Middle Triassic; Meride, Canton Ticino, Switzerland)

Total Page:16

File Type:pdf, Size:1020Kb

Middle Triassic; Meride, Canton Ticino, Switzerland) Bollettino della Società Paleontologica Italiana, 51 (3), 2012, 203-212. Modena, 30 dicembre 2012 A new species of Sangiorgioichthys (Actinopterygii, Semionotiformes) from the Kalkschieferzone of Monte San Giorgio (Middle Triassic; Meride, Canton Ticino, Switzerland) Cristina LOMBARDO, Andrea TINTORI & Daniele TONA C. Lombardo, Dipartimento di Scienze della Terra “Ardito Desio”, Via Mangiagalli 34, I-20133 Milano, Italy; [email protected] A. Tintori, Dipartimento di Scienze della Terra “Ardito Desio”, Via Mangiagalli 34, I-20133 Milano, Italy; [email protected] D. Tona, Corso Rigola 64, I-13100 Vercelli, Italy; [email protected] KEY WORDS - Actinopterygii, Early Semionotidae, new taxon, Ladinian, Monte San Giorgio. ABSTRACT - The genus Sangiorgioichthys is one of the few Semionotidae known from the Middle Triassic. The type species S. aldae Tintori & Lombardo, 2007 has been found in Late Ladinian marine deposits of both the Italian and Swiss sides of Monte San Giorgio. A second species, S. sui López-Arbarello et al., 2011 described from the Pelsonian (Middle Anisian) of Luoping (Yunnan, South China) has extended the range of the genus both in time and space. A further species of Sangiorgioichthys, Sangiorgioichthys valmarensis n. sp., is described herein from the Late Ladinian Kalkschieferzone (Meride Limestone) of the Monte San Giorgio area, the same unit yielding the type species. Sangiorgioichthys valmarensis n. sp. differs from the already known species in number and arrangement of suborbitals, shape of the teeth and in shape and row number of the scales. The new species of Sangiorgioichthys increases the diversity of Semionotidae already in the Middle Triassic, indicating that the explosive radiation of Semionotidae during the Norian was preceded by a first phase of diversification during the Middle Triassic. RIASSUNTO - [Una nuova specie di Sangiorgioichthys (Actinopterygii, Semionotiformes) dalla Kalkschieferzone del Monte San Giorgio (Triassico Medio; Meride, Canton Ticino, Svizzera)] - Il genere Sangiorgioichthys è uno dei pochi Semionotidae noti dal Triassico Medio. La specie tipo S. aldae Tintori & Lombardo, 2007 è stata rinvenuta in depositi del Ladinico Superiore sia sul versante italiano che su quello svizzero del Monte San Giorgio. Una seconda specie, S. sui López-Arbarello et al., 2011, del Pelsonico (Anisico Medio) di Luoping (Yunnan, Cina meridionale) ha esteso la distribuzione del genere nello spazio e nel tempo. In questo lavoro viene descritta Sangiorgioichthys valmarensis, una nuova specie di Sangiorgioichthys rinvenuta nella stessa unità da cui proviene la specie tipo (Kalkschieferzone, Calcare di Meride) del Ladinico Superiore dell’area del Monte San Giorgio. Il nuovo taxon differisce dalle specie già note per la forma e la disposizione dei suborbitali, la forma dei denti e per numero di file e forma delle scaglie. La nuova specie di Sangiorgioichthys mostra come i Semionotidae fossero già diffusi e diversificati durante il Triassico Medio, indicando come la loro radiazione esplosiva durante il Norico (Triassico Superiore) sia stata in realtà preceduta da una prima fase di diversificazione durante il Triassico Medio. INTRODUCTION subdivided in at least two different assemblages (Tintori, 1990; Lombardo, 1999, 2001, 2002; Tintori & Lombardo, The Monte San Giorgio area (Fig. 1) is one of the 1999, 2007; Lombardo & Tintori, 2004), the nothosaurid historically most important areas for marine vertebrates Lariosaurus (Tintori & Renesto, 1990; Renesto et al., of the Middle Triassic. More than 150 years of scientific 2003), three crustaceans (the mysidiacean Schimperella, excavations in a sequence of several fossiliferous levels the conchostracan Laxitextella and very rare undescribed concentrated in a few square kilometres, led this site decapods), a few insects mostly still undescribed to be totally (Italian and Swiss sides) included in the (Krzeminski & Lombardo, 2001; Bechly & Stockar, 2011) UNESCO World Heritage List in 2010 for its unique and a few terrestrial plant remains. If we compare the outstanding palaeontological significance regarding fossil assemblages in the KSZ with those from the lower the evolution of marine vertebrates during the Middle Meride Limestone Cava Inferiore, Cava Superiore and Triassic. The best known fossiliferous unit is the Besano Cassina, we do not see many differences in the number Formation of latest Anisian - earliest Ladinian age, but of vertebrate and invertebrate taxa found in each single since 25 years our research group is working on the poorly level (Bürgin, 1998, 1999); on the contrary, the Besano investigated uppermost part of Meride Limestone, the Formation assemblages are made of many more taxa, both Kalkschieferzone (KSZ), of probable latest Ladinian age vertebrates and invertebrates (Lombardo, 1999; Röhl et (see Stockar et al., 2012). al., 2001) pointing to a strictly marine environment. During about 25 years of excavations lead by two of the authors (AT and CL), a number of interesting fossils has been reported from the lower/middle part of TAPHONOMY AND PALAEOENVIRONMENT OF the upper member of the Meride Limestone, from both THE KALKSCHIEFERZONE the Italian and Swiss sides of the Monte San Giorgio palaeontological area. However, the general biodiversity In the KSZ no sure marine stenohaline organism has of the KSZ is quite low: about 20 fish species actually been found, leaving apart the nothosaurid Lariosaurus ISSN 0375-7633 doi:10.4435/BSPI.2012.23 204 Bollettino della Società Paleontologica Italiana, 51 (3), 2012 p. 27), can be considered as a mass mortality one: a flood brought the insects and the plant remains in the basin and also killed the small fishes, which were used to dwell in marine salt waters. The presence of five fish specimens plus three insects are really worth of a ‘mass mortality event’ interpretation, for such a restricted excavation surface: the number of fish specimens per square meter is actually very low in these levels, with the exception of surfaces with up to 50 Prohalecites specimens per square meter. The average ‘richness’ in a fossiliferous level, following many years of field works in the KSZ, could be considered as one specimen every several dozens square meters for each lamina surface. Actually, Bechly & Stockar (2011) did not find any other fossil in the two meters thick sequence yielding Dasyleptus and the small fishes, proving that the fossiliferous surface in the whole is strictly related to the flooding. Fig. 1 - The Monte San Giorgio area. The stout black line indicates The lower and middle KSZ provide a very high the Besano Formation outcrops with small faults displacing number of specimens on mass mortality surfaces, the unit. The Meride Limestone outcrops South to the Besano compared to the regular (attritional) mortality ones. Fig. Formation. Stars indicate the position of the two major sites for the 2 shows the distribution of specimens in different beds Kalkschieferzone. After Lombardo (2002), modified. of the site Meride-Val Mara D (lower part). The genus Peltopleurus is particularly interesting in its distribution as it amounts to 273 specimens on a total of 471 fishes and the fishes, most of them strictly related to the marine recovered during the 1997-2001 excavations, for a bed environment: in fact, many of the KSZ fish genera have surface of about 15 square meters (Fig. 2a). Four single been found also in other localities that can be considered surfaces can be considered as result of a mass mortality surely marine, such as Luoping, in southern China event, with 20 (Bed 15) to 151 specimens (Bed 1) each. (Lombardo et al., 2011; Lopez-Arbarello et al., 2011) or All the remaining layers yield Peltopleurus too, but the Perledo along the eastern coast of the Lario Lake (Tintori number of specimens ranges from one to six for each & Lombardo, 1999; Lombardo et al., 2008) or even the one, widespread throughout the whole laminated bed. Besano Formation