Outer Planet Magnetospheres: a Tutorial

Total Page:16

File Type:pdf, Size:1020Kb

Outer Planet Magnetospheres: a Tutorial OUTER PLANET MAGNETOSPHERES: A TUTORIAL C. T. Russell Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California Los Angeles, 405 Hilgard Avenue, CA 90095-1567, USA ABSTRACT Outer planetary magnetospheres represent giant laboratories for testing our ideas of how magnetospheres behave. In this tutorial review we examine the role of external and internal pressure in determining the size and shape of the magnetosphere. We examine the relative roles of reconnection with the solar wind magnetic field and the mass addition inside the magnetosphere in driving the circulation of plasma in the magnetosphere. We also examine how the jovian magnetosphere maintains a steady state in an average sense despite the continued addition of mass deep in the magnetosphere. INTRODUCTION The sun’s ionized corona expands rapidly, nearly isotropically, into the surrounding heliosphere carrying the solar magnetic field with it. This expanding magnetized plasma interacts with the planets creating planetary magnetospheres, regions of enhanced magnetic field strength surrounding the planet where magnetic stresses play a dominant role in controlling the flow of the plasma. The nature of the obstacle to the solar wind flow is important in determining the nature of a planetary magnetosphere. If the planet has its own strong magnetic field due to an interior magnetic dynamo or a remanent field of a magnetized crust, then the magnetosphere is termed intrinsic. The size of an intrinsic magnetosphere is determined by the location of the point where the dynamic pressure of the solar wind flow is equal to the magnetic pressure of the intrinsic magnetic field. For Mercury this occurs just above the surface of the planet, whereas for Jupiter it occurs close to 100 times further from the center of the planet than the cloud tops. Because the solar wind flows supersonically, that is the flow is much faster than the speed of a compressional wave that could deflect the plasma flow, then a bow shock forms that slows, heats and deflects the flow before it reaches the magnetic obstacle. This shock stands off in front of the obstacle at a distance sufficiently far that the compressed solar wind plasma can flow around the obstacle. Induced magnetospheres occur when the region of strong magnetic field arises not from magnetism within the planetary obstacle but from the interaction of the solar wind with the obstacle. Induced magnetospheres in turn can be divided into two classes, one in which the planetary body is adding mass to the solar wind flow in the form of ions newly created from a neutral atmosphere. This occurs most spectacularly at comets and less so at Venus and Mars and also at the moons Io and Titan where a “magnetosphere” is created by a flowing planetary wind. The other class of induced magnetospheres arises from classical electromagnetic induction in a highly electrically conducting medium. This conductor can be the electrically conducting interior of a planet or moon such as an iron core or a salt-water ocean, such as in Europa, or it can be the ionosphere of a planet above the surface, such as at Venus and Mars. In these cases the magnetic field external to the planetary body is excluded from the interior of the conductor for a length of time dependent on the size and electrical conductivity of the obstacle. This time can be long compared to the time scale of directional changes in the exterior magnetic field. Currents flow in the conductor to oppose the field change and the field outside obstacle increases, creating a magnetic barrier that in turn deflects the flowing plasma. As in the case of intrinsic magnetospheres, either class of induced magnetospheres can lead to the formation of a bow shock, standing in front of the obstacle when the flow velocity exceeds the velocity of the compressional wave that is required to deflect the flow around the obstacle. Interplanetary Magnetic Field Tail Current Plasma Mantle -1 Magnetic Tail Northern Lobe Polar Cusp Plasma Sheet Plasma- sphere X 2 -1 Field Line Streamline 1 Foreshock Neutral Sheet Current Boundary Field-Aligned Current Ring Current Magnetopause Solar Wind Magnetopause Current Y Fig. 1. Cut away model of the terrestrial Fig. 2. Magnetic field lines and flows in the plane magnetosphere showing the plasma regions, containing the upstream field and flow passing through the magnetic field lines, electric currents and flows. stagnation point as calculated in the convected field gas dynamic model of the interaction of the solar wind with the Earth’s magnetosphere (after Spreiter et al., 1966). Herein we examine the physics of the outer planet magnetospheres. We have visited the magnetospheres of Jupiter and Saturn many times but those of Uranus and Neptune