An Evaluation of Magnetic Bode's Law for Extrasolar Planetary Systems Sânzia Alves (UFRN, Brazil)

Total Page:16

File Type:pdf, Size:1020Kb

An Evaluation of Magnetic Bode's Law for Extrasolar Planetary Systems Sânzia Alves (UFRN, Brazil) An Evaluation of Magnetic Bode's law for Extrasolar Planetary Systems Sânzia Alves (UFRN, Brazil) Quantitative stellar spectral classification Matthias Ammler-von Eiff (Thueringer Landessternwarte, Tautenburg, Germany) Detection of Occultation by a Proto-planetary Clump in the Habitable Zone in GM Cephei Wen-Ping Chen (National Central University, Taiwan) Status of the Visible Nulling Coronagraph Technology Demonstration Program Mark Clampin (NASA/GSFC) Characterizing Extrasolar planets with WIRCam at CFHT Daniel Devost (Canada-France-Hawaii Telescope) The missing cavities in the SEEDS polarized scattered light images of transitional protoplanetary disks: a new transitional disk model Ruobing Dong (Princeton University) The azimuthal distribution of dusts in an eccentric proto-planetary disk with an embedded gas giant planet Pin-Gao Gu (Institute of Astronomy & Astrophysics, Academia Sinica Taiwan) Water vapor observations in the atmospheres of Earth and Mars Paul Hartogh (null, Germany) Benefits of ultraviolet and near-IR spectra in characterizing habitable planets Sara Heap (NASA's Goddard Space Flight Center) Habitable planets – problems and opportunities Alisher HOJAEV (National University of Uzbekistan) Stability of Giant Planet Moons in Planet-Planet Scattering Events Yu-Cian Hong (Astronomy and Space Science, Cornell University) Simulator for Microlens Planet Surveys Sergei Ipatov (Alsubai Est. for Scientific Studies, Doha, Qatar) The Transit Observations and Orbital Configurations of TrES3 and WASP10 Planetary Systems Ing-Guey Jiang (National Tsing Hua University Taiwan) Formation of the Solar System Huang Jinzhong (Astronomical Institute of DDFujian, China) Effects of stellar activity on rotational evolution of exoplanets Irina Kitiashvili (Stanford University) Re-evaluation of the inner edge of the habitable zone Takanori Kodama (The University of Tokyo) Polarimetry of transiting exoplanetary system with spotted host star Nadiia Kostogryz (Main Astronomical Observatory of NAS of Ukraine) Stabilization of habitable zones by dark energy Michal Křížek (Institute of Mathematics, Academy of Sciences, Czech Republic) Atmospheric characterization of cold exoplanets using a 1.5-m space coronagraph Anne-Lise Maire (Paris Observatory) NEAT: an astrometric mission to detect and characterize nearby habitable planetary systems Fabien Malbet (Institut de Planétologie et d'Astrophysique de Grenoble, France) Single mode, extreme precision Doppler spectrographs Christian Schwab (Yale University) Improved orbits and mass estimations for selected double stars of Pulkovo program Natalia Shakht (Pulkovo observatory) Doomed Planets: Planet Distribution Shows that the Closest Planets Are Tidally Migrating Into Stars Stuart Taylor (Hong Kong SAR, China) Detection of exomoons inside the habitable zone Luis Ricardo M.Tusnski (INPE, Brazil) Direct Imaging of Planet Transit Events Gerard van Belle (Lowell Observatory) Of `Cocktail Parties' and Exoplanets Ingo Waldmann (UCL, United Kingdom) Evidence for a low-mass substellar companion to an extremely hot pre-white dwarf central star of planetary nebulae NGC246 Wei Wang (National Astronomical Observatories of China) Habitable Zone Super-Earths with Non-Stabilised Spectrographs Duncan Wright (University of New South Wales, Australia) Volatile Abundances in Extrasolar Planetesimals siyi xu (University of California, Los Angeles) Extreme ultraviolet effects on the Venusian ionosphere from PVO and VEX missions Yansong Xue (Shanghai Astronomical Observatory, Chinese Academy of Sciences) Exoplanet searches in the habitable zone with gravitational microlensing Alexander Zakharov (Institute of Theoretical and