in the same Monte San Giorgio area Not considering the genus Peltopleurus (Fig. 2b), mass (Bürgin, 1999). mortality events are the only explanation for the unusual During the deposition of the Meride Limestone, the record of Coelatichthys meridensis Lombardo, 2001 (32 fresh water influence became stronger: conchostracans and specimens in Bed 7) and Prohalecites porroi (Bellotti, insects point to a quite close land with superficial fresh- 1857) (24, 26 and 30 specimens respectively in Bed a, 1, water ponds, permanent or seasonal, as suggested by the 3; the species is unknown in older beds). Owing to these number of conchostracan-rich surfaces. Tintori (1990a) quite common mass mortality surfaces P. porroi is by far and Tintori & Brambilla (1991) proposed an alternation the most common species across the whole KSZ: in the of dry and very rainy seasons, a monsoonal-like climate middle part of the unit (Ca’ del Frate site, Tintori, 1990), where heavy rains could suddenly affect the KSZ basin Prohalecites constitutes about the 95% of the collected causing mass mortality events in the marine fauna, mainly specimens, but also in the upper part (Val Mara site D) it fishes, as happened at least forProhalecites , Peltopleurus makes at least the 90% of the fish specimens (data based and Allolepidotus, but also for the crustacean Schimperella on 2003 excavation by CL and AT). Thus, it is evident that (Tintori, 1990b). Furrer (1995) proposed that the fish we can consider a mass mortality surface in the KSZ when mass mortalities were related to the dry season increase we have only one specimen per square meter of a single of salinity: this appears quite unlikely as a slow increase surface, especially if they all belong to a single genus of salinity should allow fishes to leave the basin itself, (Prohalecites, Peltopleurus, Coelatichthys) or to two while a strong sudden fresh water input can suddenly genera. For the latter case, we know only mass mortality change the salinity. Also, increasing temperature should surfaces yielding Prohalecites and Peltopleurus together, affect benthic organisms rather than nektonic ones (see in Bed 1 and 2 in Val Mara- Meride site D (lower part) and for instance Cebrian et al., 2011).
Recommended publications
  • ︎Accepted Manuscript
    ︎Accepted Manuscript First remains of neoginglymodian actinopterygians from the Jurassic of Monte Nerone area (Umbria-Marche Apennine, Italy) Marco Romano, Angelo Cipriani, Simone Fabbi & Paolo Citton To appear in: Italian Journal of Geosciences Received date: 24 May 2018 Accepted date: 20 July 2018 doi: https://doi.org/10.3301/IJG.2018.28 Please cite this article as: Romano M., Cipriani A., Fabbi S. & Citton P. - First remains of neoginglymodian actinopterygians from the Jurassic of Monte Nerone area (Umbria-Marche Apennine, Italy), Italian Journal of Geosciences, https://doi.org/10.3301/ IJG.2018.28 This PDF is an unedited version of a manuscript that has been peer reviewed and accepted for publication. The manuscript has not yet copyedited or typeset, to allow readers its most rapid access. The present form may be subjected to possible changes that will be made before its final publication. Ital. J. Geosci., Vol. 138 (2019), pp. 00, 7 figs. (https://doi.org/10.3301/IJG.2018.28) © Società Geologica Italiana, Roma 2019 First remains of neoginglymodian actinopterygians from the Jurassic of Monte Nerone area (Umbria-Marche Apennine, Italy) MARCO ROMANO (1, 2, 3), ANGELO CIPRIANI (2, 3), SIMONE FABBI (2, 3, 4) & PAOLO CITTON (2, 3, 5, 6) ABSTRACT UMS). The Mt. Nerone area attracted scholars from all Since the early nineteenth century, the structural high of Mt. over Europe and was studied in detail since the end of Nerone in the Umbria-Marche Sabina Domain (UMS – Central/ the nineteenth century, due to the richness in invertebrate Northern Apennines, Italy) attracted scholars from all over macrofossils, especially cephalopods, and the favorable Europe due to the wealth of fossil fauna preserved in a stunningly exposure of the Mesozoic succession (e.g.
