The Heritage of the IBM System/360 Earlier Commercial Computers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer Organization & Architecture Eie
COMPUTER ORGANIZATION & ARCHITECTURE EIE 411 Course Lecturer: Engr Banji Adedayo. Reg COREN. The characteristics of different computers vary considerably from category to category. Computers for data processing activities have different features than those with scientific features. Even computers configured within the same application area have variations in design. Computer architecture is the science of integrating those components to achieve a level of functionality and performance. It is logical organization or designs of the hardware that make up the computer system. The internal organization of a digital system is defined by the sequence of micro operations it performs on the data stored in its registers. The internal structure of a MICRO-PROCESSOR is called its architecture and includes the number lay out and functionality of registers, memory cell, decoders, controllers and clocks. HISTORY OF COMPUTER HARDWARE The first use of the word ‘Computer’ was recorded in 1613, referring to a person who carried out calculation or computation. A brief History: Computer as we all know 2day had its beginning with 19th century English Mathematics Professor named Chales Babage. He designed the analytical engine and it was this design that the basic frame work of the computer of today are based on. 1st Generation 1937-1946 The first electronic digital computer was built by Dr John V. Atanasoff & Berry Cliford (ABC). In 1943 an electronic computer named colossus was built for military. 1946 – The first general purpose digital computer- the Electronic Numerical Integrator and computer (ENIAC) was built. This computer weighed 30 tons and had 18,000 vacuum tubes which were used for processing. -
Details Von Neumann/Turing Structure of Von Nuemann Machine
ENIAC - background 168 420 Computer Architecture ] Electronic Numerical Integrator And Computer ] Eckert and Mauchly Chapter 2 ] University of Pennsylvania Computer Evolution and ] Trajectory tables for weapons Performance ] Started 1943 ] Finished 1946 \ Too late for war effort ] Used until 1955 ENIAC - details ENIAC ] Decimal (not binary) ] 20 accumulators of 10 digits ] Programmed manually by switches ] 18,000 vacuum tubes ] 30 tons ] 15,000 square feet ] 140 kW power consumption ] 5,000 additions per second Structure of von Nuemann von Neumann/Turing machine ] Stored Program concept ] Main memory storing programs and data Arithmetic and Logic Unit ] ALU operating on binary data ] Control unit interpreting instructions from Input Output Main memory and executing Equipment Memory ] Input and output equipment operated by control unit ] Princeton Institute for Advanced Studies Program Control Unit \ IAS ] Completed 1952 1 IAS - details Structure of IAS - detail ] 1000 x 40 bit words Central Processing Unit Arithmetic and Logic Unit \ Binary number Accumulator MQ \ 2 x 20 bit instructions ] Set of registers (storage in CPU) Arithmetic & Logic Circuits \ Memory Buffer Register Input MBR Output Instructions \ Memory Address Register Main Equipment & Data \ Instruction Register Memory \ Instruction Buffer Register IBR PC MAR \ Program Counter IR Control \ Accumulator Circuits Address \ Multiplier Quotient Program Control Unit IAS Commercial Computers ] 1947 - Eckert-Mauchly Computer Corporation ] UNIVAC I (Universal Automatic Computer) ] -
The Largest Project in IT History New England Db2 Users Group Meeting Old Sturbridge Village, 1 Old Sturbridge Village Road, Sturbridge, MA 01566, USA
