Planétaire, STAR Institute, Université de Liège, Liège, Belgium, 6Department of Physics, Harbin Institute of Technology, Harbin, China, 7School of Earth and Space Sciences, Peking University, Beijing, Supporting Information: China, 8Physics Department and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA, 9State Key • Supporting Information S1 Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China, 10Department of Earth, 11 Correspondence to: Planetary and Space Sciences, University of California, Los Angeles, CA, USA, NASA Goddard Space Flight Center, Q. Q. Shi and R. L. Guo, Greenbelt, MA, USA [email protected]; [email protected] Abstract The sudden enhancements of magnetic strength, named magnetic peaks (MPs), are often observed in the magnetosheath of magnetized planets. They are usually identified as flux ropes (FRs) or Citation: Yao, S. T., Shi, Q. Q., Guo, R. L., Yao, Z. H., magnetic mirror mode structures. Previous studies of MPs are mostly on the magnetohydrodynamics (MHD) Tian, A. M., Degeling, A. W., … Liu, H. scale. In this study, an electron scale MP is reported in the Earth magnetosheath. We present a typical case (2018). Magnetospheric Multiscale with a scale of ~7 electron gyroradii and a duration of ~0.18 s. A strong magnetic disturbance and associated observations of electron scale magnetic fi peak. Geophysical Research Letters, 45, electrical current are detected. Electron vortex is found perpendicular to the magnetic eld line and is 527–537. https://doi.org/10.1002/ self-consist with the peak. We use multipoint spacecraft techniques to determine the propagation velocity of 2017GL075711 the MP structure and find that the magnetic peak does propagate relative to the plasma (ion) flow. This is very different from the magnetic mirror mode that does not propagate relative to the plasma flow. Furthermore, Received 20 SEP 2017 fi “ ” “ ” Accepted 22 DEC 2017 we developed an ef cient method that can effectively distinguish magnetic bottle like and FRs like Accepted article online 29 DEC 2017 structures. The MP presented in this study is identified as magnetic bottle like type. The mechanism to Published online 24 JAN 2018 generate the electron scale magnetic bottle like structure is still unclear, suggesting that new theory needs to be developed to understand such small-scale phenomena. 1. Introduction Magnetic peaks (MPs), characterized by a sudden enhancement of magnetic strength, have been widely observed in the space plasma. The large amount of previous research indicates that the MP is a very common phenomenon in the terrestrial magnetosheath (e.g., Elphic, 1995; Lucek et al., 1999; Roux et al., 2015; Soucek et al., 2008). Three types of the MPs are often observed in the magnetosheath region: flux transfer events (FTEs), the flux ropes (e.g., Huang et al., 2016; Karimabadi et al., 2014), and mirror mode peaks. FTEs are structures with a bipolar signature in the magnetic field component normal to the magnetopause, and an enhancement in field strength. It was originally described as the result time variations in the rate of reconnection at the magnetopause by Russell and Elphic (1978) and was followed by an updated description that FTEs are a general observational feature of magnetic reconnection at the magnetopause (e.g., Fear et al., 2008, 2009; Kawano & Russell, 1997; Rijnbeek et al., 1984; Wang et al., 2005, 2006; Zhang et al., 2012). Several ©2017. The Authors. models were developed to interpret the generation of the FTEs (e.g., the spatially limited reconnection, This is an open access article under the Russell & Elphic, 1978; multiple X line reconnection, Lee & Fu, 1985; Raeder, 2006; and single X line reconnec- terms of the Creative Commons tion, Scholer, 1988; Southwood et al., 1988). Based on in situ measurements, the morphology of FTEs is often Attribution-NonCommercial-NoDerivs License, which permits use and distri- described as flux ropes (FRs) (e.g., Eastwood et al., 2012; Xiao, Pu, Huang, et al., 2004). In the magnetosheath, bution in any medium, provided the the field lines of the FTEs are connected to the Earth on one side (e.g., Elphic, 1995; Roux et al., 2015). In some original work is properly cited, the use is specific situations, the