Annelida, Polychaeta, Chaetopteridae

Total Page:16

File Type:pdf, Size:1020Kb

Annelida, Polychaeta, Chaetopteridae Zoological Journal of the Linnean Society, 2008, 152, 201–225. With 12 figures Description of a new species of Mesochaetopterus (Annelida, Polychaeta, Chaetopteridae), with redescription of Mesochaetopterus xerecus and an approach to the phylogeny of the family Downloaded from https://academic.oup.com/zoolinnean/article/152/2/201/2630849 by guest on 25 March 2021 DANIEL MARTIN1*, JOÃO GIL1, JOSEP CARRERAS-CARBONELL1 and MICHEL BHAUD2 1Centre d’Estudis Avançats de Blanes (CSIC), Carrer d’accés a la Cala Sant Francesc 14, 17300 Blanes (Girona), Catalunya, Spain 2Observatoire Océanologique de Banyuls, Université P. et M. Curie – CNRS, BP 44, 66650 Banyuls-sur-Mer, Cedex, France Received 28 March 2006; accepted for publication 21 May 2007 Mesochaetopterus rogeri sp. nov., a new large chaetopterid polychaete from the Mediterranean Sea, is described. The analyses of partial sequences from the nuclear 18S rRNA (643 bp) and the mitochondrial cytochrome oxidase I (577 bp) genes of representative individuals of all known chaetopterid genera indicated the initial assignment of the new species into Mesochaetopterus. These analyses also supported the monophyly of the family and revealed two well-supported clades: Chaetopterus/Mesochaetopterus and Spiochaetopterus/Phyllochaetopterus. Mesocha- etopterus rogeri sp. nov. is close to Mesochaetopterus xerecus, which is redescribed here from newly collected material. Mesochaetopterus rogeri sp. nov. was characterized as follows: (1) two long tentacles with dorsal transversal black bands of alternating widths (sometimes with two additional longitudinal light-brown bands); (2) region A with nine chaetigers (up to 12), with 13–19 modified chaetae in the fourth chaetiger; (3) region B with three flat segments, with accessory feeding organs in the second and third segments; (4) sandy straight tubes, 2.5-m long or more, vertically embedded in the sand. In the Bay of Blanes, M. rogeri sp. nov. occurs between 6- and 9-m deep (but also up to 30-m deep), in a patchy distribution (< 1 individual m-2), with maximum densities in April/June (likely to be the result of recruitment events), and minimum densities in September/November (likely to be a behavioural response to increasing sediment dynamics). Although it was originally thought that M. rogeri sp. nov. could be an introduced species, we argue that it is probably a native of the Mediterranean that has been overlooked by scientists up to now. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 152, 201–225. ADDITIONAL KEYWORDS: 18S rRNA – behaviour – Chaetopterus – cytochrome oxidase I – distribution – genetics – Mediterranean Sea – Phyllochaetopterus – Spiochaetopterus. INTRODUCTION data on their presence were these incidental reports, sometimes accompanied by pictures of the living During recent years, scuba divers have occasionally specimens ‘in situ’ (Fig. 1A, B). The oldest known ref- reported the presence of ‘strange’ large worms, with a erence, a worm from Almería, on the south-western pair of long palps and a characteristic striped ‘black Iberian Penninsula, appeared in an encyclopaedia in and white’ colour pattern, in shallow sandy bottoms of 1979 labelled as ‘Spionidae’ (George & George, 1979: the Iberian Mediterranean shoreline, mainly along fig. 8, 353). the Catalan littoral. Up to now, the only available Routine monitoring of the brine discharge from the Blanes desalination plant in the shallow sandy bottoms facing the beach at Punta del Tordera *Corresponding author. E-mail: [email protected] (Catalan coast, north-western Mediterranean) © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 152, 201–225 201 202 D. MARTIN ET AL. Downloaded from