The Largest Project in IT History New England Db2 Users Group Meeting Old Sturbridge Village, 1 Old Sturbridge Village Road, Sturbridge, MA 01566, USA Milan Babiak Client Technical Professional + Mainframe Evangelist IBM Canada [email protected] Thursday September 26, AD2019 © 2019 IBM Corporation The Goal 2 © 2019 IBM Corporation AGENDA 1. IBM mainframe history overview 1952-2019 2. The Largest Project in IT History: IBM System/360 3. Key Design Principles 4. Key Operational Principles 5. Dedication 3 © 2019 IBM Corporation The Mainframe Family tree – 1952 to 1964 • Several mainframe families announced, designed for different applications • Every family had a different, incompatible architecture • Within families, moving from one generation to the next was a migration Common compilers made migration easier: FORTRAN (1957) 62 nd anniversary in 2019 COBOL (1959) 60 th anniversary in 2019 4 © 2019 IBM Corporation The Mainframe Family tree – 1952 to 1964 1st generation IBM 701 – 1952 IBM 305 RAMAC – 1956 2nd generation IBM 1401 – 1959 IBM 1440 – 1962 IBM 7094 – 1962 5 © 2019 IBM Corporation The April 1964 Revolution - System 360 3rd generation • IBM decided to implement a wholly new architecture • Specifically designed for data processing • IBM invested $5B to develop System 360 announced on April 7, 1964 IBM Revenue in 1964: $3.23B 6 © 2019 IBM Corporation Data Processing Software in Historical Perspective System 360 1964 IMS 1968 VSAM 1970s ADABAS by Software AG 1971 Oracle database by Oracle Corporation 1977 SMF/RMF system data 1980s -
6.823 Computer System Architecture
6.823 Computer System Architecture Instructors: Daniel Sanchez and Joel Emer TA: Hyun Ryong (Ryan) Lee What you’ll understand after The processor you taking 6.823 built in 6.004 September 8, 2021 MIT 6.823 Fall 2021 L01-1 Computing devices then… September 8, 2021 MIT 6.823 Fall 2021 L01-2 Computing devices now September 8, 2021 MIT 6.823 Fall 2021 L01-3 A journey through this space • What do computer architects actually do? • Illustrate via historical examples – Early days: ENIAC, EDVAC, and EDSAC – Arrival of IBM 650 and then IBM 360 – Seymour Cray – CDC 6600, Cray 1 – Microprocessors and PCs – Multicores – Cell phones • Focus on ideas, mechanisms, and principles, especially those that have withstood the test of time September 8, 2021 MIT 6.823 Fall 2021 L01-4 Abstraction layers Application Algorithm Parallel computing, Programming Language specialization, Original Operating System/Virtual Machine security, … domain of the Instruction Set Architecture (ISA) Domain of computer Microarchitecture computer architect architecture (‘90s) (‘50s-‘80s) Register-Transfer Level (RTL) Circuits Reliability, power Devices Expansion of Physics computer architecture, mid- 2000s onward. September 8, 2021 MIT 6.823 Fall 2021 L01-5 Computer Architecture is the design of abstraction layers • What do abstraction layers provide? – Environmental stability within generation – Environmental stability across generations – Consistency across a large number of units • What are the consequences? – Encouragement to create reusable foundations: • Toolchains, operating systems, libraries – Enticement for application innovation September 8, 2021 MIT 6.823 Fall 2021 L01-6 Technology is the dominant factor in computer design Technology Transistors Computers Integrated circuits VLSI (initially) Flash memories, … Technology Core memories Computers Magnetic tapes Disks Technology ROMs, RAMs VLSI Computers Packaging Low Power September 8, 2021 MIT 6.823 Fall 2021 L01-7 But Software.. -
P the Pioneers and Their Computers
The Videotape Sources: The Pioneers and their Computers • Lectures at The Compp,uter Museum, Marlboro, MA, September 1979-1983 • Goal: Capture data at the source • The first 4: Atanasoff (ABC), Zuse, Hopper (IBM/Harvard), Grosch (IBM), Stibitz (BTL) • Flowers (Colossus) • ENIAC: Eckert, Mauchley, Burks • Wilkes (EDSAC … LEO), Edwards (Manchester), Wilkinson (NPL ACE), Huskey (SWAC), Rajchman (IAS), Forrester (MIT) What did it feel like then? • What were th e comput ers? • Why did their inventors build them? • What materials (technology) did they build from? • What were their speed and memory size specs? • How did they work? • How were they used or programmed? • What were they used for? • What did each contribute to future computing? • What were the by-products? and alumni/ae? The “classic” five boxes of a stored ppgrogram dig ital comp