FRs can be regarded as the 3-D version of 2-D magnetic islands (e.g., Fu et al., 2015, non-commercial and no modifications or adaptations are made. 2016) and their spatial size is of the order of a few Earth radii (RE). YAO ET AL. 527 Geophysical Research Letters 10.1002/2017GL075711 The magnetic mirror mode, a well-known phenomenon in which the field strength is anticorrelated with the plasma density and embedded within the ambient plasma flow, has long been of interest in space physics. Mirror modes are generated by the mirror instability, which is dominantly excited in high ion temperature anisotropy and large plasma beta environments, such as the solar wind and planetary magnetosheath (e.g., Joy et al., 2006; Soucek et al., 2008; Tsurutani et al., 1984; Yao et al., 2013). It is usually characterized by a series of magnetic holes (dips and troughs) and peaks (humps) (e.g., Winterhalter et al., 1994; Xiao et al., 2010, 2011, 2014; Zhang et al., 2008, 2009). From the first theoretical studies of the instability (Tajiri, 1967; Vedenov & Sagdeev, 1958), the importance of mirror mode and its physical effects have been recognized. Previous studies mainly focus on large-scale mirror mode peaks and the FRs, namely, on the MHD scale. It is noteworthy that there is a counterpart of the mirror mode instability which is so-called “electron mirror instability.” It was developed more than three decades ago (Basu & Coppi, 1982, 1984) in a hot electron and cold ion plasma environment. Similar to the mirror mode, this instability is excited by electron anisotropy and described by fluid-like equations (e.g., Basu & Coppi, 1982, 1984; Pokhotelov et al., 2013). Therefore, the instability and its excited structures are still in the MHD scale. In recent Magnetospheric Multiscale (MMS) (Burch et al., 2015) studies, ion scale FRs were observed during the reconnection at the magnetopause (Eastwood et al., 2016). Nonideal ion behavior and filamentary currents were exhibited. Huang et al. (2016) identified this kind of ion scale structure in the turbulent magnetosheath as a magnetic island. Intense wave activities and electron beams were found near the structure. Due to the low resolution of available data, previous studies have seldom referred to small size magnetic peaks. If ever the word “small” is used, the minimum size is the ion scale. In this study, we report a new kind of electron scale magnetic peak and show new observations of an electron scale physical process. Burst mode MMS data are used, which have 128 Hz sampling for magnetic fields from the Fluxgate Magnetometer (FGM) instrument (Russell et al., 2016), and 150 ms and 30 ms resolution for the ion and electron measurements, respectively, from the Fast Plasma Investigation (FPI) instrument (Pollock et al., 2016). The structure is observed in a spatial scale of ~7 ρe (electron gyroradius) or ~0.06 ρi (ion gyroradius) and lasted ~0.18 s. The plasma features are detailed in section 2.1. Current densities and electron distributions are analyzed in section 2.2. Three multisatellite techniques are used to determine the morphology, dimensionality, and propagation velocity of the peaks in section 2.3. In section 2.4 we present a simple and reliable method to distinguish “magnetic bottle like” structures (such as magnetic mirror and mirror mode structures) and “FRs like” structures, since they are very similar in space observations. This is followed by a summary and discussion section. 2. Observations 2.1. Plasma Features Figures 1a–1e show an overview of magnetic field and plasma properties around 11:11:26 UT on 27 January 2017. Figures 1a–1e show the ion and electron energy spectra, three magnetic field components (in geo- centric solar ecliptic (GSE) coordinates), and magnetic strength, plasma density, and amplitude of bulk velo- city, recorded by MMS1. MMS spacecraft were located at about [9.9,À1.9, 2.1] RE, and the four spacecraft approximately formed a regular tetrahedron with an average spacecraft separation of ~6 km. MMS1 crossed the magnetopause at~11:11:10 UT (the first dashed line), and remained in magnetosheath until ~11:11:57 UT (the second dashed line). The MP was observed at ~11:11:26.0 UT (in the blue shadow region).