https://academic.oup.com/zoolinnean/article/152/2/201/2630849 by guest on 25 March 2021 © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 152, 201–225 NEW MESOCHAETOPTERUS FROM THE MEDITERRANEAN 203 Figure 1. Mesochaetopterus rogeri sp. nov. A, B, Two typical positions of the protruded tentacles in living worms (underwater pictures taken by L. Dantart). C, Regions A, B, and C (preserved worm, morphotype with reddish bands). D, Ventral view of region A (preserved worm, morphotype without reddish bands). E, Detail of the anterior end (dorsal view). F, Detail of the anterior end (dorsal view, tentacles removed). Ar, region A; b1–b3, segments of region B; d1–d3, dorsal rami of region-B segments; v1–v3, ventral rami of region-B segments; Cr, region C. Scale bars are in cm. ᭣ revealed a stable population, allowing the collection of shoreline of the Mediterranean coast of the Iberian enough appropriate material. Peninsula (Fig. 2), from October 2001 to September In this study, we used a partial nuclear gene 2004. As a first collection method, we used a PVC Downloaded from https://academic.oup.com/zoolinnean/article/152/2/201/2630849 by guest on 25 March 2021 (18S rRNA) and a mitochondrial gene, cytochrome plate introduced obliquely into the sediment to cut oxidase I (COI), aiming to confirm the assignment of across the worm’s tube, trying to prevent the worms the Catalan specimens into the correct genus within from withdrawing deeper inside the tube. The body in the Chaetopteridae (Annelida, Polychaeta), as well Mesochaetopterus is divided into three differentiated as to assess the phylogenetic relationships within parts: the nine-to-ten anteriormost segments, the the four known genera of the family: Chaetopterus, two-to-three mid-body segments, and an undefined Mesochaetopterus, Spiochaetopterus, and Phyllocha- (but usually very numerous) number of posterior seg- etopterus. ments; these form the regions A, B, and C, respec- The Catalan specimens were revealed to be an tively. Using the PVC plate, the quick reaction of unknown species of Mesochaetopterus. Thus, they are the worm only allowed for the collection of anterior described as a new species, Mesochaetopterus rogeri fragments containing region A and, at most, part of sp. nov, in spite of a lack of data on the morpho- the region B (as well as part of the tube). Successive logy and chaetal arrangement of the posteriormost attempts using either irritating or anaesthetizing segments (because of the logistic difficulties of ex- compounds, and sucking or impelling pumps of tracting complete worms). They were compared with different types, did not result in collection of all known species of the genus, particularly with either entire specimens or larger fragments. The Mesochaetopterus xerecus Petersen & Fanta, 1969, last attempt, carried out in September 2004, involved which closely resembles the new species both in size the archaeological research vessel ‘Tethys’, from the and in having striped palps (Petersen & Fanta, Centre d’Arqueologia Submarina of the Museu 1969). In the case of M. xerecus, however, all material d’Arqueologia de Catalunya. The vessel is equipped was lost (including the types). For this study, new with powerful suction devices, which allowed us to material collected at Paranaguá Bay (Paraná, Brazil) excavate up to 2.5-m deep into the sediment. was used both in genetic and morphologic analyses. However, the tube extended deeper into the sediment, In addition, we provide a brief diagnosis of the soft and only a large fragment of a worm (with ten seg- body of the species, together with a full description ments of region C, in addition to regions A and B) was and pictures of its chaetal arrangement, which was collected after several hours of underwater working. poorly described and