Experimental Physics Russia) The new algorithm of SEDs calculations for substars with protoplanetary disks Olga Zakhozhay (Main Astronomical Observatory NAS of Ukraine) Modelling disc-planet interactions Jorge Cuadra (PUC, Chile) The 0.81 – 4.2 micron ground-based transmission spectra of the hot jupiter HD-189733b Camilla Danielski (UCL, United Kingdom) TFRM-PSES: filling a niche in transit suveys of Super-Earths around M dwarfs Octavi Fors (Universitat de Barcelona) Absence of super Earths in the vicinity of Sun: Clues from the Exoplanet and Helioseismic data K. M Hiremath (Indian Institute of Astrophysics, India) Variability of the Infrared Excess of Extreme Debris Disks Huan Meng (University of Arizona) Search for low-mass planets around late-M dwarfs using IRD Masashi Omiya (TITECH, Japan) Extreme environments as models for biosignatures search and understanding: The Atacama Desert as a relevant model Armando Azua-Bustos (Universidad de Los Andes, Chile) Activity-induced radial velocity variation of M dwarf stars and resulting limits on exoplanet detectability Jan Marie Andersen (University of Copenhagen) Habitability of Eyeball-Exoearths Daniel Angerhausen (Hamburg Observatory, Germany) Searching for Earth-mass planets around alpha Centauri: precise radial velocities from contaminated spectra Christoph Bergmann (University of Canterbury, New Zealand) The SOPHIE search for extrasolar planets: Follow-up of ELODIE candidates: Jupiter-analogues around Sun-like stars Isabelle Boisse (Centro de Astrofisica da Universidade do Porto, Portugal) Noise at the Box-fitting spectrum in CoRoT light-curves Rodrigo Boufleur (MCT/Observatório Nacional) Present and Future Detection of Terrestrial Biomarkers on Earthshine Danielle Briot (Observatoire de Paris) Methods for Estimation of the Reliability of Kepler Planet Candidates Stephen Bryson (NASA Ames Research Center) Transit & RV observations of exoplanets by the 1-m telescope at Weihai Chen Cao (Shandong University at Weihai, China) The fate of a gas giant in a highly eccentric orbit Shih-Hsin Chang (ASIAA, Taiwan) Coupled evolutions of the stellar obliquity, orbital distance, and planet's radius Yu-Ling Chang (Institute of Astronomy & Astrophysics, Academia Sinica) Planetesimal Formation in Zonal Flows arising in Magneto-Rotationally unstable Protoplanetary Disks Karsten Dittrich (Max Planck Institute for Astronomy, Germany) Probing the Humidity of Earth-like Exoplanets Yuka Fujii (The Univ. of Tokyo) A Study on the Water World Regime around Extrasolar Planetary Systems Satoshi Fukushima (The University of Tokyo) Doppler tomography of transiting exoplanets: a prograde, low-inclined orbit for the hot-Jupiter CoRoT-11b Davide Gandolfi (European Space Agency - ETEC/RSSD) An Introduction to High Resolution Spectrograph of Weihai Observatory Dongyang Gao (Shandong University at Weihai) An Introduction to High Resolution Spectrograph of Weihai Observatory Dongyang Gao (Shandong University at Weihai) Giant impacts and debris disks Hidenori Genda (The University of Tokyo) The dynamical evolution of multi-planet systems in star clusters Wei Hao (Peking University) Astrometry of Exoplanet Systems with the VLTI's GRAVITY Instrument Stefan Hippler (Max Planck Institute for Astronomy, Heidelberg, Germany) Application of Titius-Bode Law in Prediction of Natural Disasters hui Hu (Yunnan Observatory, China) Angular Momenta of Collided Rarefied Preplanetesimals Sergei Ipatov (Alsubai Est. for Scientific Studies, Doha, Qatar) Can a local depletion in protosolar nebula explain the low mass of Mars? Andre Izidoro (UNESP, Brazil) Tidal evolution of hot-Jupiter and hot Super-Earths Jianghui JI (Purple Mountain Observatory, CAS China) Producing Habitable Planets in the Inclined Planetary Systems Jianghui JI (Purple Mountain Observatory, CAS China) Climate on Eccentric Planets with Carbonate-Silicate Geochemical Cycle Shintaro Kadoya (Univ. of Tokyo) Image