Recommended publications
  • Effects of the Interplanetary Magnetic Field Y Component on the Dayside
    Liou and Mitchell Geosci. Lett. (2019) 6:11 https://doi.org/10.1186/s40562-019-0141-3 RESEARCH LETTER Open Access Efects of the interplanetary magnetic feld y component on the dayside aurora K. Liou* and E. Mitchell Abstract A dawn–dusk asymmetry in many high-latitude ionospheric and magnetospheric phenomena, including the aurora, can be linked to the east–west (y) component of the interplanetary magnetic feld (IMF). Owing to the scarcity of observations in the Southern Hemisphere, most of the previous fndings are associated with the Northern Hemi- sphere. It has long been suspected that if the IMF By component also produces a dawn–dusk asymmetry and/or a mirror image in the Southern Hemisphere as predicted by some theories. The present study explores the efect of the IMF By component on the dayside aurora from both hemispheres by analyzing the auroral emission data from the Global UltraViolet scanning spectrograph Imager on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission spacecraft from 2002 to 2007. The data set comprises 28,774 partial images of the northern hemispheric oval and 29,742 partial images of the southern hemispheric oval, allowing for a statistical analysis. It is found that even though auroras in diferent regions of the dayside oval respond diferently to the orientation of the IMF By component, their responses are opposite between the two hemispheres. For example, at ~ 1400–1600 MLT in the Northern Hemisphere, where the so-called 1500 MLT auroral hot spots occur, peak auroral energy fux is larger for negative IMF By comparing to positive IMF By.
    [Show full text]
  • Small-Scale Flux Transfer Events Formed in the Reconnection Exhaust Region Between Two X Lines
    Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Small-Scale Flux Transfer Events Formed in the Reconnection 10.1029/2018JA025611 Exhaust Region Between Two X Lines Key Points: K.-J. Hwang1 , D. G. Sibeck2 , J. L. Burch1 , E. Choi1 , R. C. Fear3 , B. Lavraud4 , • fl MMS observation of ion-scale ux 2 2 5 6 7 ropes in the reconnection outflow B. L. Giles , D. Gershman , C. J. Pollock , J. P. Eastwood , Y. Khotyaintsev , 8 9 10 11 12 region Philippe Escoubet ,H.Fu , S. Toledo-Redondo , R. B. Torbert , R. E. Ergun , • The initial X line is embedded in the W. R. Paterson2 , J. C. Dorelli2 , L. Avanov2,13 , C. T. Russell14 , and R. J. Strangeway14 exhaust region downstream of a second X line 1Southwest Research Institute, San Antonio, TX, USA, 2NASA Goddard Space Flight Center, Greenbelt, MD, USA, 3Physics • Flux transfer events (FTE) are formed 4 between the two X lines due to and Astronomy, University of Southampton, Southampton, UK, Institut de Recherche en Astrophysique et Planétologie, 5 6 tearing instability CNRS, UPS, CNES, Université de Toulouse, Toulouse, France, Denali Scientific, LLC, Fairbanks, AK, USA, Imperial College, London, UK, 7Swedish Institute of Space Physics, Uppsala, Sweden, 8European Space Agency, Noordwijk, Netherlands, 9School of Space and Environment, Beihang University, Beijing, China, 10European Space Agency, ESAC, Madrid, Spain, 11Space Science Center, University of New Hampshire, Durham, NH, USA, 12Laboratory for Atmospheric and Space Physics, Correspondence to: University of Colorado Boulder, Boulder, CO, USA, 13The Goddard Planetary Heliophysics Institute, Baltimore, MD, USA, K.-J. Hwang, 14 [email protected] Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA Citation: Abstract We report MMS observations of the ion-scale flux transfer events (FTEs) that may involve two Hwang, K.-J., Sibeck, D.