only once. These magnetospheres are all intrinsic. No spacecraft has yet visited Pluto, but unless the atmosphere and interior are completely frozen we would expect one of the classes of magnetospheres to form. Above we discussed briefly the size of intrinsic planetary magnetospheres as determined by a balance of pressures, between the dynamic pressure of the flowing solar wind and the magnetic pressure of the intrinsic magnetic field. Figure 1 shows an intrinsic magnetosphere as deduced from observations of the terrestrial magnetosphere. The magnetosphere forms a cavity in the flowing solar wind and throughout much of this cavity the pressure is dominated by the magnetic field. The pressure that determines the size of the cavity is normal to the surface of the cavity. Outside the cavity is plasma whose pressure decreases from outside to inside across the cavity boundary. This pressure gradient exerts an inward force. It is balanced by a magnetic pressure force pushing outward as the magnetic field increases from outside to inside across the cavity boundary, or magnetopause. The relationship between this normal component of the pressure and the directed dynamic pressure in the upstream solar wind is complex and is only understood semi-empirically (e.g. Petrinec and Russell, 1997). Similarly, the magnetic field depends on a multitude of currents, not just those interior to the planet. Thus the point of pressure equilibrium or force balance can move. Since the magnetic flux crossing the surface of the planet is fixed on the time scale of most magnetospheric “events”, any variations in the magnetopause location under conditions of constant external pressure must involve a change in shape of the magnetosphere. Rapidly rotating magnetospheres with strong internal sources of plasma add an additional complexity that will be discussed below. The magnetosphere illustrated in Figure 1 is stretched in the antisolar direction. This magnetotail, as it is called, is a region in which energy can be stored, analogous to the energy that can be stored in an electrical circuit by an inductor. However, to understand the behavior of the magnetosphere one has to understand the transport of mass and magnetic flux that occur on time scales much slower than the speed of light. Thus one can often catch a magnetosphere in the act of changing, or in a metastable state, ready to change. One can add energy to this system by simply compressing it, just as one can store energy in a compressed spring. The work done, or energy stored, is the force times the distance moved normal to the surface, integrated over the magnetosphere. One can also add energy to the system by eroding the magnetic field on the dayside and 2 Me V E Ma J S U 2.2 Jovian Magnetopause Subsolar Standoff Voyager 1 & 2 Z JSM < 20 R J 10 β 1.0 J 2.0 Slope = -0.22 Beta N 1.8 Mms 10 Log (R ) [R ] 1.6 Fast Magnetosonic Mach Number 1.4 1.0 0.1 0.1 1.0 10 -2.0 -1.5 -1.0 -0.5 0 Log 10 (Psw) [nPa] Heliocentric Distance (AU) Fig. 3. Expected heliocentric variation of the fast Fig. 4. The location of the magnetopause nose plotted magnetosonic Mach number of the solar wind flow versus the solar wind dynamic pressure for Voyager 1 relative to the planets and the solar wind beta or ratio of and 2 data. The line gives the best fit to the data on a the magnetic to thermal pressure (after Russell et al., log-log scale (after Huddleston et al., 1998a). 1982). carrying it into the tail. This requires a tangential stress such as friction at the surface of the magnetosphere. This tangential stress can be a viscous interaction associated with waves on the boundary in the presence of dissipation, with particles being scattered from the flowing, shocked solar-wind plasma into the magnetosphere, or by magnetic coupling of the magnetospheric and solar wind magnetic field. This coupling is illustrated in Figure 1 above the magnetosphere and behind the depression in the shape of the magnetopause called the polar cusp. Here the magnetic field lines are bent in the direction as to slow the solar wind flow. As the solar wind slows in this region, mechanical energy is removed from the flow, and is stored in the tail lobes where the magnetic field energy increases. The transport of energy into the tail occurs through an electromagnetic Poynting flux. Magnetospheres are vast in scale but contain very little total mass. The stress applied to the magnetosphere by the solar wind must be ultimately taken up by the planet. One of the ways to transmit this stress to the ionosphere and thence through collisions to the upper atmosphere and the planet, is through currents parallel to the magnetic field as illustrated in Figure 1. These currents close on pressure gradients in the magnetosphere. Another is through the gradient in the Chapman-Ferraro currents acting on the planet’s dipole (Siscoe, 1966).
