The Evolution of Self-Control

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Self-Control The evolution of self-control Evan L. MacLeana,1, Brian Harea,b, Charles L. Nunna, Elsa Addessic, Federica Amicid, Rindy C. Andersone, Filippo Aurelif,g, Joseph M. Bakerh,i, Amanda E. Baniaj, Allison M. Barnardk, Neeltje J. Boogertl, Elizabeth M. Brannonb,m, Emily E. Brayn, Joel Braya, Lauren J. N. Brentb,o, Judith M. Burkartp, Josep Calld, Jessica F. Cantlonk, Lucy G. Chekeq, Nicola S. Claytonq, Mikel M. Delgador, Louis J. DiVincentis, Kazuo Fujitat, Esther Herrmannd, Chihiro Hiramatsut, Lucia F. Jacobsr,u, Kerry E. Jordanv, Jennifer R. Laudew, Kristin L. Leimgruberx, Emily J. E. Messerl, Antonio C. de A. Mouray, Ljerka Ostojicq, Alejandra Picardz, Michael L. Platta,b,o,aa, Joshua M. Plotnikq,bb, Friederike Rangecc,dd, Simon M. Readeree, Rachna B. Reddyff, Aaron A. Sandelff, Laurie R. Santosx, Katrin Schumannd, Amanda M. Seedl, Kendra B. Sewalle, Rachael C. Shawq, Katie E. Slocombez, Yanjie Sugg, Ayaka Takimotot, Jingzhi Tana, Ruoting Taol, Carel P. van Schaikp, Zsófia Virányicc, Elisabetta Visalberghic, Jordan C. Wadew, Arii Watanabeq, Jane Widnessx, Julie K. Younghh, Thomas R. Zentallw, and Yini Zhaogg Departments of aEvolutionary Anthropology, aaNeurobiology, and mPsychology and Neuroscience, and bCenter for Cognitive Neuroscience, oDuke Institute for Brain Sciences, Duke University, Durham, NC 27708; cIstituto di Scienze e Tecnologie della Cognizione Consiglio Nazionale delle Ricerche, 00197 Rome, Italy; dDepartment of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; eDepartment of Biology, Duke University, Durham, NC 27704; fInstituto de Neuroetologia, Universidad Veracruzana, Xalapa, CP 91190, Mexico; gResearch Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom; hCenter for Interdisciplinary Brain Sciences Research and iDepartment of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305; jCenter for Animal Care Sciences, Smithsonian National Zoological Park, Washington, DC 20008; kDepartment of Brain and Cognitive Science and sDepartment of Comparative Medicine, Seneca Park Zoo, University of Rochester, Rochester, NY 14620; lDepartment of Psychology and Neuroscience, University of St. Andrews, St. Andrews KY16 9JP, Scotland; nDepartment of Psychology, University of Pennsylvania, Philadelphia, PA 19104; pAnthropological Institute and Museum, University of Zurich, 8057 Zurich, Switzerland; qDepartment of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom; rDepartment of Psychology and uHelen Wills Neuroscience Institute, University of California, Berkeley, CA 94720; tGraduate School of Letters, Kyoto University, Kyoto 606-8501, Japan; Departments of vPsychology and hhWildland Resources, Utah State University, Logan, UT 84322; wDepartment of Psychology, University of Kentucky, Lexington, KY 40506; xDepartment of Psychology, Yale University, New Haven, CT 06520; yDepartamento Engenharia e Meio Ambiente, Universidade Federal da Paraiba, 58059-900, João Pessoa, Brazil; zDepartment of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom; bbThink Elephants International, Stone Ridge, NY 12484; ccMesserli Research Institute, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; ddWolf Science Center, A-2115 Ernstbrunn, Austria; eeDepartment of Biology, McGill University, Montreal, QC, Canada H3A 1B1; ffDepartment of Anthropology, University of Michigan, Ann Arbor, MI 48109; and ggDepartment of Psychology, Peking University, Beijing 100871, China Edited by Jon H. Kaas, Vanderbilt University, Nashville, TN, and approved March 21, 2014 (received for review December 30, 2013) Cognition presents evolutionary research with one of its greatest how cognition varies across species, previous research has largely challenges. Cognitive evolution has been explained at the