uter Memory M Central Input Output Control I O CC Central Arithmetic CA How was programming done before programming languages and O/Ss? • ENIAC was programmed by routing control pulse cables f ormi ng th e “ program count er” • Clippinger and von Neumann made “function codes” for the tables of ENIAC • Kilburn at Manchester ran the first 17 word program • Wilkes, Wheeler, and Gill wrote the first book on programmiidbBbbIiSiing, reprinted by Babbage Institute Series • Parallel versus Serial • Pre-programming languages and operating systems • Big idea: compatibility for program investment – EDSAC was transferred to Leo – The IAS Computers built at Universities Time Line of First Computers Year 1935 1940 1945 1950 1955 ••••• BTL ---------o o o o Zuse ----------------o Atanasoff ------------------o IBM ASCC,SSEC ------------o-----------o >CPC ENIAC ?--------------o EDVAC s------------------o UNIVAC I IAS --?s------------o Colossus -------?---?----o Manchester ?--------o ?>Ferranti EDSAC ?-----------o ?>Leo ACE ?--------------o ?>DEUCE Whirl wi nd SEAC & SWAC ENIAC Project Time Line & Descendants IBM 701, Philco S2000, ERA.. -
A Short History of Computing
A Short History of Computing 01/15/15 1 Jacques de Vaucanson 1709-1782 • Gifted French artist and inventor • Son of a glove-maker, aspired to be a clock- maker • 1727-1743 – Created a series of mechanical automations that simulated life. • Best remembered is the “Digesting Duck”, which had over 400 parts. • Also worked to automate looms, creating the first automated loom in 1745. 01/15/15 2 1805 - Jacquard Loom • First fully automated and programmable loom • Used punch cards to “program” the pattern to be woven into cloth 01/15/15 3 Charles Babbage 1791-1871 • English mathematician, engineer, philosopher and inventor. • Originated the concept of the programmable computer, and designed one. • Could also be a Jerk. 01/15/15 4 1822 – Difference Engine Numerical tables were constructed by hand using large numbers of human “computers” (one who computes). Annoyed by the many human errors this produced, Charles Babbage designed a “difference engine” that could calculate values of polynomial functions. It was never completed, although much work was done and money spent. Book Recommendation: The Difference Engine: Charles Babbage and the Quest to Build the First Computer by Doron Swade 01/15/15 5 1837 – Analytical Engine Charles Babbage first described a general purpose analytical engine in 1837, but worked on the design until his death in 1871. It was never built due to lack of manufacturing precision. As designed, it would have been programmed using punch-cards and would have included features such as sequential control, loops, conditionals and branching. If constructed, it would have been the first “computer” as we think of them today. -
Programming the IBM 650
RICHARD v ANDREE ASSOCIATE PROFESSOR OF MATHEMATIC S UNIVERSITY OF OKLAH O MA c - .....- If' '" .. " \ ' 0 .. N G OA t .. ........ ".•0t0l .... --\I'• .Q\; ....... -, OtU;t1Q1t•" ~ .;. ... 1<• ..,'0<" ~ut .....ucnooo ....' U .. "CO Olffhl.. Ow I • ~ 0 0 4. • 0 0 &8CMltU ~ aut\lU '-'Sfb&tJTOIt L ~ ItI~ :U· IlCII'.'" tu.II _ ife» '-'*' QHaAnoe , ...."a SfOfJ SINN no-C .~~' . '. - " ..,. I ( , I. • • • • • • • • "'f"'. ~.. • ',01 ~ IoOW1I ~ _ ....... ... ,~..- J 4«t* , no.. .., , , 't' ' \' , ,.' ~ .' ;' .. I~ MOGt£MMtO NW oa. • 0 0 • • " ,. ~ I ( ,. I 0 If • C()trl:ft.Ol ~. DGPUoy ovtut&'W ~ '''0'1 -- , , . ' I .. .. 'I O(.. IAM (O MJI ~T! " ,I,(Cu' ~I"O""¥I .. ~ .•• ~, I I I "'.' I HH;( I __ ~ S1"" I SlO'. ~ I IlUf HUT U$U l......... ' , • j ~ ~., " id , ~j ~' ·;1 ,IJ ', ',' .' • t., ." '" (, It \ t \' .. , '.3 ~: . f .. _ ... ~ .. ~ ~ . " ' . , '. \t J \' '' ':l!~ t. ','l ) '. J '\ :..' ~. , • , • • ,_ r: .. ' : ,' rW , Ii •• , ' . ~ • " f ,,;. " ,',.' • -elf!" ~-iJ~ !) , r "" ... _, _ _ .. ... .. - ".'" 't. ~" ~ _ ~ f. _ _ ." ~'f--_ _ i __ ~ '* - ;. 4 ' ~ ! /~ RICHARD V. ANDREE ASSOCIATE PROFESSOR OF MATHEMATICS UNIVERSITY OF OKLAHOMA U U U 11 ;J n I] HOLT, RINEHART AND WINSTON, INC. 383 MADISON AVENUE, NEW YORK 17, N. Y. Dedication II II I I I I I II I I I I I III I I II I 1111 " I I I I II I III I I I I III I II 10000010000010000000111000000000100000110010000001000001000000000110000000000000 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526 272829 JO 313233343536 37 38 39 40414243« 45 46 47 48 49 50 5152535455565158596061626364656667686970717213747576 -