Recommended publications
  • Effects of the Interplanetary Magnetic Field Y Component on the Dayside
    Liou and Mitchell Geosci. Lett. (2019) 6:11 https://doi.org/10.1186/s40562-019-0141-3 RESEARCH LETTER Open Access Efects of the interplanetary magnetic feld y component on the dayside aurora K. Liou* and E. Mitchell Abstract A dawn–dusk asymmetry in many high-latitude ionospheric and magnetospheric phenomena, including the aurora, can be linked to the east–west (y) component of the interplanetary magnetic feld (IMF). Owing to the scarcity of observations in the Southern Hemisphere, most of the previous fndings are associated with the Northern Hemi- sphere. It has long been suspected that if the IMF By component also produces a dawn–dusk asymmetry and/or a mirror image in the Southern Hemisphere as predicted by some theories. The present study explores the efect of the IMF By component on the dayside aurora from both hemispheres by analyzing the auroral emission data from the Global UltraViolet scanning spectrograph Imager on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission spacecraft from 2002 to 2007. The data set comprises 28,774 partial images of the northern hemispheric oval and 29,742 partial images of the southern hemispheric oval, allowing for a statistical analysis. It is found that even though auroras in diferent regions of the dayside oval respond diferently to the orientation of the IMF By component, their responses are opposite between the two hemispheres. For example, at ~ 1400–1600 MLT in the Northern Hemisphere, where the so-called 1500 MLT auroral hot spots occur, peak auroral energy fux is larger for negative IMF By comparing to positive IMF By.
    [Show full text]
  • Pressure Balance at the Magnetopause: Experimental Studies
    Pressure balance at the magnetopause: Experimental studies A. V. Suvorova1,2 and A. V. Dmitriev3,2 1Center for Space and Remote Sensing Research, National Central University, Jhongli, Taiwan 2Skobeltsyn Institute of Nuclear Physics Moscow State University, Moscow, Russia 3Institute of Space Sciences, National Central University, Chung-Li, Taiwan Abstract The pressure balance at the magnetopause is formed by magnetic field and plasma in the magnetosheath, on one side, and inside the magnetosphere, on the other side. In the approach of dipole earth’s magnetic field configuration and gas-dynamics solar wind flowing around the magnetosphere, the pressure balance predicts that the magnetopause distance R depends on solar wind dynamic pressure Pd as a power low R ~ Pdα, where the exponent α=-1/6. In the real magnetosphere the magnetic filed is contributed by additional sources: Chapman-Ferraro current system, field-aligned currents, tail current, and storm-time ring current. Net contribution of those sources depends on particular magnetospheric region and varies with solar wind conditions and geomagnetic activity. As a result, the parameters of pressure balance, including power index α, depend on both the local position at the magnetopause and geomagnetic activity. In addition, the pressure balance can be affected by a non-linear transfer of the solar wind energy to the magnetosheath, especially for quasi-radial regime of the subsolar bow shock formation proper for the interplanetary magnetic field vector aligned with the solar wind plasma flow. A review of previous results The pressure balance states that the pressure of the flowing around solar wind plasma is balanced at the magnetopause by the pressure inside the magnetosphere [e.g.
    [Show full text]
  • Twisted Flux Tube Emergence Creates Solar Active Regions
    Direct evidence: twisted flux tube emergence creates solar active regions MacTaggart D.1, Prior C.2, Raphaldini B.2, Romano, P. 3, Guglielmino, S.L.3 1School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK 2Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK 3INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy The magnetic nature of the formation of solar active regions lies at the heart of understanding solar activity and, in particular, solar eruptions. A widespread model, used in many theoretical studies, simulations and the interpretation of observations1,2,3,4, is that the basic structure of an active region is created by the emergence of a large tube of pre-twisted magnetic field. Despite plausible reasons and the availability of various proxies suggesting the veracity of this model5,6,7, there has not yet been any direct observational evidence of the emergence of large twisted magnetic flux tubes. Thus, the fundamental question, “are active regions formed by large twisted flux tubes?” has remained open. In this work, we answer this question in the affirmative and provide direct evidence to support this. We do this by investigating a robust topological quantity, called magnetic winding8, in solar observations. This quantity, combined with other signatures that are currently available, provides the first direct evidence that large twisted flux tubes do emerge to create active regions. Twisted flux tubes are prominent candidates for the progenitors of solar active regions. Twist allows a flux tube to suffer less deformation in the convection zone compared to untwisted tubes, thus allowing it to survive and reach the photosphere to emerge2,9,10.