proxi- relied on proxies for cognition (e.g., brain size) or metaanalyses mate level by shifts in absolute and relative brain volume and at when testing hypotheses about cognitive evolution (76–92). The the ultimate level by differences in social and dietary complexity. lack of cognitive data collected with similar methods across large However, no study has integrated the experimental and phyloge- samples of species precludes meaningful species comparisons that netic approach at the scale required to rigorously test these ex- can reveal the major forces shaping cognitive evolution across planations. Instead, previous research has largely relied on various species, including humans (48, 70, 89, 93–98). measures of brain size as proxies for cognitive abilities. We ex- perimentally evaluated these major evolutionary explanations by Significance quantitatively comparing the cognitive performance of 567 indi- viduals representing 36 species on two problem-solving tasks Although scientists have identified surprising cognitive flexi- measuring self-control. Phylogenetic analysis revealed that abso- bility in animals and potentially unique features of human lute brain volume best predicted performance across species and psychology, we know less about the selective forces that favor accounted for considerably more variance than brain volume con- cognitive evolution, or the proximate biological mechanisms trolling for body mass. This result corroborates recent advances in underlying this process. We tested 36 species in two problem- evolutionary neurobiology and illustrates the cognitive consequen- solving tasks measuring self-control and evaluated the leading ces of cortical reorganization through increases in brain volume. hypotheses regarding how and why cognition evolves. Across Within primates, dietary breadth but not social group size was a species, differences in absolute (not relative) brain volume best strong predictor of species differences in self-control. Our results predicted performance on these tasks. Within primates, dietary implicate robust evolutionary relationships between dietary breadth, breadth also predicted cognitive performance, whereas social absolute brain volume, and self-control. These findings provide a sig- group size did not. These results suggest that increases in ab- nificant first step toward quantifying the primate cognitive phenome solute brain size provided the biological foundation for evo- and explaining the process of cognitive evolution. lutionary increases in self-control, and implicate species dif- ferences in feeding ecology as a potential selective pressure psychology | behavior | comparative methods | inhibitory control | favoring these skills. executive function Author contributions: E.L.M., B.H., and C.L.N. designed research; E.L.M., B.H., E.A., ince Darwin, understanding the evolution of cognition has F. Amici, R.C.A., F. Aureli, J. M. Baker, A.E.B., A.M.B., N.J.B., E.M.B., E.E.B., J.B., L.J.N.B., Sbeen widely regarded as one of the greatest challenges for J. M. Burkart, J.C., J.F.C., L.G.C., N.S.C., M.M.D., L.J.D., K.F., E.H., C.H., L.F.J., K.E.J., J.R.L., K.L.L., E.J.E.M., A.C.d.A.M., L.O., A.P., M.L.P., J.M.P., F.R., S.M.R., R.B.R., A.A.S., L.R.S., K.S., evolutionary research (1). Although researchers have identified A.M.S., K.B.S., R.C.S., K.E.S., Y.S., A.T., J.T., R.T., C.P.v.S., Z.V., E.V., J.C.W., A.W., J.W., J.K.Y., surprising cognitive flexibility in a range of species (2–40) and T.R.Z., and Y.Z. performed research; E.L.M. and C.L.N. analyzed data; and E.L.M., B.H., and potentially derived features of human psychology (41–61), we know C.L.N. wrote the paper. much less about the major forces shaping cognitive evolution (62– The authors declare no conflict of interest. 