Retrieval of Earth-like Planets from Light Curves Hajime Kawahara (Tokyo Metropolitan University, Japan) Starspot-induced radial velocity variations over a stellar cycle Heidi Korhonen (Niels Bohr Institute, University of Copenhagen) From transits to occultations - high precision photometry from EulerCam and TRAPPIST Monika Lendl (University of Geneva) Detailed chemical abundance analysis of planet-hosting wide binaries Claude Mack III (Vanderbilt University) Superflares on late-type stars Hiroyuki Maehara (Kyoto University) Spectropolarimetric Observations of the Galilean Satellites to Characterize Signatures from Terrestrial Habitable Planets Eder Martioli (CFHT, United States) CARMENES. Characterisation of the stellar sample David Montes (Univ. Complutense de Madrid) Estimating the age of exoplanet host stars: possible member of the Hyades and Ursa Major moving groups confirmed by chemically tagging David Montes (Univ. Complutense de Madrid) Water in Protoplanetary Disks Hideko Nomura (Kyoto University) On the Current State of Ground-based Transmission Spectroscopy of Planet Atmospheres Lisa Nortmann (Institute fuer Astrophysik Göttingen, Germany) Studies of Near Earth Objects (Meteorites) which Landed in Nigeria and their Impact Crater Fidelix Opara (Centre for Basic Space Science, Nigeria) Eclipsing binaries: precise clocks to detect extrasolar planets Theodor Pribulla (Astronomical Institute, Slovak Academy of Sciences) Absolute Proper motions Out side the Plane(APOP)--A step towards the GSC2.4 Zhaoxiang Qi (Shanghai Astronomical Observatory) Assimilating and Modeling Dust Transport in the Martian Climate System Tao Ruan (University of Oxford) Direct Detection of Nearby Habitable Zone Planets Using Slicer Based Integral Field Spectrographs and EPICS on the E-ELT Graeme Salter (University of New South Wales, Australia) The Yale Doppler Diagnostic Facility: a testbed for high resolution Echelle spectrograph Christian
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Astro2020 APC White Papers the Navy Precision Optical Interferometer
    Astro2020 APC White Papers The Navy Precision Optical Interferometer Type of Activity: Ground Based Project Space Based Project Infrastructure Activity 4 Technological Development Activity State of the Professions Consideration4 Other Principal Author: Name: Gerard van Belle Institution: Lowell Observatory Email: [email protected] Phone: 928-255-7865 Co-authors: (names, institutions, emails) J. Thomas Armstrong (NRL, [email protected]), Ellyn Baines (NRL, [email protected]), Joe Llama (Lowell, [email protected]), Henrique Schmitt (NRL, [email protected]) Abstract: The Navy Precision Optical Interferometer (NPOI) is one of the premier U.S. long-baseline optical interferometric facilities, capable of providing sub-milliarcsecond imaging in the visible. We outline a plan for NPOI for 2020-2030 that will cement its leadership as the highest resolution optical system on the planet, with multi-kilometer baselines. This capability will serve a wide variety of Astro2020 science needs, resolving the sizes and shapes of stars, resolving AGNs, imaging protoplanetary disks, and observing the passage of exoplanets across their stellar disks. 1 1 Introduction The Navy Precision Optical Interferometer (NPOI), a long baseline optical interferometer located on Anderson Mesa, near Flagstaff, Arizona, is operated as a partnership between Lowell Observatory, the Naval Research Laboratory (NRL), and the US Naval Observatory (USNO). It features a Y-shaped layout with 250 m arms, telescopes that can be moved among 30 stations along the arms, visible-band beam combiners, and a vacuum feed system to avoid ground seeing and differential longitudinal dispersion. NPOI currently operates with up to six telescopes simultaneously feeding the beam combination laboratory with 12-cm effective apertures, on baselines (separations between the apertures) up to 98-m.
