Motion of Flux Transfer Events: a Test of the Cooling Model R

Total Page:16

File Type:pdf, Size:1020Kb

Motion of Flux Transfer Events: a Test of the Cooling Model R Motion of flux transfer events: a test of the Cooling model R. C. Fear, S. E. Milan, A. N. Fazakerley, C. J. Owen, T. Asikainen, M. G. G. T. Taylor, E. A. Lucek, H. Rème, I. Dandouras, P. W. Daly To cite this version: R. C. Fear, S. E. Milan, A. N. Fazakerley, C. J. Owen, T. Asikainen, et al.. Motion of flux transfer events: a test of the Cooling model. Annales Geophysicae, European Geosciences Union, 2007, 25 (7), pp.1669-1690. hal-00330141 HAL Id: hal-00330141 https://hal.archives-ouvertes.fr/hal-00330141 Submitted on 30 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. Geophys., 25, 1669–1690, 2007 www.ann-geophys.net/25/1669/2007/ Annales © European Geosciences Union 2007 Geophysicae Motion of flux transfer events: a test of the Cooling model R. C. Fear1, S. E. Milan1, A. N. Fazakerley2, C. J. Owen2, T. Asikainen3, M. G. G. T. Taylor4, E. A. Lucek5, H. Reme` 6, I. Dandouras6, and P. W. Daly7 1Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 2Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK 3Department of Physical Sciences, University of Oulu, P.O. Box 3000, 90014, Finland 4Research and Scientific Support Department, European Space Agency, 2201AZ Noordwijk, The Netherlands 5Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, UK 6CESR/CNRS, 9 Avenue du Colonel Roche, B.P. 4346, 31028 Toulouse Cedex 4, France 7Max-Planck-Institut fur¨ Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany Received: 30 March 2007 – Revised: 29 June 2007 – Accepted: 13 July 2007 – Published: 30 July 2007 Abstract. The simple model of reconnected field line mo- 1 Introduction tion developed by Cooling et al. (2001) has been used in sev- eral recent case studies to explain the motion of flux transfer Magnetic reconnection at the Earth’s magnetopause events across the magnetopause. We examine 213 FTEs ob- (Dungey, 1961, 1963) is the dominant process of energy served by all four Cluster spacecraft under a variety of IMF and momentum transfer from the solar wind into the ter- conditions between November 2002 and June 2003, when the restrial magnetosphere (Cowley, 1984). The basic process spacecraft tetrahedron separation was ∼5000 km. Observed of reconnection as envisaged by Dungey (1961, 1963) velocities were calculated from multi-spacecraft timing anal- was steady state. Indeed, reconnection may occur as a ysis, and compared with the velocities predicted by the Cool- continuous process for hours at a time (Frey et al., 2003; ing model in order to check the validity of the model. After Phan et al., 2004). However, magnetopause reconnection excluding three categories of FTEs (events with poorly de- commonly occurs as a transient or time-varying process, fined velocities, a significant velocity component out of the as first observed by Haerendel et al. (1978) in the form of magnetopause surface, or a scale size of less than 5000 km), signatures they called “flux erosion events”. we were left with a sample of 118 events. 78% of these Independently, Russell and Elphic (1978, 1979) identified events were consistent in both direction of motion and speed signatures of transient reconnection at the low-latitude mag- with one of the two model de Hoffmann-Teller (dHT) veloc- netopause which they called “flux transfer events” (FTEs). ities calculated from the Cooling model (to within 30◦ and These signatures were interpreted as open flux ropes, formed a factor of two in the speed). We also examined the plasma by reconnection, which moved away from the reconnection signatures of several magnetosheath FTEs; the electron sig- site under the net effect of the force exerted by the solar natures confirm the hemisphere of connection indicated by wind flow and the j×B magnetic tension force. They were the model in most cases. This indicates that although the identified by inspecting the magnetic field data in the magne- model is a simple one, it is a useful tool for identifying the tosheath or magnetosphere in a boundary normal coordinate source regions of FTEs. system (introduced by Russell and Elphic, 1978), in which Nˆ is normal to the magnetopause and directed away from Keywords. Magnetospheric physics (Magnetopause, cusp, Earth. An FTE exhibits a bipolar signature in the BN com- arid boundary layers; Solar wind-magnetosphere interac- ponent. In the simplest case, the bipolar signature is formed tions) – Space plasma physics (Magnetic reconnection) by the draping of unreconnected magnetic field lines around the FTE. The flux erosion events reported by Haerendel et al. (1978) were shown to be flux transfer events by Rijnbeek and Cowley (1984). The polarity of the BN signature depends upon the mo- Correspondence to: R. C. Fear tion of the FTE relative to the unperturbed magnetic field. ([email protected]) In the magnetosheath, a “standard” or “direct” signature (a Published by Copernicus Publications on behalf of the European Geosciences Union. 