illustrated in the original Being the most complete available fragment, this description. specimen was selected as the holotype of the new The seasonal trends of the population in Punta species. del Tordera, habitat preferences, and behaviour of The newly collected specimens of M. xerecus were M. rogeri sp. nov., are also provided, and are com- found in the Ilha do Mel, Paranaguá Bay (Paraná, pared with the known traits of the other known Brazil). The worms were collected by researchers large-sized species of Mesochaetopterus, and are from the Centro de Estudos do Mar (Pontal do Sul, then discussed in an attempt to explain the pres- Brazil) from intertidal soft sediments at low tide ence of such a large unknown worm in the widely using a shovel. investigated shallow waters of the Mediterranean Sea. GENETIC ANALYSIS, DNA EXTRACTION AND SEQUENCING MATERIAL AND METHODS For the genetic analyses, all newly collected speci- SAMPLING PROCEDURE mens were preserved directly in 100% ethanol. Total All observations on living worms and sampling were genomic DNA was extracted from individuals using performed by scuba diving. Most sampling attempts the QIAamp DNA Minikit (Qiagen). A fragment of were carried out off Punta del Tordera on the Catalan 18S rRNA nuclear gene was amplified by polyme- © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 152, 201–225 204 D. MARTIN ET AL. Downloaded from https://academic.oup.com/zoolinnean/article/152/2/201/2630849 by guest on 25 March 2021 Figure 2. Mesochaetopterus rogeri sp. nov., location of reports. A, Iberian Peninsula. B, Catalan coast. C, Blanes litoral. Key: , seasonal monitoring at the Punta del Tordera; 1, Almería; 2, Alicante; 3, Valencia. rase chain reaction (PCR) using newly designed pri- (Genotek), and 20–30 ng genomic DNA. PCR was mers (Chae18SF, 5′-AAACGGCTACCACATCCAAG- performed in a Primus 96 plus (MWG Biotech). PCR 3′; Chae18SR, 5′-AACTAAGAACGGCCATGCAC-3′). products were cleaned with the QIAquick PCR Puri- Cycle parameters consisted of first a denaturing step fication Kit (Qiagen) or ethanol precipitation, and at 94 °C for 2 min, followed by 35 cycles of 1 min at then sequenced with the BigDye Sequencing Kit ABI 94 °C, 1 min at 55 °C, and 1 min at 72 °C, and then a Prism. PCR products were purified by ethanol pre- final extension at 72 °C for 7 min. The mitochondrial cipitation and analysed on an ABI 3700 automatic COI gene was amplified using primers HCO2198 sequencer (Applied Biosystems) from the Serveis (5′-TAAACTTCAGGGTGACCAAAAAATCA-3′) and Cientifico-Tècnics of the Universitat de Barcelona.
Recommended publications
  • Supplementary Tales
    Metabarcoding reveals different zooplankton communities in northern and southern areas of the North Sea Jan Niklas Macher, Berry B. van der Hoorn, Katja T. C. A. Peijnenburg, Lodewijk van Walraven, Willem Renema Supplementary tables 1-5 Table S1: Sampling stations and recorded abiotic variables recorded during the NICO 10 expedition from the Dutch Coast to the Shetland Islands Sampling site name Coordinates (°N, °E) Mean remperature (°C) Mean salinity (PSU) Depth (m) S74 59.416510, 0.499900 8.2 35.1 134 S37 58.1855556, 0.5016667 8.7 35.1 89 S93 57.36046, 0.57784 7.8 34.8 84 S22 56.5866667, 0.6905556 8.3 34.9 220 S109 56.06489, 1.59652 8.7 35 79 S130 55.62157, 2.38651 7.8 34.8 73 S156 54.88581, 3.69192 8.3 34.6 41 S176 54.41489, 4.04154 9.6 34.6 43 S203 53.76851, 4.76715 11.8 34.5 34 Table S2: Species list and read number per sampling site Class Order Family Genus Species S22 S37 S74 S93 S109 S130 S156 S176 S203 Copepoda Calanoida Acartiidae Acartia Acartia clausi 0 0 0 72 0 170 15 630 3995 Copepoda Calanoida Acartiidae Acartia Acartia tonsa 0 0 0 0 0 0 0 0 23 Hydrozoa Trachymedusae Rhopalonematidae Aglantha Aglantha digitale 0 0 0 0 1870 117 420 629 0 Actinopterygii Trachiniformes Ammodytidae Ammodytes Ammodytes marinus 0 0 0 0 0 263 0 35 0 Copepoda Harpacticoida Miraciidae Amphiascopsis Amphiascopsis cinctus 344 0 0 992 2477 2500 9574 8947 0 Ophiuroidea Amphilepidida Amphiuridae Amphiura Amphiura filiformis 0 0 0 0 219 0 0 1470 63233 Copepoda Calanoida Pontellidae Anomalocera Anomalocera patersoni 0 0 586 0 0 0 0 0 0 Bivalvia Venerida