71). With the notable exception of Bitterman’s landmark studies This article is a PNAS Direct Submission. conducted several decades ago (63, 72–74), most research com- 1To whom correspondence should be addressed. E-mail: [email protected]. paring cognition across species has been limited to small taxonomic This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. samples (70, 75). With limited comparable experimental data on 1073/pnas.1323533111/-/DCSupplemental. E2140–E2148 | PNAS | Published online April 21, 2014 www.pnas.org/cgi/doi/10.1073/pnas.1323533111 Downloaded by guest on September 27, 2021 To address these challenges we measured cognitive skills for studies showing a positive correlation between a species’ typical PNAS PLUS self-control in 36 species of mammals and birds (Fig. 1 and group size and the neocortex ratio (80, 81, 85–87, 129, 142–145), Tables S1–S4) tested using the same experimental procedures, and cognitive differences between closely related species with different evaluated the leading hypotheses for the neuroanatomical under- group sizes (130, 137, 146, 147), and evidence for cognitive con- pinnings and ecological drivers of variance in animal cognition. At vergence between highly social species (26, 31, 148–150). The the proximate level, both absolute (77, 99–107) and relative brain foraging hypothesis posits that dietary complexity, indexed by field size (108–112) have been proposed as mechanisms supporting reports of dietary breadth and reliance on fruit (a spatiotemporally cognitive evolution. Evolutionary increases in brain size (both ab- distributed resource), was the primary driver of primate cognitive solute and relative) and cortical reorganization are hallmarks of the evolution (151–154). This hypothesis is supported by studies human lineage and are believed
Recommended publications
  • The Evolution of Self-Control PNAS PLUS
    The evolution of self-control PNAS PLUS Evan L. MacLeana,1, Brian Harea,b, Charles L. Nunna, Elsa Addessic, Federica Amicid, Rindy C. Andersone, Filippo Aurelif,g, Joseph M. Bakerh,i, Amanda E. Baniaj, Allison M. Barnardk, Neeltje J. Boogertl, Elizabeth M. Brannonb,m, Emily E. Brayn, Joel Braya, Lauren J. N. Brentb,o, Judith M. Burkartp, Josep Calld, Jessica F. Cantlonk, Lucy G. Chekeq, Nicola S. Claytonq, Mikel M. Delgador, Louis J. DiVincentis, Kazuo Fujitat, Esther Herrmannd, Chihiro Hiramatsut, Lucia F. Jacobsr,u, Kerry E. Jordanv, Jennifer R. Laudew, Kristin L. Leimgruberx, Emily J. E. Messerl, Antonio C. de A. Mouray, Ljerka Ostojicq, Alejandra Picardz, Michael L. Platta,b,o,aa, Joshua M. Plotnikq,bb, Friederike Rangecc,dd, Simon M. Readeree, Rachna B. Reddyff, Aaron A. Sandelff, Laurie R. Santosx, Katrin Schumannd, Amanda M. Seedl, Kendra B. Sewalle, Rachael C. Shawq, Katie E. Slocombez, Yanjie Sugg, Ayaka Takimotot, Jingzhi Tana, Ruoting Taol, Carel P. van Schaikp, Zsófia Virányicc, Elisabetta Visalberghic, Jordan C. Wadew, Arii Watanabeq, Jane Widnessx, Julie K. Younghh, Thomas R. Zentallw, and Yini Zhaogg Departments of aEvolutionary Anthropology, aaNeurobiology, and mPsychology and Neuroscience, and bCenter for Cognitive Neuroscience, oDuke Institute for Brain Sciences, Duke University, Durham, NC 27708; cIstituto di Scienze e Tecnologie della Cognizione Consiglio Nazionale delle Ricerche, 00197 Rome, Italy; dDepartment of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, D-04103
    [Show full text]
  • The Evolution of Self-Control Evan L