1670 R. C. Fear et al.: FTE motion positive followed by a negative deflection in BN ) occurs if ern Hemisphere, whilst reverse polarity FTEs are generally the FTE velocity has a component antiparallel to the local observed in the Southern Hemisphere (Rijnbeek et al., 1984), magnetosheath magnetic field, whereas a “reverse” signa- although the division between these events is often inclined ture (negative/positive) occurs if the velocity has a compo- to the magnetic equator (Berchem and Russell, 1984). Rus- nent parallel to the magnetic field (Rijnbeek et al., 1982). If sell et al. (1985) showed the polarity, and hence motion, of the FTE is observed from inside the magnetosphere, a stan- FTE signatures which occurred when the IMF was southward dard signature occurs if the FTE velocity has a component to be consistent with low-latitude reconnection even when parallel to the geomagnetic field and a reverse component if there is a dominant IMF BY component. the component is antiparallel. There is often a significant in- More recent surveys have extended to the post-terminator crease or decrease in |B|, and an imbalance in the total pres- region. Kawano and Russell (1997a,b) studied a database 2 sure (pgas+B /2µ0) countered by the magnetic tension in of 1246 FTEs, of which 79 occurred in the post-terminator the draped magnetic field lines (Paschmann et al., 1982). A region (XGSM<0, |ZGSM|<15 RE) when the IMF was north- bipolar BN signature is also observed when the reconnected ward. It was proposed that most of these events could be flux tube was crossed, explained by a helicity in the recon- explained by a tilted, subsolar component reconnection line nected flux rope (Sonnerup, 1987). if open flux tubes in the subsolar region were immediately Several alternative reconnection-based models have been closed by a process of “re-reconnection” (Nishida, 1989), proposed which explain the observations: Lee and Fu (1985) thus preventing northward IMF FTEs from being observed proposed a model where helical flux tubes were generated in the subsolar region. When the IMF was more strongly by multiple reconnection lines (X-lines). Southwood et al. northward, Kawano and Russell (1997b) concluded that the (1988) and Scholer (1988) independently proposed a model polarities and IMF BY dependency could also be explained if based on a single X-line, where the magnetopause boundary the FTEs were generated near the polar cusps at an antiparal- layer thickens and then thins as a result of a variation in the lel reconnection site, but then somehow moved equatorward reconnection rate, producing a bulge which propagates un- and tailward. der the same magnetosheath flow and j×B effects. This two The anisotropy of plasma signatures associated with mag- dimensional model does not produce a tube of reconnected netosheath FTEs can be used to determine the hemisphere flux, but can extend a considerable distance along the mag- of connection of an FTE. Plasma populations originating netopause. from the magnetosphere and with a field-aligned anisotropy It has also been suggested that FTE-style signatures can were first observed inside magnetosheath FTEs by Daly et al. be formed by magnetopause waves, although this has been (1981), consistent with the spacecraft being on open, recon- hotly debated (e.g. Sibeck et al., 1989; Lanzerotti, 1989; nected magnetic field lines. A parallel beam observed on Sibeck, 1990; Elphic, 1990; Sckopke, 1991; Lockwood, open magnetic field lines in the magnetosheath implies a con- 1991; Sibeck, 1992; Smith and Owen, 1992; Kawano et al., nection to the Southern Hemisphere, whereas an antiparallel 1992; Elphic et al., 1994; Song et al., 1994, 1996; Sibeck and beam implies connection to the Northern Hemisphere. (A Newell, 1995, 1996; Sanny et al., 1996). In the context of plasma signature is also observed in magnetospheric FTEs, this debate, Kawano et al. (1992) introduced a “characteris- e.g. Paschmann et al. (1982), although the scenario is compli- tic time” (tchar, defined as the time between the positive and cated by the mirroring of plasma at the ionosphere.) Further- negative peaks in the BN signature) to distinguish between more, Daly et al. (1984) found that there was sometimes an longer events with bipolar BN signatures (tchar>90 s) which inconsistency between the direction of motion inferred from were found to occur over a wide range of McIlwain L-shells the FTE polarity (standard or reverse) and the anisotropy and were not correlated to periods of reconnection as evi- of high-energy ion signatures (above 25 keV).