    [Show full text]
  • Analysis of Geomagnetic Storms in South Atlantic Magnetic Anomaly (SAMA)
    Analysis of geomagnetic storms in South Atlantic Magnetic Anomaly (SAMA) Júlia Maria Soja Sampaio, Elder Yokoyama, Luciana Figueiredo Prado Copyright 2019, SBGf - Sociedade Brasileira de Geofísica Moreover, Dst and AE indices may vary according to the This paper was prepared for presentation during the 16th International Congress of the geomagnetic field geometry, such as polar to intermediate Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 19-22 August 2019. latitudinal field variations. In this framework, fluctuations Contents of this paper were reviewed by the Technical Committee of the 16th in the geomagnetic field can occur under the influence of International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or the South Atlantic Magnetic Anomaly (SAMA). The SAMA storage of any part of this paper for commercial purposes without the written consent is a region of minimum geomagnetic field intensity values of the Brazilian Geophysical Society is prohibited. ____________________________________________________________________ at the Earth’s surface (Figure 1), and its dipole intensity is decreasing along the past 1000 years (Terra-Nova et. al., Abstract 2017). Geomagnetic storm is a major disturbance of Earth’s In this study we will compare the behavior of the types of magnetosphere resulted from the interaction of solar wind geomagnetic storms basis on AE and Dst indices. and the Earth’s magnetic field. This disturbance depends of the Earth magnetic field geometry, and varies in terms of intensity from the Poles to the Equator. This disturbance is quantified through geomagnetic indices, such as the Dst and the AE indices.
    [Show full text]
  • Observations of Solar Wind Penetration Into the Earth's Magnetosphere: the Plasma Mantle
    ENNIO R. SANCHEZ, CHING-I. MENG, and PATRICK T. NEWELL OBSERVATIONS OF SOLAR WIND PENETRATION INTO THE EARTH'S MAGNETOSPHERE: THE PLASMA MANTLE The large database provided by the continuous coverage of the Defense Meteorological Satellite Pro­ gram polar orbiting satellites constitutes an important source of information on particle precipitation in the ionosphere. This information can be used to monitor and map the Earth's magnetosphere (the cavity around the Earth that forms as the stream of particles and magnetic field ejected from the Sun, known as the solar wind, encounters the Earth's magnetic field) and for a large variety of statistical studies of its morphology and dynamics. The boundary between the magnetosphere and the solar wind is pre­ sumably open in some places and at some times, thus allowing the direct entry of solar-wind plasma into the magnetosphere through a boundary layer known as the plasma mantle. The preliminary results of a statistical study of the plasma-mantle precipitation in the ionosphere are presented. The first quan­ titative mapping of the ionospheric region where the plasma-mantle particles precipitate is obtained. INTRODUCTION Polar orbiting satellites are very useful platforms for studying the properties of the environment surrounding the Earth at distances well above the ionosphere. This article focuses on a description of the enormous poten­ tial of those platforms, especially when they are com­ bined with other means of measurement, such as ground-based stations and other satellites. We describe in some detail the first results of the kind of study for which the polar orbiting satellites are ideal instruments.