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2014 The evolution of self-control Evan L. MacLean Duke University, [email protected] Brian Hare Duke University Charles L. Nunn Duke University Elsa Addessi Istituto di Scienze e Tecnologie della Cognizione Consiglio Nazionale delle Ricerche Federica Amici Max Planck Institute for Evolutionary Anthropology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons MacLean, Evan L.; Hare, Brian; Nunn, Charles L.; Addessi, Elsa; Amici, Federica; Anderson, Rindy C.; Aureli, Filippo; Baker, Joseph M.; Bania, Amanda E.; Barnard, Allison M.; Boogert, Neeltje J.; Brannon, Elizabeth M.; Bray, Emily E.; Bray, Joel; Brent, Lauren J. N.; Burkart, Judith M.; Call, Josep; Cantlon, Jessica F.; Cheke, Lucy G.; Clayton, Nicola S.; Delgado, Mikel M.; DiVindenti, Louis J.; Fujita, Kazuo; Herrmann, Esther; Hiramatsu, Chihiro; Jacobs, Lucia F.; Jordan, Kerry E.; Laude, Jennifer R.; Leimgruber, Kristin L.; Messer, Emily J. E.; de A. Moura, Antonio C.; Ostojic, Ljerka; Picard, Alejandra; Platt, Michael L.; Plotnik, Joshua M.; Range, Friederike; Reader, Simon M.; Reddy, Rachna B.; Sandel, Aaron A.; Santos, Laurie R.; Schumann, Katrin; Seed, Amanda M.; Sewall, Kendra B.; Shaw, Rachael C.; Slocombre, Katie E.; Su, Yanjie; Takimoto, Ayaka; Tan, Jingzhi; Tao, Ruoting; van Schaik, Carel P.; Viranyi, Zsofia; Visalberghi, Elisabetta; Wade, Jordan C.; Watanabe, Arii; Widness, Janes; Young, Julie K.; Zentall, Thomas R.; and Zhao, Yini, "The ve olution of self-control" (2014). USDA National Wildlife Research Center - Staff Publications.
    [Show full text]
  • The Cognitive Bases of Human Tool Use
    BEHAVIORAL AND BRAIN SCIENCES (2012) 35, 203–262 doi:10.1017/S0140525X11001452 The cognitive bases of human tool use Krist Vaesen Philosophy & Ethics, School of Innovation Sciences, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands [email protected] http://home.ieis.tue.nl/kvaesen Abstract: This article has two goals. The first is to assess, in the face of accruing reports on the ingenuity of great ape tool use, whether and in what sense human tool use still evidences unique, higher cognitive ability. To that effect, I offer a systematic comparison between humans and nonhuman primates with respect to nine cognitive capacities deemed crucial to tool use: enhanced hand-eye coordination, body schema plasticity, causal reasoning, function representation, executive control, social learning, teaching, social intelligence, and language. Since striking differences between humans and great apes stand firm in eight out of nine of these domains, I conclude that human tool use still marks a major cognitive discontinuity between us and our closest relatives. As a second goal of the paper, I address the evolution of human technologies. In particular, I show how the cognitive traits reviewed help to explain why technological accumulation evolved so markedly in humans, and so modestly in apes. Keywords: cognition; evolution; great apes; technology; tool use; cumulative culture 1. Introduction detailed and balanced overview), I conclude that human tool use still marks a major cognitive discontinuity Ever since Jane Goodall’s observations of ant-dipping chim- between us and our closest relatives; and relatedly, that panzees some 50 years ago, the idea that human tool use evi- no individual cognitive trait can be singled out as the key dences “humanique” cognitive ability has lost popularity.
    [Show full text]
  • On the Origins of Physical Cognition in Corvids Jacobs
    On the origins of physical cognition in corvids Jacobs, Ivo 2017 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Jacobs, I. (2017). On the origins of physical cognition in corvids. (167 ed.). Lund University Cognitive Studies. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 IVO JACOBS On theOn origins physical of cognition in corvids On the origins of physical cognition in corvids Corvids, the bird family that includes crows and ravens, have remarkable cog- nitive abilities. This thesis investigates what they understand about the physical IVO JACOBS world by asking how their physical cognition works, how it develops, what it COGNITIVE SCIENCE | LUND UNIVERSITY is for, and how it evolved.