Recommended publications
  • Effects of the Interplanetary Magnetic Field Y Component on the Dayside
    Liou and Mitchell Geosci. Lett. (2019) 6:11 https://doi.org/10.1186/s40562-019-0141-3 RESEARCH LETTER Open Access Efects of the interplanetary magnetic feld y component on the dayside aurora K. Liou* and E. Mitchell Abstract A dawn–dusk asymmetry in many high-latitude ionospheric and magnetospheric phenomena, including the aurora, can be linked to the east–west (y) component of the interplanetary magnetic feld (IMF). Owing to the scarcity of observations in the Southern Hemisphere, most of the previous fndings are associated with the Northern Hemi- sphere. It has long been suspected that if the IMF By component also produces a dawn–dusk asymmetry and/or a mirror image in the Southern Hemisphere as predicted by some theories. The present study explores the efect of the IMF By component on the dayside aurora from both hemispheres by analyzing the auroral emission data from the Global UltraViolet scanning spectrograph Imager on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission spacecraft from 2002 to 2007. The data set comprises 28,774 partial images of the northern hemispheric oval and 29,742 partial images of the southern hemispheric oval, allowing for a statistical analysis. It is found that even though auroras in diferent regions of the dayside oval respond diferently to the orientation of the IMF By component, their responses are opposite between the two hemispheres. For example, at ~ 1400–1600 MLT in the Northern Hemisphere, where the so-called 1500 MLT auroral hot spots occur, peak auroral energy fux is larger for negative IMF By comparing to positive IMF By.
    [Show full text]
  • Small-Scale Flux Transfer Events Formed in the Reconnection Exhaust Region Between Two X Lines
    Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Small-Scale Flux Transfer Events Formed in the Reconnection 10.1029/2018JA025611 Exhaust Region Between Two X Lines Key Points: K.-J. Hwang1 , D. G. Sibeck2 , J. L. Burch1 , E. Choi1 , R. C. Fear3 , B. Lavraud4 , • fl MMS observation of ion-scale ux 2 2 5 6 7 ropes in the reconnection outflow B. L. Giles , D. Gershman , C. J. Pollock , J. P. Eastwood , Y. Khotyaintsev , 8 9 10 11 12 region Philippe Escoubet ,H.Fu , S. Toledo-Redondo , R. B. Torbert , R. E. Ergun , • The initial X line is embedded in the W. R. Paterson2 , J. C. Dorelli2 , L. Avanov2,13 , C. T. Russell14 , and R. J. Strangeway14 exhaust region downstream of a second X line 1Southwest Research Institute, San Antonio, TX, USA, 2NASA Goddard Space Flight Center, Greenbelt, MD, USA, 3Physics • Flux transfer events (FTE) are formed 4 between the two X lines due to and Astronomy, University of Southampton, Southampton, UK, Institut de Recherche en Astrophysique et Planétologie, 5 6 tearing instability CNRS, UPS, CNES, Université de Toulouse, Toulouse, France, Denali Scientific, LLC, Fairbanks, AK, USA, Imperial College, London, UK, 7Swedish Institute of Space Physics, Uppsala, Sweden, 8European Space Agency, Noordwijk, Netherlands, 9School of Space and Environment, Beihang University, Beijing, China, 10European Space Agency, ESAC, Madrid, Spain, 11Space Science Center, University of New Hampshire, Durham, NH, USA, 12Laboratory for Atmospheric and Space Physics, Correspondence to: University of Colorado Boulder, Boulder, CO, USA, 13The Goddard Planetary Heliophysics Institute, Baltimore, MD, USA, K.-J. Hwang, 14 [email protected] Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA Citation: Abstract We report MMS observations of the ion-scale flux transfer events (FTEs) that may involve two Hwang, K.-J., Sibeck, D.