History of Digital Storage White Paper
History of Digital Storage Dean Klein Vice President of System Memory Development Micron Technology, Inc. December 15, 2008 Purpose Introduction: Throughout modern history many and various digital The Need to Store Data storage systems have been researched, developed, Since men first scribbled on cave walls, humanity has manufactured, and eventually surpassed in an effort to recognized the instrinic value of information and has address ever-increasing demands for density, operating employed a variety of ways and means to safely store speed, low latency, endurance, and economy.1 This cycle it. The ability to reference numbers for calculation or to of innovation has lead us to a new generation of NAND review information for planning, learning, and action Flash memory-based solid state drives (SSDs) that repre- is fundamental since “all computations, either mental, sent the next evolutionary step in both enterprise and mechanical, or electronic require a storage system of consumer storage applications. some kind, whether the numbers be written on paper, remembered in our brain, counted on the mechanical This paper surveys the memory storage landscape of devices of a gear, punched as holes in paper, or translated the past 50 years—starting at the beginning of digital into electronic circuitry.”2 storage and paying homage to IBM’s groundbreaking RAMAC disk storage unit and StorageTek’s DRAM-based In day-to-day life, this fundamental need to store data SSD; then enumerating the benefits of modern NAND generates innumerable documents, spreadsheets, files, Flash memory and advanced SSDs; and finally looking e-mails, and trillions of other work-related bytes all forward to the near-future possibilities of nonvolatile stored on disks around the globe. -
Looking Back and Inwards Questions Comments from the Past History Of
Basic Bits – looking back and inwards Questions 1940s: How many PCs needed? • Comments from the past 1950s: Predicted future weight? • BRIEF overview of history When was the first computer? – New technology How long to reprogramme WWII computer? – Problems Cost of 1950s IBM computer? – Solutions 1st PC 2nd laptop – New technology … repeat When •Moore’s law Weight • Some observations Cost Comments from the Past History of Computing H/W • 1940s • Aim to make computer # faster, cheaper and store more data • Changes every decade since 1940s – "I think there is a world market for maybe five • Uses: computers." Thomas Watson, chairman of IBM, 1943 – Computation, automation, communication, control, entertainment, – “Where a calculator on the ENIAC is equipped with 18 000 education vacuum tubes and weighs 30 tons, computers of the future may • What was the initial computer? have only 1 000 vacuum tubes and perhaps weigh 1½ • Early h/w tons." — Popular Mechanics, March 1949. – 4000 years ago: abacus – 1206: “Castle clock” – 1206 Al-Jazari (astronomer) • 1950s – 1623: Digital mechanical calculator – “Computers in the future may weigh no more that 1.5 tons” – – 1801:punch card technology Popular Mechanics – 1820: arithmometer – “We’ll have to think up bigger problems if we want to keep them – 1830s: analytical machine - Charles Baggage busy” – Howard Aiken – 1909: programmable mechanical calculator – Percy Ludgate, Dublin – 1900s: desktop calculators • 1960s – Up to before World War II (WWII): Analog computers – “There is no reason anyone would -
PC Hardware Contents