    [Show full text]
  • Convergent Evolution of Cognition in Corvids, Apes and Other Animals
    OUP UNCORRECTED PROOF – FIRST-PROOF, 10/18/11, NEWGEN CHAPTER Convergent Evolution of Cognition 5 in Corvids, Apes and Other Animals Jayden O. van Horik, Nicola S. Clayton, and Nathan J. Emery Abstract Over the past 30 years, a cognitive renaissance has produced startling revelations about how species perceive their physical and social worlds. Once considered mere automata by Descartes, recent research supports claims that many animals possess advanced cognitive capacities (Shettleworth, 2010). Moreover, advanced cognition appears to have arisen across numerous species, many of which are distantly related, but which share a number of traits, such as large relative brain size, complex sociality and behavioral fl exibility. Is the evolution of advanced cognition the result of a series of adaptive specializations driven by the shared selection pressures that species face in their environments? With our ex- panding awareness of cognitive processes across species, attributes such as causal reasoning, mental time travel or mental attribution, once thought unique to humans, invite careful reconsideration of their evolutionary origins. Key Words: behavioral fl exibility, convergent evolution, relative brain size, sociality, tool use Introduction can be shared among distantly related species that Our understanding of the convergent evolution of face similar socio-ecological challenges. As a result, cognition hinges on comparative studies among analogous adaptations may evolve independently phylogenetically distinct species. Th is is not to say among distantly related organisms (Keeton & that comparative cognition is solely restricted to Gould, 1986). Any similarities in traits (i.e., cog- studies of distantly related species; comparisons nitive abilities) can then be attributed to shared between closely related species, such as humans and environmental selection pressures rather than to other primates, especially chimpanzees, also reveal characteristics present in a common ancestor (Ridley, compelling insights into the divergent processes of 1993).
    [Show full text]
  • Predicting Cognitive Capacity from Natural History: Examples from Four Species of Corvids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Behavior and Biological Sciences Papers in the Biological Sciences 1996 Predicting Cognitive Capacity from Natural History: Examples from Four Species of Corvids Russell P. Balda Northern Arizona University,, [email protected] Alan Kamil University of Nebraska - Lincoln, [email protected] Peter A. Bednekoff University of British Columbia Follow this and additional works at: https://digitalcommons.unl.edu/bioscibehavior Part of the Behavior and Ethology Commons Balda, Russell P.; Kamil, Alan; and Bednekoff, Peter A., "Predicting Cognitive Capacity from Natural History: Examples from Four Species of Corvids" (1996). Papers in Behavior and Biological Sciences. 15. https://digitalcommons.unl.edu/bioscibehavior/15 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Behavior and Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Current Ornithology, Volume 13, edited by V. Nolan Jr. and E. D. Ketterson. Plenum Press, New York, 1996, pp. 33–66. Copyright © 1996 Plenum Press, New York. Used by permission. Predicting Cognitive Capacity from Natural History: Examples from Four Species of Corvids Russell P. Balda Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011 Alan C. Kamil School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska 68588 Peter A. Bednekoff Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011 (Present address — Institute of Applied Mathematics and Centre for Biodiversity Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 122) 1.
    [Show full text]
  • The Cognition of `Nuisance' Species
    SPECIAL ISSUE: COGNITIVE ECOLOGY Animal Behaviour xxx (2018) 1e11 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Special Issue: Cognitive Ecology The cognition of ‘nuisance’ species * Lisa P. Barrett a, b, 1, Lauren Stanton a, b, 1, Sarah Benson-Amram a, b, a Department of Zoology and Physiology, University of Wyoming, Laramie, WY, U.S.A. b Program in Ecology, University of Wyoming, Laramie, WY, U.S.A. article info Recent work in animal cognition has focused on how animals respond to new or changing environments. Article history: Although many species are currently in decline, other species are thriving in human-altered habitats by Received 21 December 2017 taking advantage of new resources and opportunities associated with anthropogenic disturbance. Yet, as Initial acceptance 5 March 2018 a result, these same species are often in conflict with humans and treated as a nuisance. Therefore, Final acceptance 10 April 2018 cognitive abilities such as innovation and behavioural flexibility may, paradoxically, lead to the demise of Available online xxx especially adaptive individuals. Here we review what is known about the cognition of ‘nuisance’ species MS. number: SI-17-01000 and ‘problem’ individuals to shed light on the struggles of coexistence with humans along disturbed landscapes. We take an in-depth look at several cognitive abilities that are hypothesized to be of critical Keywords: importance for species that are successfully utilizing human-altered environments, including neophilia, fl behavioural exibility boldness, categorization, innovation, memory, learning, social learning and behavioural flexibility, and comparative cognition examine evidence that these cognitive abilities may also bring animals into conflict with humans.