    [Show full text]
  • New Insights in the Biogeographical Distributions of Two Spionidae (Annelida) from the NE Atlantic and Mediterranean French Coasts
    Zoosymposia 19: 173–184 (2020) ISSN 1178-9905 (print edition) https://www.mapress.com/j/zs ZOOSYMPOSIA Copyright © 2020 · Magnolia Press ISSN 1178-9913 (online edition) https://doi.org/10.11646/zoosymposia.19.1.18 http://zoobank.org/urn:lsid:zoobank.org:pub:7CF4D06E-47F9-48C5-9703-5CECFD9C1491 New insights in the biogeographical distributions of two Spionidae (Annelida) from the NE Atlantic and Mediterranean French coasts JÉRÔME JOURDE1,5*, NICOLAS LAVESQUE2,7, CÉLINE LABRUNE3,10, JEAN-MICHEL AMOUR- OUX3,12, PAULO BONIFÁCIO3,11, SUZIE HUMBERT2,8, BASTIEN LAMARQUE2,9, PIERRE-GUY SAURIAU1,6 & KARIN MEIßNER4,13 1La Rochelle Université, CNRS, UMR 7266 LIENSs, 2 rue Olympe de Gouges 17000 La Rochelle, France 2Université de Bordeaux, CNRS, UMR 5805 EPOC, Station Marine d’Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon, France 3Sorbonne Université, CNRS, UMR LECOB 8222, Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France 4Senckenberg Forschungsinstitute und Naturmuseen (SFN), Deutsches Zentrum für Marine Biodiversitätsforschung, Biozentrum Grindel, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany 5 [email protected], https://orcid.org/0000-0001-7260-8419 6 [email protected], https://orcid.org/0000-0002-5360-8728 7 [email protected], https://orcid.org/0000-0001-5701-2393 8 [email protected], https://orcid.org/0000-0003-4254-3567 9 [email protected], https://orcid.org/0000-0002-1418-9049 10 [email protected],
    [Show full text]
  • Boccardia Proboscidea Class: Polychaeta, Sedentaria, Canalipalpata
    Phylum: Annelida Boccardia proboscidea Class: Polychaeta, Sedentaria, Canalipalpata Order: Spionida, Spioniformia A burrowing spionid worm Family: Spionidae Taxonomy: Boccardia proboscidea’s senior Trunk: subjective synonym, Polydora californica Posterior: Pygidium is a round, flaring (Treadwell, 1914) and an un-typified name, disc with four unequal lobes where dorsal Spio californica (Fewkes, 1889) were both lobes are smaller (Fig. 4) (Hartman 1969). suppressed in 2012 by the International Parapodia: Biramous after first setiger. Commission on Zoological Nomenclature Podia on the first setiger are not lobed, small (ICZN, case 3520). The widely cited and and inconspicuous. The second setiger's used name, Boccardia proboscidea parapodial lobes become twice as large as (Hartman, 1940) was conserved (ICZN the first's, and continue to worm posterior. 2012). Setae (chaetae): All setae are simple and in- clude bunches of short, capillary spines to se- Description tiger six (except for modified setiger five) Size: Specimens up to 30–35 mm in length (Figs. 5a, b). A transverse row of and 1.5 mm in width, where length extends approximately eight neuropodial uncini with age (Hartman 1940). The illustrated (hooded hooks) with bifid (two-pronged) tips specimen has approximately 130 segments begins on setiger seven and continues to (Fig. 1). posterior end (Fig. 5e), with bunches of Color: Yellow-orange with red branchiae capillary setae below them (until setiger 11). and dusky areas around prostomium and Notosetae of setiger five are heavy, dark and parapodia (Hartman 1969). Sato-Okoshi arranged vertically in two rows of five with and Okoshi (1997) report black pigment fol- pairs of long, falcate spines (Fig.