    [Show full text]
  • The UV Aurora and Ionospheric Flows During Flux Transfer Events D
    The UV aurora and ionospheric flows during flux transfer events D. A. Neudegg, S. W. H. Cowley, K. A. Mcwilliams, M. Lester, T. K. Yeoman, J. B. Sigwarth, G. Haerendel, W. Baumjohann, U. Auster, G.-H. Fornacon, et al. To cite this version: D. A. Neudegg, S. W. H. Cowley, K. A. Mcwilliams, M. Lester, T. K. Yeoman, et al.. The UV aurora and ionospheric flows during flux transfer events. Annales Geophysicae, European Geosciences Union, 2001, 19 (2), pp.179-188. hal-00316762 HAL Id: hal-00316762 https://hal.archives-ouvertes.fr/hal-00316762 Submitted on 1 Jan 2001 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. c Annales Geophysicae (2001) 19: 179–188 European Geophysical Society 2001 Annales Geophysicae The UV aurora and ionospheric flows during flux transfer events D. A. Neudegg1,*, S. W. H. Cowley1, K. A. McWilliams1, M. Lester1, T. K. Yeoman1, J. Sigwarth2, G. Haerendel3, W. Baumjohann3, U. Auster4, K.-H. Fornacon4, and E. Georgescu5 1Department of Physics and Astronomy, Leicester University, Leicester LE1 7RH, UK 2Department of Physics, University of Iowa, USA 3Max-Planck Institut für Extraterrestrische Physik, Garching, Germany 4Technische Universität von Braunschweig, Braunschweig, Germany 5Institute of Space Science, Bucharest, Romania *Now at: Rutherford-Appleton Laboratory, Oxfordshire OX11 0QX, UK Received: 24 July 2000 – Revised: 11 December 2000 – Accepted: 12 December 2000 Abstract.
    [Show full text]
  • Motion of Flux Transfer Events: a Test of the Cooling Model R
    Motion of flux transfer events: a test of the Cooling model R. C. Fear, S. E. Milan, A. N. Fazakerley, C. J. Owen, T. Asikainen, M. G. G. T. Taylor, E. A. Lucek, H. Rème, I. Dandouras, P. W. Daly To cite this version: R. C. Fear, S. E. Milan, A. N. Fazakerley, C. J. Owen, T. Asikainen, et al.. Motion of flux transfer events: a test of the Cooling model. Annales Geophysicae, European Geosciences Union, 2007, 25 (7), pp.1669-1690. hal-00330141 HAL Id: hal-00330141 https://hal.archives-ouvertes.fr/hal-00330141 Submitted on 30 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. Geophys., 25, 1669–1690, 2007 www.ann-geophys.net/25/1669/2007/ Annales © European Geosciences Union 2007 Geophysicae Motion of flux transfer events: a test of the Cooling model R. C. Fear1, S. E. Milan1, A. N. Fazakerley2, C. J. Owen2, T. Asikainen3, M. G. G. T. Taylor4, E. A. Lucek5, H. Reme` 6, I. Dandouras6, and P. W. Daly7 1Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 2Mullard Space Science Laboratory, University College London, Holmbury St.
    [Show full text]
  • Flux Transfer Events: 1
    Annales Geophysicae, 24, 381–392, 2006 SRef-ID: 1432-0576/ag/2006-24-381 Annales © European Geosciences Union 2006 Geophysicae Flux Transfer Events: 1. generation mechanism for strong southward IMF J. Raeder Space Science Center, University of New Hampshire, Durham, NH 03824, USA Received: 30 December 2004 – Revised: 22 November 2005 – Accepted: 3 January 2006 – Published: 7 March 2006 Abstract. We use a global numerical model of the interac- ionosphere-atmosphere system. Reconnection opens up the tion of the solar wind and the interplanetary magnetic field magnetosphere so that magnetic field lines of the magneto- with Earth’s magnetosphere to study the formation process of sphere can directly connect to the IMF. Without reconnection Flux Transfer Events (FTEs) during strong southward IMF. the magnetosphere would be closed and there would be very We find that: (i) The model produces essentially all obser- little influence from the solar wind (SW) and IMF on the vational features expected for FTEs, in particular the bipolar magnetosphere. signature of the magnetic field BN component, the correct Although the reconnection between the Earth’s magnetic polarity, duration, and intermittency of that bipolar signa- field and the IMF was in dispute at the beginning of magne- ture, strong core fields and enhanced core pressure, and flow tospheric research (Axford and Hines, 1961) it is now well enhancements; (ii) FTEs only develop for large dipole tilt established that reconnection occurs at the day side magne- whereas in the case of no dipole tilt steady magnetic recon- topause. (Haerendel et al., 1978; Paschmann et al., 1979; nection occurs at the dayside magnetopause; (iii) the basic Cowley, 1980, 1982).