    [Show full text]
  • THEMIS-SOHO-Hinode - 2009 SCIENTIFIC PROPOSAL
    OBSERVING TIME PROPOSAL FORM FOR THEMIS-SOHO-Hinode - 2009 SCIENTIFIC PROPOSAL 1 General Information Principal Investigator: Brigitte Schmieder A±liation: Observatoire de Paris, LESIA Telephone: +33 1 45 07 78 17 Email address: [email protected] Co{Investigators(s): G. Aulanier, E.Pariat, J.M. Malherbe, T. Roudier, Guo Yang, Chandra R., V.Bommier, Lopez Ariste A. PIs of other instruments: E. DeLuca, A. Fludra, L. Golub, P.Heinzel, S. Gunar, P. Kotrc, N. Labrosse, Deng Y.Y., Li Hui, W. Uddin, Y. Kitai, A. Berlicki, T. Berger, Gosain S. A±liation(s): Observatoire de Paris (LESIA, LERMA), THEMIS IAC Spain, Observatoire Midi-Pyr¶enn¶ees,NRL (USA), SAO Harvard (USA), Rutherford Appleton Laboratory (UK), UIO (Norv`ege),HAO (USA), Ondrejov (Czech Rep.), University of Wales Aberystwyth, Huairou Solar Observing Station (China), Purple mountain Observatory (China), ARIES, Nainital (India), Hida Observatory (Kyoto, Japan), Bialkov (Poland) Title of Project: JOP157 Activity of magnetic features in the solar atmosphere (emergence, shear, dispersion) Specify the observation modes: MTR [X] IPM [] MSDP [X] Number of days requested: September 23 to October 10 2009 THEMIS - Observing time 2009 proposal 2 2 Proposed programme A - Scienti¯c rationale Concise scienti¯c background of the project, pertinent references; previous work plus justi¯cations for present proposal. The Scienti¯c Objectives and justi¯cation are the following: Emerging magnetic flux and reconnection Young Active Regions and new emerging magnetic flux produce MMFs associated with Eller- man Bombs (EBs). The models of emerging flux tubes assuming an Omega-shape are commonly accepted (observations of Arch Filament Systems, coronal loops).
    [Show full text]
  • Plasma and Magnetic-Field Structure of the Solar Wind at Inertial-Range Scale Sizes Discerned from Statistical Examinations of the Time-Series Measurements
    REVIEW published: 20 May 2020 doi: 10.3389/fspas.2020.00020 Plasma and Magnetic-Field Structure of the Solar Wind at Inertial-Range Scale Sizes Discerned From Statistical Examinations of the Time-Series Measurements Joseph E. Borovsky* Center for Space Plasma Physics, Space Science Institute, Boulder, CO, United States This paper reviews the properties of the magnetic and plasma structure of the solar wind Edited by: 6 Luca Sorriso-Valvo, in the inertial range of spatial scales (500–5 × 10 km), corresponding to spacecraft National Research Council, Italy timescales from 1s to a few hr. Spacecraft data sets at 1AU have been statistically Reviewed by: analyzed to determine the structure properties. The magnetic structure of the solar wind Bernard Vasquez, often has a flux-tube texture, with the magnetic flux tube walls being strong current sheets University of New Hampshire, United States and the field orientation varying strongly from tube to tube. The magnetic tubes also Yasuhito Narita, exhibit distinct plasma properties (e.g., number density, specific entropy), with variations Austrian Academy of Sciences (OAW), Austria in those properties from tube to tube. The ion composition also varies from tube to Julia E. Stawarz, tube, as does the value of the electron heat flux. When the solar wind is Alfvénic, the Imperial College London, magnetic structure of the solar wind moves outward from the Sun faster than the proton United Kingdom plasma does. In the reference frame moving outward with the structure, there are distinct *Correspondence: Joseph E. Borovsky field-aligned plasma flows within each flux tube. In the frame moving with the magnetic [email protected] structure the velocity component perpendicular to the field is approximately zero; this indicates that there is little or no evolution of the magnetic structure as it moves outward Specialty section: This article was submitted to from the Sun.
    [Show full text]
  • On Magnetic Storms and Substorms
    ILWS WORKSHOP 2006, GOA, FEBRUARY 19-24, 2006 On magnetic storms and substorms G. S. Lakhina, S. Alex, S. Mukherjee and G. Vichare Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218, India Abstract. Magnetospheric substorms and storms are indicators of geomagnetic activity. Whereas the geomagnetic index AE (auroral electrojet) is used to study substorms, it is common to characterize the magnetic storms by the Dst (disturbance storm time) index of geomagnetic activity. This talk discusses briefly the storm-substorms relationship, and highlights some of the characteristics of intense magnetic storms, including the events of 29-31 October and 20-21 November 2003. The adverse effects of these intense geomagnetic storms on telecommunication, navigation, and on spacecraft functioning will be discussed. Index Terms. Geomagnetic activity, geomagnetic storms, space weather, substorms. _____________________________________________________________________________________________________ 1. Introduction latitude magnetic fields are significantly depressed over a Magnetospheric storms and substorms are indicators of time span of one to a few hours followed by its recovery geomagnetic activity. Where as the magnetic storms are which may extend over several days (Rostoker, 1997). driven directly by solar drivers like Coronal mass ejections, solar flares, fast streams etc., the substorms, in simplest terms, are the disturbances occurring within the magnetosphere that are ultimately caused by the solar wind. The magnetic storms are characterized by the Dst (disturbance storm time) index of geomagnetic activity. The substorms, on the other hand, are characterized by geomagnetic AE (auroral electrojet) index. Magnetic reconnection plays an important role in energy transfer from solar wind to the magnetosphere. Magnetic reconnection is very effective when the interplanetary magnetic field is directed southwards leading to strong plasma injection from the tail towards the inner magnetosphere causing intense auroras at high-latitude nightside regions.