    [Show full text]
  • A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes Romano, Carlo Abstract: About half of all vertebrate species today are ray-finned fishes (Actinopterygii), and nearly all of them belong to the Neopterygii (modern ray-fins). The oldest unequivocal neopterygian fossils are known from the Early Triassic. They appear during a time when global fish faunas consisted of mostly cosmopolitan taxa, and contemporary bony fishes belonged mainly to non-neopterygian (“pale- opterygian”) lineages. In the Middle Triassic (Pelsonian substage and later), less than 10 myrs (million years) after the Permian-Triassic boundary mass extinction event (PTBME), neopterygians were already species-rich and trophically diverse, and bony fish faunas were more regionally differentiated compared to the Early Triassic. Still little is known about the early evolution of neopterygians leading up to this first diversity peak. A major factor limiting our understanding of this “Triassic revolution” isaninter- val marked by a very poor fossil record, overlapping with the Spathian (late Olenekian, Early Triassic), Aegean (Early Anisian, Middle Triassic), and Bithynian (early Middle Anisian) substages. Here, I review the fossil record of Early and Middle Triassic marine bony fishes (Actinistia and Actinopterygii) at the substage-level in order to evaluate the impact of this hiatus–named herein the Spathian–Bithynian gap (SBG)–on our understanding of their diversification after the largest mass extinction event of the past. I propose three hypotheses: 1) the SSBE hypothesis, suggesting that most of the Middle Triassic diver- sity appeared in the aftermath of the Smithian-Spathian boundary extinction (SSBE; ฀2 myrs after the PTBME), 2) the Pelsonian explosion hypothesis, which states that most of the Middle Triassic ichthyo- diversity is the result of a radiation event in the Pelsonian, and 3) the gradual replacement hypothesis, i.e.
    [Show full text]
  • Semionotiform Fish from the Upper Jurassic of Tendaguru (Tanzania)
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 2 (1999) 135-153 19.10.1999 Semionotiform Fish from the Upper Jurassic of Tendaguru (Tanzania) Gloria Arratial & Hans-Peter Schultze' With 12 figures Abstract The late Late Jurassic fishes collected by the Tendaguru expeditions (1909-1913) are represented only by a shark tooth and various specimens of the neopterygian Lepidotes . The Lepidotes is a new species characterized by a combination of features such as the presence of scattered tubercles in cranial bones of adults, smooth ganoid scales, two suborbital bones, one row of infraorbital bones, non-tritoral teeth, hyomandibula with an anteriorly expanded membranous outgrowth, two extrascapular bones, two postcleithra, and the absence of fringing fulcra on all fins. Key words: Fishes, Actinopterygii, Semionotiformes, Late Jurassic, East-Africa . Zusammenfassung Die spätoberjurassischen Fische, die die Tendaguru-Expedition zwischen 1909 und 1913 gesammelt hat, sind durch einen Haizahn und mehrere Exemplare des Neopterygiers Lepidotes repräsentiert. Eine neue Art der Gattung Lepidotes ist be- schrieben, sie ist durch eine Kombination von Merkmalen (vereinzelte Tuberkel auf den Schädelknochen adulter Tiere, glatte Ganoidschuppen, zwei Suborbitalia, eine Reihe von Infraorbitalia, nichttritoriale Zähne, Hyomandibulare mit einer membra- nösen nach vorne gerichteten Verbreiterung, zwei Extrascapularia, zwei Postcleithra und ohne sich gabelnde Fulkren auf dem Vorderrand der Flossen) gekennzeichnet. Schlüsselwörter: Fische, Actinopterygii, Semionotiformes, Oberer Jura, Ostafrika. Introduction margin, crescent shaped lateral line pore, and the number of scales in vertical and longitudinal At the excavations of the Tendaguru expeditions rows), and on the shape of teeth (non-tritoral) . (1909-1913), fish remains were collected to- However, the Tendaguru lepidotid differs nota- gether with the spectacular reptiles in sediments bly from L.