    [Show full text]
  • The UV Aurora and Ionospheric Flows During Flux Transfer Events D
    The UV aurora and ionospheric flows during flux transfer events D. A. Neudegg, S. W. H. Cowley, K. A. Mcwilliams, M. Lester, T. K. Yeoman, J. B. Sigwarth, G. Haerendel, W. Baumjohann, U. Auster, G.-H. Fornacon, et al. To cite this version: D. A. Neudegg, S. W. H. Cowley, K. A. Mcwilliams, M. Lester, T. K. Yeoman, et al.. The UV aurora and ionospheric flows during flux transfer events. Annales Geophysicae, European Geosciences Union, 2001, 19 (2), pp.179-188. hal-00316762 HAL Id: hal-00316762 https://hal.archives-ouvertes.fr/hal-00316762 Submitted on 1 Jan 2001 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. c Annales Geophysicae (2001) 19: 179–188 European Geophysical Society 2001 Annales Geophysicae The UV aurora and ionospheric flows during flux transfer events D. A. Neudegg1,*, S. W. H. Cowley1, K. A. McWilliams1, M. Lester1, T. K. Yeoman1, J. Sigwarth2, G. Haerendel3, W. Baumjohann3, U. Auster4, K.-H. Fornacon4, and E. Georgescu5 1Department of Physics and Astronomy, Leicester University, Leicester LE1 7RH, UK 2Department of Physics, University of Iowa, USA 3Max-Planck Institut für Extraterrestrische Physik, Garching, Germany 4Technische Universität von Braunschweig, Braunschweig, Germany 5Institute of Space Science, Bucharest, Romania *Now at: Rutherford-Appleton Laboratory, Oxfordshire OX11 0QX, UK Received: 24 July 2000 – Revised: 11 December 2000 – Accepted: 12 December 2000 Abstract.
    [Show full text]
  • Flux Transfer Events: 1
    Annales Geophysicae, 24, 381–392, 2006 SRef-ID: 1432-0576/ag/2006-24-381 Annales © European Geosciences Union 2006 Geophysicae Flux Transfer Events: 1. generation mechanism for strong southward IMF J. Raeder Space Science Center, University of New Hampshire, Durham, NH 03824, USA Received: 30 December 2004 – Revised: 22 November 2005 – Accepted: 3 January 2006 – Published: 7 March 2006 Abstract. We use a global numerical model of the interac- ionosphere-atmosphere system. Reconnection opens up the tion of the solar wind and the interplanetary magnetic field magnetosphere so that magnetic field lines of the magneto- with Earth’s magnetosphere to study the formation process of sphere can directly connect to the IMF. Without reconnection Flux Transfer Events (FTEs) during strong southward IMF. the magnetosphere would be closed and there would be very We find that: (i) The model produces essentially all obser- little influence from the solar wind (SW) and IMF on the vational features expected for FTEs, in particular the bipolar magnetosphere. signature of the magnetic field BN component, the correct Although the reconnection between the Earth’s magnetic polarity, duration, and intermittency of that bipolar signa- field and the IMF was in dispute at the beginning of magne- ture, strong core fields and enhanced core pressure, and flow tospheric research (Axford and Hines, 1961) it is now well enhancements; (ii) FTEs only develop for large dipole tilt established that reconnection occurs at the day side magne- whereas in the case of no dipole tilt steady magnetic recon- topause. (Haerendel et al., 1978; Paschmann et al., 1979; nection occurs at the dayside magnetopause; (iii) the basic Cowley, 1980, 1982).