    [Show full text]
  • Annelida, Polychaeta, Chaetopteridae), with Re- Chaetopteridae), with Re-Description of M
    2 We would like to thank the Zoological Journal of the Linnean Society, The Linnean Society of London and Blackwell Publishing for accepting our manuscript entitled “Description of a Description of a new species of Mesochaetopterus (Annelida, Polychaeta, new species of Mesochaetopterus (Annelida, Polychaeta, Chaetopteridae), with re- Chaetopteridae), with re-description of M. xerecus and an approach to the description of M. xerecus and an approach to the phylogeny of the family”, which has phylogeny of the family been published in the Journal issue Zool. J. Linnean Soc. 2008, 152: 201–225. D. MARTIN1,* J. GIL1, J. CARRERAS-CARBONELL1 and M. BHAUD2 By posting this version of the manuscript (i.e. pre-printed), we agree not to sell or reproduce the Article or any part of it for commercial purposes (i.e. for monetary gain on your own 1Centre d'Estudis Avançats de Blanes (CSIC), Carrer d’accés a la Cala Sant Francesc 14, account or on that of a third party, or for indirect financial gain by a commercial entity), and 17300 Blanes (Girona), Catalunya (Spain). we expect the same from the users. 2 Observatoire Océanologique de Banyuls, Université P. et M. Curie - CNRS, BP 44, 66650 As soon as possible, we will add a link to the published version of the Article at the editors Banyuls-sur-Mer, Cedex, France. web site. * Correspondence author: Daniel Martin. Centre d'Estudis Avançats de Blanes (CSIC), Carrer Daniel Martin, Joao Gil, Michel Bhaud & Josep Carreras-Carbonell d’accés a la Cala Sant Francesc 14, 17300 Blanes (Girona), Catalunya (Spain). Tel. +34972336101; Fax: +34 972337806; E-mail: [email protected].
    [Show full text]
  • Mitochondrial Genomes of Two Polydora
    www.nature.com/scientificreports OPEN Mitochondrial genomes of two Polydora (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved Lingtong Ye1*, Tuo Yao1, Jie Lu1, Jingzhe Jiang1 & Changming Bai2 Contrary to the early evidence, which indicated that the mitochondrial architecture in one of the two major annelida clades, Sedentaria, is relatively conserved, a handful of relatively recent studies found evidence that some species exhibit elevated rates of mitochondrial architecture evolution. We sequenced complete mitogenomes belonging to two congeneric shell-boring Spionidae species that cause considerable economic losses in the commercial marine mollusk aquaculture: Polydora brevipalpa and Polydora websteri. The two mitogenomes exhibited very similar architecture. In comparison to other sedentarians, they exhibited some standard features, including all genes encoded on the same strand, uncommon but not unique duplicated trnM gene, as well as a number of unique features. Their comparatively large size (17,673 bp) can be attributed to four non-coding regions larger than 500 bp. We identifed an unusually large (putative) overlap of 14 bases between nad2 and cox1 genes in both species. Importantly, the two species exhibited completely rearranged gene orders in comparison to all other available mitogenomes. Along with Serpulidae and Sabellidae, Polydora is the third identifed sedentarian lineage that exhibits disproportionally elevated rates of mitogenomic architecture rearrangements. Selection analyses indicate that these three lineages also exhibited relaxed purifying selection pressures. Abbreviations NCR Non-coding region PCG Protein-coding gene Metazoan mitochondrial genomes (mitogenomes) usually encode the set of 37 genes, comprising 2 rRNAs, 22 tRNAs, and 13 proteins, encoded on both genomic strands.