    [Show full text]
  • Microct Survey of Larval Skeletal Mineralization in the Cuban Gar Atractosteus Tristoechus (Actinopterygii; Lepisosteiformes)
    Anatomy atlas MicroCT survey of larval skeletal mineralization in the Cuban gar Atractosteus tristoechus (Actinopterygii; Lepisosteiformes) Scherrer Raphael¨ 1, Hurtado Andres´ 2, Garcia Machado Erik3, Debiais-Thibaud Melanie´ 1* 1Institut des Sciences de l’Evolution de Montpellier, UMR5554, Universite´ Montpellier, CNRS, IRD, EPHE, c.c.064, place Eugene` Bataillon, 34095 Montpellier Cedex 05, France 2Centro Hidrobiologico,´ Parque Nacional Cienaga´ de Zapata, Matanzas, Cuba 3Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16, No. 114 entre la 1ra y 3ra, Miramar, Playa, La Habana 11300, Cuba *Corresponding author: [email protected] Abstract Using X-ray microtomography, we describe the ossification events during the larval development of a non-teleost actinopterygian species: the Cuban gar Atractosteus tristoechus from the order Lepisosteiformes. We provide a detailed developmental series for each anatomical structure, covering a large sequence of mineralization events going from an early stage (13 days post-hatching, 21mm total length) to an almost fully ossified larval stage (118dph or 87mm in standard length). With this work, we expect to bring new developmental data to be used in further comparative studies with other lineages of bony vertebrates. We also hope that the online publication of these twelve successive 3D reconstructions, fully flagged, will be an educational tool for all students in comparative anatomy. Keywords: Actinopterygii, development, Lepisosteiformes, mineralization, skeleton Submitted:2016-04-04, published online:2017-05-17. https://doi.org/10.18563/m3.3.3.e3 INTRODUCTION 2013; Broughton et al., 2013; Friedman, 2015). Near et al. (2012) estimated the separation between gars and teleosts be- Gars are non-teleost ray-finned fishes (Actinopterygii) be- tween 330 and 390 million years ago (Mya), somewhere from longing to the order Lepisosteiformes, whose only extant Late Devonian to Early Carboniferous.
    [Show full text]
  • New Species of Sangiorgioichthys Tintori and Lombardo, 2007 (Neopterygii, Semionotiformes) from the Anisian of Luoping (Yunnan Province, South China)
    Zootaxa 2749: 25–39 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) New species of Sangiorgioichthys Tintori and Lombardo, 2007 (Neopterygii, Semionotiformes) from the Anisian of Luoping (Yunnan Province, South China) ADRIANA LÓPEZ-ARBARELLO1, ZUO-YU SUN2, EMILIA SFERCO1, ANDREA TINTORI3, GUANG-HUI XU3, YUAN-LIN SUN2, FEI-XIANG WU2,3 & DA-YONG JIANG2 1Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 Munich, Germany 2Department of Geology and Geological Museum, Peking University, Beijing 100871, P. R. China 3Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, via Mangiagalli 34, I-20133 Milano, Italy 4Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, P. O. Box 643, Beijing 100044, People’s Republic of China Abstract We report on a new species of the neopterygian genus Sangiorgioichthys Tintori and Lombardo, 2007, from middle Ani- sian (Pelsonian) deposits in South China (Luoping County, Yunnan Province). Sangiorgioichthys was previously known from a single species, S. aldae, from the late Ladinian of the Monte San Giorgio (Italy and Switzerland). The recognition of the new species helped to improve the diagnosis of the genus, which is mainly characterized by the presence of broad posttemporal and supracleithral bones, one or two suborbital bones occupying a triangular area ventral to the infraorbital bones and lateral to the quadrate, and elongate supramaxilla fitting in a an excavation of the dorsal border of the maxilla. Sangiorgioichthys sui n. sp. differs from the type species in having two pairs of extrascapular bones, the medial pair usu- ally fused to the parietals, maxilla with a complete row of small conical teeth, long supramaxilla, more than half of the length of the maxilla, only two large suborbital bones posterior to the orbit, and flank scales with finely serrated posterior borders.