    [Show full text]
  • Visualizing Space Weather: Acquiring and Rendering Data of Earth's Magnetosphere Hans-Christian Helltegen
    LiU-ITN-TEK-A14/052 SE Visualizing Space Weather: Acquiring and Rendering Data of Earth's Magnetosphere Hans-Christian Helltegen 2014-12-18 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LiU-ITN-TEK-A14/052 SE Visualizing Space Weather: Acquiring and Rendering Data of Earth's Magnetosphere Examensarbete utfört i Datateknik vid Tekniska högskolan vid Linköpings universitet Hans-Christian Helltegen Handledare Alexander Bock Examinator Anders Ynnerman Norrköping 2014-12-18 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.
    [Show full text]
  • MESSENGER Observations of Large Dayside Flux Transfer Events
    PUBLICATIONS Journal of Geophysical Research: Space Physics RESEARCH ARTICLE MESSENGER observations of large dayside flux 10.1002/2014JA019884 transfer events: Do they drive Mercury’s Key Points: substorm cycle? • Statistical study of dayside FTEs at Mercury Suzanne M. Imber1,2, James A. Slavin1, Scott A. Boardsen3,4, Brian J. Anderson5, Haje Korth5, • fi FTEs at Mercury have core elds of 5 6,7 approximately a few hundred nT Ralph L. McNutt Jr. , and Sean C. Solomon – and durations ~2 3s 1 2 • FTEs transport ~30% of the flux needed Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA, Department to drive Mercury’ssubstormcycle of Physics and Astronomy, University of Leicester, Leicester, UK, 3Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 4Goddard Planetary Heliophysics Institute, University of Maryland, Baltimore County, Catonsville, Maryland, USA, 5The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA, 6Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, District of Columbia, USA, 7Lamont-Doherty Correspondence to: S. M. Imber, Earth Observatory, Columbia University, Palisades, New York, USA [email protected] Abstract The large-scale dynamic behavior of Mercury’s highly compressed magnetosphere is predominantly Citation: powered by magnetic reconnection, which transfers energy and momentum from the solar wind to the Imber, S. M., J. A. Slavin, S. A. Boardsen, fl B. J. Anderson, H. Korth, R. L. McNutt Jr., magnetosphere. The contribution of ux transfer events (FTEs) at the dayside magnetopause to the redistribution and S. C. Solomon (2014), MESSENGER of magnetic flux in Mercury’s magnetosphere is assessed with magnetic fielddataacquiredinorbitabout observations of large dayside flux Mercury by the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging transfer events: Do they drive Mercury’s fi fi substorm cycle?, J.
    [Show full text]
  • The Scientific Foundations of Forecasting Magnetospheric Space
    Space Sci Rev DOI 10.1007/s11214-017-0399-8 The Scientific Foundations of Forecasting Magnetospheric Space Weather J.P. Eastwood1 · R. Nakamura2 · L. Turc3 · L. Mejnertsen1 · M. Hesse4 Received: 29 March 2017 / Accepted: 7 July 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth’s magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm oc- currence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments. Keywords Space weather · Magnetosphere · Geomagnetic storm · Substorm · Computer simulation The Scientific Foundation of Space Weather Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig B J.P.
    [Show full text]
  • References [1] Aleshin, I
    List of Refereed Publications Wind Spacecraft: 2007 References [1] Aleshin, I. M., G. N. Zastenker, M. O. Riazantseva, and O. O. Trubachev (2007), Possible role of electrostatic potential in formation of sharp boundaries of small-scale and middle- scale solar wind structures, Cosmic Res., 45, 181{185, 10.1134/S001095250703001X. [2] Andr´eeov´a,K., and L. Pˇrech (2007), Propagation of interplanetary shocks into the Earth's magnetosphere, Adv. Space Res., 40, 1871{1880, 10.1016/j.asr.2007.04.079. [3] Asgarov, A. B., and V. N. Obridko (2007), Asymmetry in the Inward-Outward Polarity in the Interplanetary Magnetic Field, Sun and Geosphere, 2, 29{32. [4] Bastian, T. S. (2007), Synchrotron Radiation From A Fast Halo CME, in American Astronomical Society Meeting Abstracts #210, Bull. Amer. Astron. Soc., vol. 38, pp. 141{+. [5] Bastian, T. S. (2007), Synchrotron Radio Emission from a Fast Halo Coronal Mass Ejec- tion, Astrophys. J., 665, 805{812, 10.1086/519246. [6] Bastian, T. S. (2007), Radio emission from the Sun, planets, and the interplanetary medium, Highlights Astron., 14, 362{364, 10.1017/S174392130701099X. [7] Belenkaya, E. S., I. I. Alexeev, and C. R. Clauer, Jr. (2007), Magnetic field of the transition current system: dawn-dusk asymmetry, Ann. Geophys., 25, 1899{1911, 10.5194/angeo-25-1899-2007. [8] Bochsler, P. (2007), Minor ions in the solar wind, Astron. & Astrophys. Rev., 14, 1{40, 10.1007/s00159-006-0002-x. [9] Boggs, S. E., A. Zoglauer, E. Bellm, K. Hurley, R. P. Lin, D. M. Smith, C. Wigger, and W. Hajdas (2007), The Giant Flare of 2004 December 27 from SGR 1806-20, Astrophys.