    [Show full text]
  • Simultaneous THEMIS Observations in the Near-Tail Portion of the Inner and Outer Plasma Sheet Flux Tubes at Substorm Onset V
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, A00C02, doi:10.1029/2008JA013527, 2008 Click Here for Full Article Simultaneous THEMIS observations in the near-tail portion of the inner and outer plasma sheet flux tubes at substorm onset V. A. Sergeev,1 S. V. Apatenkov,1 V. Angelopoulos,2 J. P. McFadden,3 D. Larson,3 J. W. Bonnell,3 M. Kuznetsova,4 N. Partamies,5 and F. Honary6 Received 23 June 2008; revised 13 August 2008; accepted 22 August 2008; published 19 November 2008. [1] We analyzed the measurements made by two Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes in ideal observational conditions (quiet background, near midnight, inside the substorm current wedge) during two distinct isolated substorm onsets, with probe P2 measuring the inner plasma sheet at 8 Re and P1 near the plasma sheet–lobe interface at 11–12 Re. The earliest onset-related strong perturbations were observed by P1; they include the increase of both Bz (dipolarization) and Ey (a few mV/m) as well as the simultaneous drop in total pressure, indicating the unloading process. This was also accompanied by fast inward plasma motion (up to 100 km/s, toward the neutral sheet) and fast plasma sheet thinning while the poleward auroral expansion was in progress in the conjugate ionosphere. These perturbations were followed after 6–8 min by the rapid expansion of the already heated plasma sheet. While in the adjacent lobe during this thinning phase, probe P1 continued to observe intense flux transfer toward the sheet center plane. The inner probe observed intense dipolarization and inward plasma injection but with a smaller flux transfer and starting 1–2 min after the perturbations at P1, supporting the conclusion that onset instability took place tailward of 12 Re.
    [Show full text]
  • Small-Scale Flux Transfer Events Formed in the Reconnection Exhaust Region Between Two X Lines
    Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Small-Scale Flux Transfer Events Formed in the Reconnection 10.1029/2018JA025611 Exhaust Region Between Two X Lines Key Points: K.-J. Hwang1 , D. G. Sibeck2 , J. L. Burch1 , E. Choi1 , R. C. Fear3 , B. Lavraud4 , • fl MMS observation of ion-scale ux 2 2 5 6 7 ropes in the reconnection outflow B. L. Giles , D. Gershman , C. J. Pollock , J. P. Eastwood , Y. Khotyaintsev , 8 9 10 11 12 region Philippe Escoubet ,H.Fu , S. Toledo-Redondo , R. B. Torbert , R. E. Ergun , • The initial X line is embedded in the W. R. Paterson2 , J. C. Dorelli2 , L. Avanov2,13 , C. T. Russell14 , and R. J. Strangeway14 exhaust region downstream of a second X line 1Southwest Research Institute, San Antonio, TX, USA, 2NASA Goddard Space Flight Center, Greenbelt, MD, USA, 3Physics • Flux transfer events (FTE) are formed 4 between the two X lines due to and Astronomy, University of Southampton, Southampton, UK, Institut de Recherche en Astrophysique et Planétologie, 5 6 tearing instability CNRS, UPS, CNES, Université de Toulouse, Toulouse, France, Denali Scientific, LLC, Fairbanks, AK, USA, Imperial College, London, UK, 7Swedish Institute of Space Physics, Uppsala, Sweden, 8European Space Agency, Noordwijk, Netherlands, 9School of Space and Environment, Beihang University, Beijing, China, 10European Space Agency, ESAC, Madrid, Spain, 11Space Science Center, University of New Hampshire, Durham, NH, USA, 12Laboratory for Atmospheric and Space Physics, Correspondence to: University of Colorado Boulder, Boulder, CO, USA, 13The Goddard Planetary Heliophysics Institute, Baltimore, MD, USA, K.-J. Hwang, 14 [email protected] Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA Citation: Abstract We report MMS observations of the ion-scale flux transfer events (FTEs) that may involve two Hwang, K.-J., Sibeck, D.