    [Show full text]
  • A New Species of Platysiagum from the Luoping Biota (Anisian, Middle Triassic, Yunnan, South China) Reveals the Relationship Between Platysiagidae and Neopterygii
    Geol. Mag. 156 (4), 2019, pp. 669–682 c Cambridge University Press 2018 669 doi:10.1017/S0016756818000079 A new species of Platysiagum from the Luoping Biota (Anisian, Middle Triassic, Yunnan, South China) reveals the relationship between Platysiagidae and Neopterygii ∗ ∗ ∗ W. WEN †,S.X.HU , Q. Y. ZHANG , M. J. BENTON†, J. KRIWET‡, Z. Q. CHEN§, ∗ ∗ ∗ C. Y. ZHOU ,T.XIE & J. Y. HUANG ∗ Chengdu Center of the China Geological Survey, Chengdu 610081, China †School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK ‡Department of Paleontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria §State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China (Received 7 September 2016; accepted 11 January 2018first published online )HEUXDU\) Abstract – Four complete platysiagid fish specimens are described from the Luoping Biota, Anisian (Middle Triassic), Yunnan Province, southwest China. They are small fishes with bones and scales covered with ganoine. All characters observed, such as nasals meeting in the midline, a keystone- like dermosphenotic, absence of post-rostral bone, two infraorbitals between dermosphenotic and jugal, large antorbital, and two postcleithra, suggest that the new materials belong to a single, new Platysiagum species, P.sinensis sp. nov. Three genera are ascribed to Platysiagidae: Platysiagum, Hel- molepis and Caelatichthys. However, most specimens of the first two genera are imprints or fragment- ary. The new, well-preserved specimens from the Luoping Biota provide more detailed anatomical in- formation than before, and thus help amend the concept of the Platysiagidae. The Family Platysiagidae was previously classed in the Perleidiformes. Phylogenetic analysis indicates that the Platysiagidae is a member of basal Neopterygii, and its origin seems to predate that of Perleidiformes.
    [Show full text]
  • Middle Triassic
    A New Basal Actinopterygian Fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China Author(s): Wen Wen, Qi-Yue Zhang, Shi-Xue Hu, Chang-Yong Zhou, Tao Xie, Jin-Yuan Huang, Zhong Qiang Chen and Michael J. Benton Source: Acta Palaeontologica Polonica, 57(1):149-160. 2012. Published By: Institute of Paleobiology, Polish Academy of Sciences DOI: http://dx.doi.org/10.4202/app.2010.0089 URL: http://www.bioone.org/doi/full/10.4202/app.2010.0089 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. A new basal actinopterygian fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China WEN WEN, QI−YUE ZHANG, SHI−XUE HU, CHANG−YONG ZHOU, TAO XIE, JIN−YUAN HUANG, ZHONG QIANG CHEN, and MICHAEL J. BENTON Wen, W., Zhang, Q.Y., Hu, S.X., Zhou, C.Y., Xie, T., Huang, J.Y., Chen, Z.Q., and Benton, M.J.