    [Show full text]
  • Visualizing Space Weather: Acquiring and Rendering Data of Earth's Magnetosphere Hans-Christian Helltegen
    LiU-ITN-TEK-A14/052 SE Visualizing Space Weather: Acquiring and Rendering Data of Earth's Magnetosphere Hans-Christian Helltegen 2014-12-18 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LiU-ITN-TEK-A14/052 SE Visualizing Space Weather: Acquiring and Rendering Data of Earth's Magnetosphere Examensarbete utfört i Datateknik vid Tekniska högskolan vid Linköpings universitet Hans-Christian Helltegen Handledare Alexander Bock Examinator Anders Ynnerman Norrköping 2014-12-18 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.
    [Show full text]
  • MESSENGER Observations of Large Dayside Flux Transfer Events
    PUBLICATIONS Journal of Geophysical Research: Space Physics RESEARCH ARTICLE MESSENGER observations of large dayside flux 10.1002/2014JA019884 transfer events: Do they drive Mercury’s Key Points: substorm cycle? • Statistical study of dayside FTEs at Mercury Suzanne M. Imber1,2, James A. Slavin1, Scott A. Boardsen3,4, Brian J. Anderson5, Haje Korth5, • fi FTEs at Mercury have core elds of 5 6,7 approximately a few hundred nT Ralph L. McNutt Jr. , and Sean C. Solomon – and durations ~2 3s 1 2 • FTEs transport ~30% of the flux needed Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA, Department to drive Mercury’ssubstormcycle of Physics and Astronomy, University of Leicester, Leicester, UK, 3Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 4Goddard Planetary Heliophysics Institute, University of Maryland, Baltimore County, Catonsville, Maryland, USA, 5The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA, 6Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, District of Columbia, USA, 7Lamont-Doherty Correspondence to: S. M. Imber, Earth Observatory, Columbia University, Palisades, New York, USA [email protected] Abstract The large-scale dynamic behavior of Mercury’s highly compressed magnetosphere is predominantly Citation: powered by magnetic reconnection, which transfers energy and momentum from the solar wind to the Imber, S. M., J. A. Slavin, S. A. Boardsen, fl B. J. Anderson, H. Korth, R. L. McNutt Jr., magnetosphere. The contribution of ux transfer events (FTEs) at the dayside magnetopause to the redistribution and S. C. Solomon (2014), MESSENGER of magnetic flux in Mercury’s magnetosphere is assessed with magnetic fielddataacquiredinorbitabout observations of large dayside flux Mercury by the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging transfer events: Do they drive Mercury’s fi fi substorm cycle?, J.
    [Show full text]
  • The Scientific Foundations of Forecasting Magnetospheric Space
    Space Sci Rev DOI 10.1007/s11214-017-0399-8 The Scientific Foundations of Forecasting Magnetospheric Space Weather J.P. Eastwood1 · R. Nakamura2 · L. Turc3 · L. Mejnertsen1 · M. Hesse4 Received: 29 March 2017 / Accepted: 7 July 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth’s magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm oc- currence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments. Keywords Space weather · Magnetosphere · Geomagnetic storm · Substorm · Computer simulation The Scientific Foundation of Space Weather Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig B J.P.