    [Show full text]
  • Evolution of Primate Cognition
    COGNITIVE SCIENCE Vol 24 (3) 2000, pp. 543–570 ISSN 0364-0213 Copyright © 2000 Cognitive Science Society, Inc. All rights of reproduction in any form reserved. Evolution of Primate Cognition RICHARD W. BYRNE University of St. Andrews Comparative analysis of the behavior of modern primates, in conjunction with an accurate phylogenetic tree of relatedness, has the power to chart the early history of human cognitive evolution. Adaptive cognitive changes along this path occurred, it is believed, in response to various forms of complexity; to some extent, theories that relate particular challenges to cognitive adaptations can also be tested against comparative data on pri- mate ecology and behavior. This paper explains the procedures by which data are employed, and uses the best currently available evidence to derive a proposal for some of the stages through which human cognition evolved, before the last common ancestor with a nonhuman, and the reasons that cognitive adaptations were favored in primate evolution. I. INTRODUCTION The excitement for psychologists of investigating the cognition of primates derives from what it may reveal about the evolution of cognition in one specific primate, Homo sapiens. Primate data gives us direct insight into the evolution of cognitive capacities that arose before the last common ancestor we share with our closest relatives, the two species of chimpanzee; for more recent evolution, archaeology and paleontology take over, but interpretation of their data can also be informed by primate comparisons. Humans are highly specialized for intelligence, to judge by the morphological correlate of cognitive function, the brain. The human brain is about six times as large as that of a typical mammal of human body size (Jerison, 1973).
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2021 The Authors, some rights reserved; The evolution of mammalian brain size exclusive licensee J. B. Smaers1,2*, R. S. Rothman3, D. R. Hudson3, A. M. Balanoff4,5, B. Beatty6,7, D. K. N. Dechmann8,9, American Association 10 11,12,13 14 6,15,16,17 18 19 for the Advancement D. de Vries , J. C. Dunn , J. G. Fleagle , C. C. Gilbert , A. Goswami , A. N. Iwaniuk , of Science. No claim to 14,20 12 21,22,23,24 25 2,3,26 W. L. Jungers , M. Kerney , D. T. Ksepka , P. R. Manger , C. S. Mongle , original U.S. Government 1 23,27 28 29 8,9 F. J. Rohlf , N. A. Smith , C. Soligo , V. Weisbecker , K. Safi Works. Distributed under a Creative Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental Commons Attribution role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selec- NonCommercial tion on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling License 4.0 (CC BY-NC). relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mam- malian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths.
    [Show full text]
  • Animal Consciousness
    Animal consciousness Pierre Le Neindre, Emilie Bernard, Alain Boissy, Xavier Boivin, Ludovic Calandreau, Nicolas Delon, Bertrand Deputte, Sonia Desmoulin-canselier, Muriel Dunier-Thomann, Nathan Faivre, et al. To cite this version: Pierre Le Neindre, Emilie Bernard, Alain Boissy, Xavier Boivin, Ludovic Calandreau, et al.. Animal consciousness. [Other] European Food Safety Authority. 2017, 165 p. hal-01594939 HAL Id: hal-01594939 https://hal.archives-ouvertes.fr/hal-01594939 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License EXTERNAL SCIENTIFIC REPORT APPROVED: 29 November 2016 doi:10.2903/sp.efsa.2017.EN-1196 Animal Consciousness Pierre Le Neindre (1), Emilie Bernard (2), Alain Boissy (3), Xavier Boivin (3), Ludovic Calandreau (4), Nicolas Delon (5), Bertrand Deputte (6), Sonia Desmoulin-Canselier (7), Muriel Dunier (8), Nathan Faivre (9), Martin Giurfa (10), Jean-Luc Guichet (11), Léa Lansade (4), Raphaël Larrère (12), Pierre
    [Show full text]