    [Show full text]
  • On the Detection of Exoplanets Via Radial Velocity Doppler Spectroscopy
    The Downtown Review Volume 1 Issue 1 Article 6 January 2015 On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy Joseph P. Glaser Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/tdr Part of the Astrophysics and Astronomy Commons How does access to this work benefit ou?y Let us know! Recommended Citation Glaser, Joseph P.. "On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy." The Downtown Review. Vol. 1. Iss. 1 (2015) . Available at: https://engagedscholarship.csuohio.edu/tdr/vol1/iss1/6 This Article is brought to you for free and open access by the Student Scholarship at EngagedScholarship@CSU. It has been accepted for inclusion in The Downtown Review by an authorized editor of EngagedScholarship@CSU. For more information, please contact [email protected]. Glaser: Detection of Exoplanets 1 Introduction to Exoplanets For centuries, some of humanity’s greatest minds have pondered over the possibility of other worlds orbiting the uncountable number of stars that exist in the visible universe. The seeds for eventual scientific speculation on the possibility of these "exoplanets" began with the works of a 16th century philosopher, Giordano Bruno. In his modernly celebrated work, On the Infinite Universe & Worlds, Bruno states: "This space we declare to be infinite (...) In it are an infinity of worlds of the same kind as our own." By the time of the European Scientific Revolution, Isaac Newton grew fond of the idea and wrote in his Principia: "If the fixed stars are the centers of similar systems [when compared to the solar system], they will all be constructed according to a similar design and subject to the dominion of One." Due to limitations on observational equipment, the field of exoplanetary systems existed primarily in theory until the late 1980s.
    [Show full text]
  • Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected
    Draft version February 28, 2017 Preprint typeset using LATEX style AASTeX6 v. 1.0 SULFUR HAZES IN GIANT EXOPLANET ATMOSPHERES: IMPACTS ON REFLECTED LIGHT SPECTRA Peter Gao1,2,3, Mark S. Marley, and Kevin Zahnle NASA Ames Research Center Moffett Field, CA 94035, USA Tyler D. Robinson4,5 Department of Astronomy and Astrophysics University of California Santa Cruz Santa Cruz, CA 95064, USA Nikole K. Lewis Space Telescope Science Institute Baltimore, MD 21218, USA 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 2NASA Postdoctoral Program Fellow [email protected] 4Sagan Fellow 5NASA Astrobiology Institute’s Virtual Planetary Laboratory ABSTRACT Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet’s geometric albedo spectrum and how it may affect the direct imaging results of WFIRST, a planned NASA space telescope. For temperate (250 K < Teq < 700 K) Jupiter–mass planets, photochemical destruction of H2S results in the production of 1 ppmv of S8 between 100 and 0.1 mbar, which, if cool enough, ∼ will condense to form a haze. Nominal haze masses are found to drastically alter a planet’s geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 µm due to molecular absorption, the addition of a sulfur haze boosts the albedo there to 0.7 due to scattering. ∼ Strong absorption by the haze shortward of 0.4 µm results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere.