    [Show full text]
  • High-Latitude Observations of Impulse-Driven ULF Pulsations in the Ionosphere and on the Ground
    c Annales Geophysicae (2003) 21: 559–576 European Geosciences Union 2003 Annales Geophysicae High-latitude observations of impulse-driven ULF pulsations in the ionosphere and on the ground F. W. Menk1,3, T. K. Yeoman2, D. M. Wright2, M. Lester2, and F. Honary4 1School of Mathematical and Physical Science, the University of Newcastle, Callaghan, NSW 2308, Australia 2Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK 3Also at: Cooperative Research Centre for Satellite Systems, Canberra, ACT, Australia 4Department of Communications Systems, Lancaster University, Lancaster, LA1 4YR, UK Received: 27 September 2001 – Revised: 3 July 2002 – Accepted: 11 July 2002 Abstract. We report the simultaneous observation of 1.6– actions; ionospheric disturbances) – Magnetospheric physics 1.7 mHz pulsations in the ionospheric F-region with the (MHD waves and instabilities) CUTLASS bistatic HF radar and an HF Doppler sounder, on the ground with the IMAGE and SAMNET magnetome- ter arrays, and in the upstream solar wind. CUTLASS was 1 Introduction at the time being operated in a special mode optimized for high resolution studies of ULF waves. A novel use is made This paper reports new observations of the ionospheric and of the ground returns to detect the ionospheric signature of magnetic signatures of solar wind pressure perturbations. In ULF waves. The pulsations were initiated by a strong, sharp particular, we describe the novel use of HF radar ground scat- decrease in solar wind dynamic pressure near 09:28 UT on ter to detect ionospheric pulsations. 23 February 1996, and persisted for some hours. They were Geomagnetic activity is driven by energy and mass trans- ◦ observed with the magnetometers over 20 in latitude, cou- fer from the solar wind, and the outermost sunward field lines ◦ pling to a field line resonance near 72 magnetic latitude.
    [Show full text]
  • Articles, Detail the Direct Coupling Between the Solar Wind, the Mag- Precipitating; Magnetosphere-Ionosphere Interactions) – Netosphere, and the Ionosphere
    Annales Geophysicae (2004) 22: 2181–2199 SRef-ID: 1432-0576/ag/2004-22-2181 Annales © European Geosciences Union 2004 Geophysicae Simultaneous observations of magnetopause flux transfer events and of their associated signatures at ionospheric altitudes K. A. McWilliams1, G. J. Sofko1, T. K. Yeoman2, S. E. Milan2, D. G. Sibeck3,7, T. Nagai4, T. Mukai5, I. J. Coleman6, T. Hori7, and F. J. Rich8 1Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada 2Department of Physics and Astronomy, University of Leicester, Leicester, UK 3NASA/GSFC, Greenbelt, Maryland, USA 4Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan 5Institute of Space and Astronautical Science, Kanagawa, Japan 6British Antarctic Survey, Cambridge, UK 7Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland, USA 8AFRL/VSBXP, Hanscom AFB, Massachusetts, USA Received: 4 March 2003 – Revised: 18 February 2004 – Accepted: 25 February 2004 – Published: 14 June 2004 Abstract. An extensive variety of instruments, including solar point. This is the first simultaneous and independent Geotail, DMSP F11, SuperDARN, and IMP-8, were mon- determination from ionospheric and space-based data of the itoring the dayside magnetosphere and ionosphere between location of magnetic reconnection. 14:00 and 18:00 UT on 18 January 1999. The location of the instruments provided an excellent opportunity to study in Key words. Magnetospheric physics (energetic particles, detail the direct coupling between the solar wind, the mag- precipitating; magnetosphere-ionosphere interactions) – netosphere, and the ionosphere. Flux transfer events were Space plasma physics (magnetic reconnection) observed by Geotail near the magnetopause in the dawn side magnetosheath at about 4 magnetic local time during exclusively northward interplanetary magnetic field condi- tions.