    [Show full text]
  • References [1] Aleshin, I
    List of Refereed Publications Wind Spacecraft: 2007 References [1] Aleshin, I. M., G. N. Zastenker, M. O. Riazantseva, and O. O. Trubachev (2007), Possible role of electrostatic potential in formation of sharp boundaries of small-scale and middle- scale solar wind structures, Cosmic Res., 45, 181{185, 10.1134/S001095250703001X. [2] Andr´eeov´a,K., and L. Pˇrech (2007), Propagation of interplanetary shocks into the Earth's magnetosphere, Adv. Space Res., 40, 1871{1880, 10.1016/j.asr.2007.04.079. [3] Asgarov, A. B., and V. N. Obridko (2007), Asymmetry in the Inward-Outward Polarity in the Interplanetary Magnetic Field, Sun and Geosphere, 2, 29{32. [4] Bastian, T. S. (2007), Synchrotron Radiation From A Fast Halo CME, in American Astronomical Society Meeting Abstracts #210, Bull. Amer. Astron. Soc., vol. 38, pp. 141{+. [5] Bastian, T. S. (2007), Synchrotron Radio Emission from a Fast Halo Coronal Mass Ejec- tion, Astrophys. J., 665, 805{812, 10.1086/519246. [6] Bastian, T. S. (2007), Radio emission from the Sun, planets, and the interplanetary medium, Highlights Astron., 14, 362{364, 10.1017/S174392130701099X. [7] Belenkaya, E. S., I. I. Alexeev, and C. R. Clauer, Jr. (2007), Magnetic field of the transition current system: dawn-dusk asymmetry, Ann. Geophys., 25, 1899{1911, 10.5194/angeo-25-1899-2007. [8] Bochsler, P. (2007), Minor ions in the solar wind, Astron. & Astrophys. Rev., 14, 1{40, 10.1007/s00159-006-0002-x. [9] Boggs, S. E., A. Zoglauer, E. Bellm, K. Hurley, R. P. Lin, D. M. Smith, C. Wigger, and W. Hajdas (2007), The Giant Flare of 2004 December 27 from SGR 1806-20, Astrophys.
    [Show full text]
  • High-Latitude Observations of Impulse-Driven ULF Pulsations in the Ionosphere and on the Ground
    c Annales Geophysicae (2003) 21: 559–576 European Geosciences Union 2003 Annales Geophysicae High-latitude observations of impulse-driven ULF pulsations in the ionosphere and on the ground F. W. Menk1,3, T. K. Yeoman2, D. M. Wright2, M. Lester2, and F. Honary4 1School of Mathematical and Physical Science, the University of Newcastle, Callaghan, NSW 2308, Australia 2Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK 3Also at: Cooperative Research Centre for Satellite Systems, Canberra, ACT, Australia 4Department of Communications Systems, Lancaster University, Lancaster, LA1 4YR, UK Received: 27 September 2001 – Revised: 3 July 2002 – Accepted: 11 July 2002 Abstract. We report the simultaneous observation of 1.6– actions; ionospheric disturbances) – Magnetospheric physics 1.7 mHz pulsations in the ionospheric F-region with the (MHD waves and instabilities) CUTLASS bistatic HF radar and an HF Doppler sounder, on the ground with the IMAGE and SAMNET magnetome- ter arrays, and in the upstream solar wind. CUTLASS was 1 Introduction at the time being operated in a special mode optimized for high resolution studies of ULF waves. A novel use is made This paper reports new observations of the ionospheric and of the ground returns to detect the ionospheric signature of magnetic signatures of solar wind pressure perturbations. In ULF waves. The pulsations were initiated by a strong, sharp particular, we describe the novel use of HF radar ground scat- decrease in solar wind dynamic pressure near 09:28 UT on ter to detect ionospheric pulsations. 23 February 1996, and persisted for some hours. They were Geomagnetic activity is driven by energy and mass trans- ◦ observed with the magnetometers over 20 in latitude, cou- fer from the solar wind, and the outermost sunward field lines ◦ pling to a field line resonance near 72 magnetic latitude.