    [Show full text]
  • In the Atlantic-Mediterranean Biogeographic Area
    SPECIES OF SPIOCHAETOPTERUS (POLYCHAETA, CHAETOPTERIDAE) IN THE ATLANTIC-MEDITERRANEAN BIOGEOGRAPHIC AREA MICHEL R. BHAUD BHAUD, MICHEL R. 1998 08 28. Species of Spiochaetopterus (Polychaeta, Chaetopteridae) in the Atlantic- SARSIA Mediterranean biogeographic area. – Sarsia 83:243-263. Bergen. ISSN 0036-4827. Five species of the genus Spiochaetopterus: S. typicus SARS, S. bergensis GITAY, S. costarum (CLAPARÈDE), S. oculatus WEBSTER, and S. solitarius (RIOJA) have been compared. These species can be divided into two groups: group A, with boreal biogeographic affinity, consisting of S. typicus and S. bergensis; group B, with temperate biogeographic affinity, consisting of S. costarum, S. solitarius and S. oculatus. The two groups differ in the shape of the specialized setae of segment A4, the number of segments in region B, and the structure of the tube. Representatives of group A have a middle region of two seg- ments, modified setae of segment A4 are distally rhomboid and the tubes are without articulations. Representatives of group B have a middle region of many, always more than 2 segments; modified setae of A4 are distally cordate, and the tubes are with articulations. In each geographic unit of the Atlantic-Mediterranean area, the species are divided into two groups of different sizes. The usefulness of such systematic characters as the number of segments in region B, ornamentation of the tubes and relative size of the pro- and peristomium is reexamined. New characters include the detailed morphol- ogy of the A4 setae, location of the secretory part of the ventral shield, and the structure of the secretory pores. Two diagnostic keys to species, one based on the tubes and the other on the A4 setae, are included.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • (Polychaeta) of the Gulf
    STUDIES ON THE FAUNA OF CURAÇAO AND OTHER CARIBBEAN ISLANDS: No. 129. Spionidae (Polychaeta) of the Gulf of Mexico and the Caribbean Sea by Nancy Marie Foster (Dunbarton College, Washington, D.C.) page figures INTRODUCTION History 3 Acknowledgements 5 Genera] Taxonomic Characters of the Spionidae (PI. 1-2) . 5 Development 11 Ecology and Distribution 12 Methods and Materials 14 Family Diagnosis 14 Key to Spionid Genera of the Gulf of Mexico and Caribbean Sea 15 TAXONOMIC SECTION Polydora 18 1—12 — commensalis Andrews 20 1-12 — ligni Webster 22 13-21 — plena Berkeley & Berkeley 24 22-29 — websteri Hartman 26 30-36 Pygospio 28 — elegans Claparfede 29 37-47 Spio 32 — 35 pettiboneae sp. n 48-56 Scolecolepides 37 — viridis (Verrill) 37 57-65 Spiophanes 40 — bombyx (Claparede) 40 66-75 — wigleyi Pettibone 43 76-85 Malacoceros 47 — vanderhorsti (Augener) 48 86-92 — indicus (Fauvel) 50 93-99 — glutaeus (Ehlers) 53 100-111 — in 57 112-117 flatus sp. n 2 Scolelepis j 58 — squamata (Miilleri 59 118-131 — texana sp. n 63 132-142 Aonides 65 — mayaguezensis Foster 66 143-154 Laonice 69 — cirrata (Sars, 69 155-160 Dispio 72 — uncinata Hartman 73 161-174 Prionospio 79 — steenstrupi Malmgren 84 175-185 — cristata sp. n 87 186-199 — heterobranchia Moore 89 199-212 Apoprionospio 93 — pygmaea (Hartman; 94 213-225 — dayi Foster 97 226-236 Paraprionospio 100 — pinnata (Ehlers) 102 237-261 Aquilaspio 105 Minuspio 106 — cirri fera (Wir6n) 108 262-275 Streblospio 112 — benedicti Webster 112 276-283 ZOOGEOGRAPHY 116 284-285 DISCUSSION OF TAXONOMIC CHARACTERS 118 LITERATURE CITED 121 INTRODUCTION HISTORY Although there have been several collections of polychaetous annelids from the Gulf of Mexico and Caribbean few Sea, very spionids have been included in the published species lists.