    [Show full text]
  • Star Festival 2016 Parade & Exhibition
    Jump!Star Festival 2016 Parade & Exhibition Images from George Ferrandi’s Wherever There is Water light parade for Fleisher Art Memorial 202.234.7103 Capitol Skyline Hotel [email protected] 10 I (Eye) Street SW www.wpadc.org Washington, DC 20024 TABLE OF CONTENTS INTRODUCTION Jump!Star Festival Concept History of the Project Festival Narrative Artist’s Biography COMPONENTS Community Engagement Workshops Light Exhibition Parade/Festival Images from George Ferrandi’s Wherever There is Water light parade for Fleisher Art Memorial INTRODUCTION Images from George Ferrandi’s Wherever There is Water light parade for Fleisher Art Memorial The Jump!Star Festival is a participatory public art project created by artist George Ferrandi that will celebrate the temporal nature of our pole star, the “North Star,” by bringing the local community together with a light parade, music, food, and a culminating exhibition of light sculptures created by local artists. Key Dates Parade/Festival: September 24, 2016 Workshops: May/June/July/August 2016 Exhibition: September 20-25, 2016 History of the Project For the Northern Hemisphere, Polaris, or the “North Star” is the guiding light for 90% of the world’s population, yet this Pole Star, the anchor of our heavens, is not permanent. Because the earth rotates at a slight angle on its axis, there is a slight shift in its rotation so that what we consider our “North Star” changes every few thousand years. When the pyramids were built, for example, there was a different “North Star” reigning over the heavens. Very few realize that our quintessential point of reference and ever reliable, literal “Guiding Light” is a temporary gig.
    [Show full text]
  • Analog SFF, April 2010 by Dell Magazine Authors
    Analog SFF, April 2010 by Dell Magazine Authors Dell Magazines www.analogsf.com Copyright ©2010 by Dell Magazines NOTICE: This eBook is licensed to the original purchaser only. Duplication or distribution to any person via email, floppy disk, network, print out, or any other means is a violation of International copyright law and subjects the violator to severe fines and/or imprisonment. This notice overrides the Adobe Reader permissions which are erroneous. This eBook cannot be legally lent or given to others. This eBook is displayed using 100% recycled electrons. 2 Analog SFF, April 2010 by Dell Magazine Authors Cover art by David A. Hardy Cover design by Victoria Green 3 Analog SFF, April 2010 by Dell Magazine Authors CONTENTS Reader's Department: EDITORIAL: THE REST OF THE DATA by Stanley Schmidt Department: BIOLOG: BRENDA COOPER by Richard A. Lovett Novelette: SWORDS AND SADDLES by John G. Hemry Science Fact: WHAT'S IN A KISS?: THE WILD, WONDERFUL WORLD OF PHILEMATOLOG by Richard A. Lovett Reader's Department: IN TIMES TO COME Novelette: SNOWFLAKE KISSES by Holly Hight & Richard A. Lovett Novelette: A SOUND BASIS FOR MISUNDERSTANDING by Carl Frederick Reader's Department: THE ALTERNATE VIEW: TAKEN ON FAITH by Jeffery D. Kooistra Novelette: NOTHIN' BUT BLUE SKIES by Stephen L. Burns Novelette: WHEN WE WERE FAB by Jerry Oltion Novelette: THE PLANET HUNTERS by S.L. Nickerson Novelette: THE ROBOTS' GIRL by Brenda Cooper Reader's Department: THE REFERENCE LIBRARY by Don Sakers Reader's Department: BRASS TACKS Reader's Department: UPCOMING EVENTS by Anthony Lewis * * * * 4 Analog SFF, April 2010 by Dell Magazine Authors Vol.