    [Show full text]
  • Articles, Detail the Direct Coupling Between the Solar Wind, the Mag- Precipitating; Magnetosphere-Ionosphere Interactions) – Netosphere, and the Ionosphere
    Annales Geophysicae (2004) 22: 2181–2199 SRef-ID: 1432-0576/ag/2004-22-2181 Annales © European Geosciences Union 2004 Geophysicae Simultaneous observations of magnetopause flux transfer events and of their associated signatures at ionospheric altitudes K. A. McWilliams1, G. J. Sofko1, T. K. Yeoman2, S. E. Milan2, D. G. Sibeck3,7, T. Nagai4, T. Mukai5, I. J. Coleman6, T. Hori7, and F. J. Rich8 1Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada 2Department of Physics and Astronomy, University of Leicester, Leicester, UK 3NASA/GSFC, Greenbelt, Maryland, USA 4Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan 5Institute of Space and Astronautical Science, Kanagawa, Japan 6British Antarctic Survey, Cambridge, UK 7Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland, USA 8AFRL/VSBXP, Hanscom AFB, Massachusetts, USA Received: 4 March 2003 – Revised: 18 February 2004 – Accepted: 25 February 2004 – Published: 14 June 2004 Abstract. An extensive variety of instruments, including solar point. This is the first simultaneous and independent Geotail, DMSP F11, SuperDARN, and IMP-8, were mon- determination from ionospheric and space-based data of the itoring the dayside magnetosphere and ionosphere between location of magnetic reconnection. 14:00 and 18:00 UT on 18 January 1999. The location of the instruments provided an excellent opportunity to study in Key words. Magnetospheric physics (energetic particles, detail the direct coupling between the solar wind, the mag- precipitating; magnetosphere-ionosphere interactions) – netosphere, and the ionosphere. Flux transfer events were Space plasma physics (magnetic reconnection) observed by Geotail near the magnetopause in the dawn side magnetosheath at about 4 magnetic local time during exclusively northward interplanetary magnetic field condi- tions.
    [Show full text]
  • Flux Transfer Event Observation at Saturn's Dayside Magnetopause By
    Geophysical Research Letters RESEARCH LETTER Flux transfer event observation at Saturn’s dayside 10.1002/2016GL069260 magnetopause by the Cassini spacecraft Key Points: 1,2,3 1 4 1 1 • We present the first observation of Jamie M. Jasinski , James A. Slavin , Christopher S. Arridge , Gangkai Poh , Xianzhe Jia , a flux transfer event at Saturn which Nick Sergis5, Andrew J. Coates2,3, Geraint H. Jones2,3, and J. Hunter Waite Jr.6 occurred during an increase in solar wind dynamic pressure 1Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA, 2Mullard • Conditions at Saturn’s magnetopause 3 are at times conducive to multiple Space Science Laboratory, University College London, London, UK, Centre for Planetary Sciences, University College 4 5 X-line reconnection and flux rope London/Birkbeck, London, UK, Department of Physics, Lancaster University, Lancaster, UK, Office for Space Research generation and Technology, Academy of Athens, Athens, Greece, 6Southwest Research Institute, San Antonio, Texas, USA • MVA and modeling are used to determine that the FTE had a flux rope structure and a magnetic flux content We present the first observation of a flux rope at Saturn’s dayside magnetopause. This is of 0.2–0.8 MWb Abstract an important result because it shows that the Saturnian magnetopause is conducive to multiple X-line reconnection and flux rope generation. Minimum variance analysis shows that the magnetic signature Supporting Information: is consistent with a flux rope. The magnetic observations were well fitted to a constant- force-free flux • Supporting Information S1 rope model. The radius and magnetic flux content of the rope are estimated to be 4600–8300 km and 0.2–0.8 MWb, respectively.
    [Show full text]