    [Show full text]
  • Flux Transfer Event Observation at Saturn's Dayside Magnetopause By
    Geophysical Research Letters RESEARCH LETTER Flux transfer event observation at Saturn’s dayside 10.1002/2016GL069260 magnetopause by the Cassini spacecraft Key Points: 1,2,3 1 4 1 1 • We present the first observation of Jamie M. Jasinski , James A. Slavin , Christopher S. Arridge , Gangkai Poh , Xianzhe Jia , a flux transfer event at Saturn which Nick Sergis5, Andrew J. Coates2,3, Geraint H. Jones2,3, and J. Hunter Waite Jr.6 occurred during an increase in solar wind dynamic pressure 1Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA, 2Mullard • Conditions at Saturn’s magnetopause 3 are at times conducive to multiple Space Science Laboratory, University College London, London, UK, Centre for Planetary Sciences, University College 4 5 X-line reconnection and flux rope London/Birkbeck, London, UK, Department of Physics, Lancaster University, Lancaster, UK, Office for Space Research generation and Technology, Academy of Athens, Athens, Greece, 6Southwest Research Institute, San Antonio, Texas, USA • MVA and modeling are used to determine that the FTE had a flux rope structure and a magnetic flux content We present the first observation of a flux rope at Saturn’s dayside magnetopause. This is of 0.2–0.8 MWb Abstract an important result because it shows that the Saturnian magnetopause is conducive to multiple X-line reconnection and flux rope generation. Minimum variance analysis shows that the magnetic signature Supporting Information: is consistent with a flux rope. The magnetic observations were well fitted to a constant- force-free flux • Supporting Information S1 rope model. The radius and magnetic flux content of the rope are estimated to be 4600–8300 km and 0.2–0.8 MWb, respectively.
    [Show full text]
  • MULTISCALE SPACE WEATHER SIMULATIONS Photosphere
    BLUE WATERS ANNUAL REPORT 2018 DI reduce the number of computational cells while also resolving the MULTISCALE SPACE WEATHER SIMULATIONS photosphere. Using SWARM, we have performed rigorous flux- Allocation: NSF PRAC/3,000 Knh emergence calculations and the formation of active regions with PI: Gabor Toth1 no ad hoc assumptions about coronal or photospheric conditions. TN 1 Co-PI: Ward Manchester IV Collaborators: Bart van der Holst1, Yuxi Chen1, Hongyang Zhou1 RESULTS & IMPACT We have used this unique opportunity to simulate space weather 1 University of Michigan events using the MHD with Embedded Particle-in-Cell (MHD- EPIC) model, where the reconnection is handled by a kinetic EXECUTIVE SUMMARY METHODS & CODES PIC code. With this approach, we focused on modeling the fundamental process of reconnection and its impact on global MP Our efforts aim to achieve a breakthrough advance in the Our approach combines the efficiency of global fluid-type dynamics. Currently, the MHD–EPIC model is the first three- understanding of space weather. The most destructive forms of models with the physical capabilities of computationally expensive dimensional global study of the complex reconnection process space weather are caused by major solar eruptions: fast coronal but physically accurate local kinetic models. The resulting using a high-fidelity kinetic model for the magnetic reconnection. mass ejections (CMEs) and eruptive X-class flares. These magnetohydrodynamic with embedded particle-in-cell (MHD– We also made breakthrough advances in simulating flux emergence destructive events originate with magnetic fields emerging EPIC) model is 100 to 10,000 times more efficient than a global at an active-region scale in spherical geometry—simulations that from the solar interior, forming the active regions from where kinetic model.
    [Show full text]