    [Show full text]
  • Morphology, 18S Rrna Gene Sequence and Life History of a New Polydora Species (Polychaeta: Spionidae) from Northeastern Japan
    Vol. 18: 31–45, 2013 AQUATIC BIOLOGY Published online January 23 doi: 10.3354/ab00485 Aquat Biol Morphology, 18S rRNA gene sequence and life history of a new Polydora species (Polychaeta: Spionidae) from northeastern Japan Wataru Teramoto*, Waka Sato-Okoshi, Hirokazu Abe, Goh Nishitani, Yoshinari Endo Laboratory of Biological Oceanography, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan ABSTRACT: A new species of spionid polychaete, Polydora onagawaensis, is described from mol- lusk shells in Pacific waters of northeastern Japan. Its nuclear 18S rRNA gene sequence as well as its morphology, reproductive features, life history and infestation characteristics are reported. Polydora onagawaensis sp. nov. belongs to the Polydora ciliata/websteri group and has a moder- ate size and variable black pigmentation on the palps and body. Up to 115 worms were found bor- ing in a single scallop shell from suspended cultures in Onagawa Bay, with significantly higher numbers in the right than in the left valve. Females repeatedly deposited a string of egg capsules from around October to June (seawater temperature was below 15°C). The larvae developed inside the egg capsules for 2 wk (10°C, laboratory conditions), until the 3-chaetiger stage, before being released as planktonic larvae. The main spawning occurred in December, recruitment onto the shells increased after January, and most large worms disappeared between July and October. Thus, the estimated life span is around 1.5 yr after settlement. Details on biology and gene infor- mation not only contribute to distinguishing the species from other polydorids similar in morpho- logy, but also allow control of polydorid infestation in mollusk aquaculture.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Benthic Macroinvertebrate Sampling
    Benthic Macroinvertebrate Sampling Norton Basin, Little Bay, Grass Hassock Channel, and the Raunt Submitted to: The Port Authority of New York and New Jersey New York State Department of Environmental Conservation Submitted by: Barry A. Vittor & Associates, Inc. Kingston, NY February 2003 TABLE OF CONTENTS 1.0 INTRODUCTION...............................................................................................1 2.0 STUDY AREA......................................................................................................3 2.1 Norton Basin........................................................................................................ 3 2.2 Little Bay ............................................................................................................. 3 2.3 Reference Areas.................................................................................................... 3 2.3.1 The Raunt .................................................................................................... 3 2.3.2 Grass Hassock Channel ............................................................................... 4 3.0 METHODS..........................................................................................................4 3.1 Benthic Grab Sampling......................................................................................... 4 4.0 RESULTS.............................................................................................................7 4.1 Benthic Macroinvertebrates................................................................................
    [Show full text]
  • (Scolelepis) Daphoinos (Annelida: Polychaeta: Spionidae) in South Korea
    Anim. Syst. Evol. Divers. Vol. 37, No. 3: 229-234, July 2021 https://doi.org/10.5635/ASED.2021.37.3.007 Short communication First Record of Scolelepis (Scolelepis) daphoinos (Annelida: Polychaeta: Spionidae) in South Korea Geon Hyeok Lee, Gi-Sik Min* Department of Biological Sciences, Inha University, Incheon 22212, Korea ABSTRACT Scolelepis (Scolelepis) daphoinos is newly reported in Korean fauna. This species can be distinguished from its congeners by the following characteristics: the presence of reddish pigment patches on the posterior part of the prostomium, notopodial postchaetal lamellae that are partially fused to the branchiae, and the presence of only the bidentate hooded hooks. The morphological diagnosis and photographs of S. (S.) daphoinos are provided. The partial mitochondrial cytochrome c oxidase subunit I (COI), 16S ribosomal DNA (16S rDNA), and the nuclear 18S ribosomal DNA (18S rDNA) sequences from Korean specimens of S. (S.) daphoinos were determined. Species identification was supported by a comparison of DNA barcode sequences of COI and 16S rDNA with morphological examination from the specimens of type locality, China. Keywords: Scolelepis (Scolelepis) daphoinos, COI, 16S rDNA, 18S rDNA, Korea INTRODUCTION Yoon, 2016; Lee et al., 2018). The sequences of mitochondrial cytochrome c oxidase sub- The genus Scolelepis Blainville, 1828 is one of the largest unit I (COI), 16S ribosomal DNA (16S rDNA), and the nucle- groups of spionid polychaetes commonly found on soft bot- ar 18S ribosomal DNA (18S rDNA) have been used as DNA toms in intertidal to deep-sea waters (Sikorski and Pavlova, barcode markers for the molecular identification of spionid 2015). Members of this genus are taxonomically defined by polychaetes (Radashevsky and Pankova, 2013; Sato-Okoshi a distally pointed prostomium, the presence of branchiae and Abe, 2013).
    [Show full text]