    [Show full text]
  • Magnetic Flux Ropes in Space Plasmas
    Magnetic Flux Ropes in Space Plasmas Mark Moldwin UCLA 2007 Heliophysics Summer School With thanks to Mark Linton at NRL Goal of Lecture • Introduce one of the most ubiquitous features in space plasmas • Describe their Origin, Evolution, Structure, and impact • Will present combination of simulations, observations, and synthesis models What is a Flux Tube? • Ideal MHD’s frozen-in flux condition • Equation of motion has the pressure gradient and Lorentz term on RHS • Magnetic force has two components - magnetic pressure term acting perpendicular to field and a tension term along field. • Can think of flux tubes as mutually repulsive rubber bands Pop Quiz • BACKGROUND: Spacecraft X observes a magnetic field change over Y units of time. • How do you know if the observed change in B is due to the relative motion of a boundary past the spacecraft or dynamics/global change/transient in the background configuration? Lesson • Must make models to understand global structure and dynamics • Must use statistics to understand global structure and dynamics • Must make multiple, simultaneous, distributed measurements to understand global structure and dynamics What are Flux Ropes, and Who Cares? • Magnetized plasmas can form structures on various scales - shocks, discontinuities, waves, flux tubes, current sheets etc. • Some are created by magnetic reconnection and can have sharp and clear boundaries • Provide evidence of dynamics AND can give rise to significant energy and momentum flow from one region to another Coronal Mass Ejections are the primary driver of major Geomagnetic storms Their structure determines their geomagnetic effectiveness Pop Quiz • Draw a cartoon model of the structure produced by magnetic reconnection in the lower corona to make a CME.
    [Show full text]
  • Solar Wind Magnetosphere Coupling
    Solar Wind Magnetosphere Coupling F. Toffoletto, Rice University Figure courtesy T. W. Hill with thanks to R. A. Wolf and T. W. Hill, Rice U. Outline • Introduction • Properties of the Solar Wind Near Earth • The Magnetosheath • The Magnetopause • Basic Physical Processes that control Solar Wind Magnetosphere Coupling – Open and Closed Magnetosphere Processes – Electrodynamic coupling – Mass, Momentum and Energy coupling – The role of the ionosphere • Current Status and Summary QuickTime™ and a YUV420 codec decompressor are needed to see this picture. Introduction • By virtue of our proximity, the Earth’s magnetosphere is the most studied and perhaps best understood magnetosphere – The system is rather complex in its structure and behavior and there are still some basic unresolved questions – Today’s lecture will focus on describing the coupling to the major driver of the magnetosphere - the solar wind, and the ionosphere – Monday’s lecture will look more at the more dynamic (and controversial) aspect of magnetospheric dynamics: storms and substorms The Solar Wind Near the Earth Solar-Wind Properties Observed Near Earth • Solar wind parameters observed by many spacecraft over period 1963-86. From Hapgood et al. (Planet. Space Sci., 39, 410, 1991). Solar Wind Observed Near Earth Values of Solar-Wind Parameters Parameter Minimum Most Maximum Probable Velocity v (km/s) 250 370 2000× Number density n (cm-3) 683 Ram pressure rv2 (nPa)* 328 Magnetic field strength B 0 6 85 (nanoteslas) IMF Bz (nanoteslas) -31 0¤ 27 * 1 nPa = 1 nanoPascal = 10-9 Newtons/m2. Indicates at least one interval with B < 0.1 nT. ¤ Mean value was 0.014 nT, with a standard deviation of 3.3 nT.
    [Show full text]