    [Show full text]
  • Middle Triassic) of Luoping, Yunnan Province, Southwest China
    A new basal actinopterygian fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China WEN WEN, QI−YUE ZHANG, SHI−XUE HU, CHANG−YONG ZHOU, TAO XIE, JIN−YUAN HUANG, ZHONG QIANG CHEN, and MICHAEL J. BENTON Wen, W., Zhang, Q.Y., Hu, S.X., Zhou, C.Y., Xie, T., Huang, J.Y., Chen, Z.Q., and Benton, M.J. 2012. A new basal actinopterygian fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China. Acta Palaeon− tologica Polonica 57 (1): 149–160. The new neopterygian fish taxon Luoxiongichthys hyperdorsalis gen. et sp. nov. is established on the basis of five speci− mens from the second member of the Guanling Formation (Anisian, Middle Triassic) from Daaozi Quarry, Luoping, Yunnan Province, Southwest China. The new taxon is characterized by the following characters: triangular body outline with a distinct apex located between skull and dorsal fin; free maxilla; slender preopercular almost vertical; three suborbitals; at least eight strong branchiostegals with tubercles and comb−like ornamentation on the anterior margin; clavicles present; two postcleithra; ganoid scales covered by tubercles and pectinate ornamentation on the posterior mar− gin with peg−and−socket structure; hemiheterocercal tail slightly forked. Comparison with basal actinopterygians reveals that the new taxon has parasemionotid−like triangular symplectics, but a semionotid opercular system. Cladistic analysis suggests that this new genus is a holostean, and either a basal halecomorph or basal semionotiform. Key words: Actinopterygii, Halecomorphi, Triassic, Anisian, Luoping, Yunnan Province, China. Wen Wen [[email protected]], Qi−Yue Zhang [[email protected]], Shi−Xue Hu [[email protected]], Chang− Yong Zhou [[email protected]], Tao Xie [[email protected]], and Jin−Yuan Huang [[email protected]], Chengdu Institute of Geology and Mineral Resources, No.
    [Show full text]
  • Microvertebrates from Multiple Bone Beds in the Rhaetian of the M4–M5 Motorway Junction, South Gloucestershire, U.K
    Proceedings of the Geologists’ Association 127 (2016) 464–477 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Microvertebrates from multiple bone beds in the Rhaetian of the M4–M5 motorway junction, South Gloucestershire, U.K. a b,c,d b Tiffany S. Slater , Christopher J. Duffin , Claudia Hildebrandt , b b, Thomas G. Davies , Michael J. Benton * a Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, UK b School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK c 146 Church Hill Road, Sutton, Surrey SM3 8NF, UK d Earth Science Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK A R T I C L E I N F O A B S T R A C T Article history: The Rhaetian (latest Triassic) is best known for its basal bone bed, but there are numerous other bone- Received 26 April 2016 rich horizons in the succession. Boreholes taken around the M4–M5 motorway junction in SW England Received in revised form 16 June 2016 provide measured sections with multiple Rhaetian bone beds. The microvertebrate samples in the Accepted 1 July 2016 various bone beds differ through time in their composition and in average specimen size. The onset of the Available online 3 August 2016 Rhaetian transgression accumulated organic debris to form a fossiliferous layer high in biodiversity at the base of the Westbury Formation. The bone bed at the top of the Westbury Formation represents a Keywords: community with lower biodiversity. The bone beds differ in their faunas: chondrichthyan teeth are Late Triassic dominant in the basal bone bed, but actinopterygians dominate the higher bone bed.