    [Show full text]
  • Space Viewer Template
    Space Viewer Template View Finder This goes on top of your two plates, and is glued to the paper towel tube. We recommend using cardboard for this. < Bottom Disc This gives your view finding disc structure, and is where you label the constellations. We recommend using card stock or lightweight cardboard for this. Constellation Plate > This disc is home to your constellations, and gets glued to the larger disc. We recommend using paper for this, so the holes are easier to punch. Use the punch guides on the next page to punch holes and add labels to your viewer. Orion Cancer Look for the middle star of Orions When you look at this constellation, look sword, that is an area of brighter nearby for 55 Cancri a star that has light, it’s actually a nebula! The five exoplanets orbiting it. One of those Orion Nebula is a gigantic cloud of plants (55 Cancri e) is a super hot dust and gas, where new stars are planet entirely covered in an ocean of being created. lava! Cygnus Andromeda This constellation is home to the This constellation is very close to the Kepler-186 system, including the Andromeda Galaxy (an enormous planet Kepler-186f. Seen by collection of gas, dust, and billions of NASA's Kepler Space Telescope, stars and solar systems). This spiral this is the first Earth-sized planet galaxy is so bright, you can spot it with discovered that is in"habitable the naked eye! zone" of its star. Ursa Minor Cassiopeia Ursa Minor has two stars known While gazing at Cassiopeia look for with exoplanets orbiting them - the“Pacman Nebula” (It’s official name both are gas giants, that are much is NGC 281).
    [Show full text]
  • Thursday, December 22Nd Swap Meet & Potluck Get-Together Next First
    Io – December 2011 p.1 IO - December 2011 Issue 2011-12 PO Box 7264 Eugene Astronomical Society Annual Club Dues $25 Springfield, OR 97475 President: Sam Pitts - 688-7330 www.eugeneastro.org Secretary: Jerry Oltion - 343-4758 Additional Board members: EAS is a proud member of: Jacob Strandlien, Tony Dandurand, John Loper. Next Meeting: Thursday, December 22nd Swap Meet & Potluck Get-Together Our December meeting will be a chance to visit and share a potluck dinner with fellow amateur astronomers, plus swap extra gear for new and exciting equipment from somebody else’s stash. Bring some food to share and any astronomy gear you’d like to sell, trade, or give away. We will have on hand some of the gear that was donated to the club this summer, including mirrors, lenses, blanks, telescope parts, and even entire telescopes. Come check out the bargains and visit with your fellow amateur astronomers in a relaxed evening before Christmas. We also encourage people to bring any new gear or projects they would like to show the rest of the club. The meeting is at 7:00 on December 22nd at EWEB’s Community Room, 500 E. 4th in Eugene. Next First Quarter Fridays: December 2nd and 30th Our November star party was clouded out, along with a good deal of the month afterward. If that sounds familiar, that’s because it is: I changed the date in the previous sentence from October to November and left the rest of the sentence intact. Yes, our autumn weather is predictable. Here’s hoping for a lucky break in the weather for our two December star parties.
    [Show full text]
  • Who Really Discovered the First Exoplanet?
    Who Really Discovered the First Exoplanet? Two Swiss astronomers got a well-deserved Nobel for finding an exoplanet, but there’s an intriguing backstory By Josh Winn The year 1995, like 1492, was the dawn of an age of discovery. The new explorers, instead of using seagoing vessels to discover continents, use telescopes to discover planets revolving around distant stars. Thousands of these extrasolar planets, a term usually shortened to “exoplanets,” have been found, including a few potentially Earth- like worlds, along with bizarre objects that bear no resemblance to any of the planets in our solar system. Two of these exoplanet explorers, Michel Mayor and Didier Queloz, were recently awarded half of the Nobel Prize in Physics for the discovery they made in 1995. My colleagues and I are united in our admiration for their pioneering work, and in our pride to be continuing what they began. But there is something peculiar about the Nobel Prize citation. It says: “for the discovery of an exoplanet orbiting a solar-type star.” Shouldn’t it say the first exoplanet? After all, hundreds of astronomers have discovered an exoplanet. I’ve helped find a few. Even high school students and amateur astronomers have discovered them. Did the Nobel Committee make a typographical error? No, they did not, and thereby hangs a tale. Just as it is problematic to decide who discovered America (Christopher Columbus? John Cabot? Leif Erikson? Amerigo Vespucci, whose name is the one that stuck? Those who came on foot from Siberia tens of thousands of years ago?) it is difficult to say who discovered the first exoplanet.
    [Show full text]
  • Arxiv:2010.00015V3 [Hep-Ph] 26 Apr 2021 Galactic Halo Can Scatter with Exoplanets, Lose Energy, and Gles Are the Same Set of Planets, Without DM Heating
    MIT-CTP/5230 SLAC-PUB-17556 Exoplanets as Sub-GeV Dark Matter Detectors Rebecca K. Leane1, 2, ∗ and Juri Smirnov3, 4, y 1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94039, USA 3Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210, USA 4Department of Physics, The Ohio State University, Columbus, OH 43210, USA (Dated: April 27, 2021) We present exoplanets as new targets to discover Dark Matter (DM). Throughout the Milky Way, DM can scatter, become captured, deposit annihilation energy, and increase the heat flow within exoplanets. We estimate upcoming infrared telescope sensitivity to this scenario, finding actionable discovery or exclusion searches. We find that DM with masses above about an MeV can be probed with exoplanets, with DM-proton and DM-electron scattering cross sections down to about 10−37cm2, stronger than existing limits by up to six orders of magnitude. Supporting evidence of a DM origin can be identified through DM-induced exoplanet heating correlated with Galactic position, and hence DM density. This provides new motivation to measure the temperature of the billions of brown dwarfs, rogue planets, and gas giants peppered throughout our Galaxy. Introduction{Are we alone in the Universe? This ques- Exoplanet Temperatures tion has driven wide-reaching interest in discovering a 104 planet like our own. Regardless of whether or not we ever find alien life, the scientific advances from finding DM Heating and understanding other planets will be enormous. From a particle physics perspective, new celestial bodies pro- vide a vast playground to discover new physics.
    [Show full text]
  • Planet Formation in Binaries 3
    Noname manuscript No. (will be inserted by the editor) Planet formation in Binaries P. Thebault · N. Haghighipour the date of receipt and acceptance should be inserted later Abstract Spurred by the discovery of more than 60 exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation re- search. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain as- pects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in par- ticular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the ”standard” planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habit- ability, for which the binary environment creates a complex situation because of the presence of two irradiation sources of varying distance. Keywords Planetary systems · Binary Stars 1 Introduction About half of solar-type stars reside in multiple stellar systems (Raghavan et al., 2010). As a consequence, one of the most generic environments to be considered for studying planet formation should in principle be that of a binary.
    [Show full text]
  • The Influences of the Companion Star for the Formation of the Gamma- Cephei Planetary System Ricardo
    The influences of the companion star for the formation of the Gamma- Cephei planetary system Ricardo. A. Moraes and E. Vieira Neto Grupo de Dinâmica Orbital e Planetologia, Univ. Estadual Paulista – UNESP, Brazil The existence of planetary system inside multiple star systems are one of the most intriguing problems of the actual astronomy. With the advance of the observational methods several extrasolar planets was discovered in the past two decades, but the formation of these bodies remains cloudy. As well as the formation of planets in single stars systems, the planets of our Solar System for example, there is many theories for the formation of planets in multiple star systems, but the validation of these theories are often rare, in other words, although there are many theories for describe the formation of these planetary systems, but just a few of then are reliable. In the present work we will investigate the partial formation and migration of the planet Gamma-Cephei b, the only planet of a peculiar binary system called Gamma-Cephei. This system was choosed because the separation between the more assive star and its companion is the smaller among all binary systems discovered. All the planets in binary systems already discovered are orbiting the more massive star, while the companion star acts as a perturber body, these type of orbits are called as S-type, if the planet is orbiting the two stars it is in a orbit called P-type. The secondary star could be a important piece to solve the puzzle of the formation of a planet in systems like Gamma-Cephei, once the separation between the stars is small, the gravitational effects of the secondary star should be strong enough to affect the region where the planet will form, which leads to change the planet formation and its migration.
    [Show full text]