    [Show full text]
  • Vertebrate Microfossil Diversity from the Tremp Formation
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • Diversity of Vertebrate Remains from the Lower Gogolin Beds (Anisian) of Southern Poland
    Annales Societatis Geologorum Poloniae (2020), vol. 90: 419 – 433 doi: https://doi.org/10.14241/asgp.2020.22 DIVERSITY OF VERTEBRATE REMAINS FROM THE LOWER GOGOLIN BEDS (ANISIAN) OF SOUTHERN POLAND Mateusz ANTCZAK 1 *, Maciej R. RUCIŃSKI 2, Michał STACHACZ 3, Michał MATYSIK 3 & Jan J. KRÓL 4 1 University of Opole, Institute of Biology, Oleska 22, 45-052 Opole, Poland; e-mail: [email protected] 2 NOVA University Lisbon, NOVA School of Science and Technology, 2829-516 Caparica, Portugal 3 Jagiellonian University, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland 4 Adam Mickiewicz University, Institute of Geology, Krygowskiego 12, 61-680 Poznań, Poland * Corresponding author Antczak, M., Ruciński, M. R., Stachacz, M., Matysik, M. & Król, J. J., 2020. Diversity of vertebrate remains from the Lower Gogolin Beds (Anisian) of southern Poland. Annales Societatis Geologorum Poloniae, 90 : 419 – 433. Abstract: Middle Triassic (Muschelkalk) limestones and dolostones of southern Poland contain vertebrate re- mains, which can be used for palaeoecological and palaeogeographical analyses. The results presented concern vertebrate remains uncovered at four localities in Upper Silesia and one on Opole Silesia, a region representing the south-eastern margin of the Germanic Basin in Middle Triassic times. The most abundant remains in this assem- blage are fish remains, comprising mostly actinopterygian teeth and scales. Chondrichthyan and sauropsid remains are less common. Reptilian finds include vertebrae, teeth and fragments of long bones, belonging to aquatic or semi-aquatic reptiles, such as nothosaurids, pachypleusorosaurids, and ichthyosaurids. Also, coprolites of possibly durophagous and predacious reptiles occur. In the stratigraphic column of Mikołów, actinopterygian remains are the most numerous and no distinct changes of the taxonomic composition occur.
    [Show full text]
  • Palaeontologia Electronica a New Species of Lepidotes
    Palaeontologia Electronica http://palaeo-electronica.org A New Species of Lepidotes (Actinopterygii: Semiontiformes) from the Cenomanian (Upper Cretaceous) of Morocco Peter L. Forey, Adriana López-Arbarello, and Norman MacLeod Peter L. Forey. Research Associate, Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. [email protected] Adriana López-Arbarello. Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner- Strasse 10, D-80333 München, Germany. [email protected] Norman MacLeod. Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. [email protected] ABSTRACT A species of semionotiform fish, Lepidotes pankowskii sp. nov. is described from the Cenomanian Kem Kem Beds of south-eastern Morocco, based on two three- dimensionally well-preserved partial heads. The new species is distinguished by the presence of suborbitals lying anterior to the orbit. It is most closely similar to other late Mesozoic tritoral species of Lepidotes. KEY WORDS: new species; anatomy; actinopterygians; neopterygian INTRODUCTION tectum moroccensis Cavin and Forey, 2008, and Erfoudichthys rosae Pittet et al., 2009. In this paper we describe a new species of Lepidotes based on two specimens of heads from SYSTEMATIC DESCRIPTION the Cenomanian Kem Kem beds of Morocco. These deposits were presumably laid down in fluvi- Subclass NEOPTERYGII Regan, 1923 atile conditions and are dated as Cenomanian Order SEMIONOTIFORMES Arambourg and Ber- (Sereno et al. 1996). Specimens are fragmentary tin, 1958 sensu Olsen and McCune, 1991 and usually very robust. Several taxa have been Family SEMIONOTIDAE Woodward, 1890, sensu described from the same beds: Palaeonotopterus Wenz, 1999 greenwoodi Forey, 1997, Calamopleurus africanus Genus Lepidotes Agassiz, 1832 Forey and Grande, 1998, Oniichthys falipoui Cavin Lepidotes pankowskii sp.
    [Show full text]