PC Hardware Contents 1 Computer hardware 1 1.1 Von Neumann architecture ...................................... 1 1.2 Sales .................................................. 1 1.3 Different systems ........................................... 2 1.3.1 Personal computer ...................................... 2 1.3.2 Mainframe computer ..................................... 3 1.3.3 Departmental computing ................................... 4 1.3.4 Supercomputer ........................................ 4 1.4 See also ................................................ 4 1.5 References ............................................... 4 1.6 External links ............................................. 4 2 Central processing unit 5 2.1 History ................................................. 5 2.1.1 Transistor and integrated circuit CPUs ............................ 6 2.1.2 Microprocessors ....................................... 7 2.2 Operation ............................................... 8 2.2.1 Fetch ............................................. 8 2.2.2 Decode ............................................ 8 2.2.3 Execute ............................................ 9 2.3 Design and implementation ...................................... 9 2.3.1 Control unit .......................................... 9 2.3.2 Arithmetic logic unit ..................................... 9 2.3.3 Integer range ......................................... 10 2.3.4 Clock rate ........................................... 10 2.3.5 Parallelism ......................................... -
History in the Computing Curriculum
R e p o r t History in the Computing Curriculum I F I P TC 3 / TC 9 Joint Task Group John Impagliazzo (Task Group Chair) Hofstra University Martin Campbell-Kelly University of Warwick Gordon Davies Open University John A. N. Lee Virginia Tech Michael R. Williams University of Calgary Prepublication Copy 1998 October Copyright © 1998, 1999 Institute of Electrical and Electronics Engineers. This report is scheduled to appear in an upcoming issue of the Annals of the History of Computing. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending an email request to <[email protected]>. HISTORY IN THE COMPUTING CURRICULUM Prepublication Copy 1998 October CONTENTS 1. INTRODUCTION 9. RESOURCES 9.1 Textbooks and General Works 2. GOALS AND OBJECTIVES 9.2 Monographs and Articles 9.3 Electronic Information 3. OVERVIEW OF THIS REPORT 9.4 Videos, Simulators, and Other Resources 4. BACKGROUND 10. EXTENDED TOPICS 4.1 Overview of Curriculum Recommendations 10.1 Advanced Courses 4.2 History Status 10.2 Projects 5. NEED FOR HISTORY CONTENT 11. CONCLUSIONS 5.1 The Student Perspective 5.2 The Professional Perspective 12. FUTURE DEVELOPMENTS 6. CURRICULUM CONTENT 6.1 Establishing a Knowledge Base ACKNOWLEDGMENTS 6.2 Methods of Presentation 6.2.1 The Period Method REFERENCES 6.2.2 Other Methods 6.3 Depth of Knowledge PUBLIC ACCESS 6.4 Clusters APPENDIX 7. IMPLEMENTATION OF A BASIC CURRICULUM A. -
2 9215FQ14 FREQUENTLY ASKED QUESTIONS Category Pages Facilities & Buildings 3-10 General Reference 11-20 Human Resources
2 FREQUENTLY ASKED QUESTIONS Category Pages Facilities & Buildings 3-10 General Reference 11-20 Human Resources 21-22 Legal 23-25 Marketing 26 Personal Names (Individuals) 27 Predecessor Companies 28-29 Products & Services 30-89 Public Relations 90 Research 91-97 April 10, 2007 9215FQ14 3 Facilities & Buildings Q. When did IBM first open its offices in my town? A. While it is not possible for us to provide such information for each and every office facility throughout the world, the following listing provides the date IBM offices were established in more than 300 U.S. and international locations: Adelaide, Australia 1914 Akron, Ohio 1917 Albany, New York 1919 Albuquerque, New Mexico 1940 Alexandria, Egypt 1934 Algiers, Algeria 1932 Altoona, Pennsylvania 1915 Amsterdam, Netherlands 1914 Anchorage, Alaska 1947 Ankara, Turkey 1935 Asheville, North Carolina 1946 Asuncion, Paraguay 1941 Athens, Greece 1935 Atlanta, Georgia 1914 Aurora, Illinois 1946 Austin, Texas 1937 Baghdad, Iraq 1947 Baltimore, Maryland 1915 Bangor, Maine 1946 Barcelona, Spain 1923 Barranquilla, Colombia 1946 Baton Rouge, Louisiana 1938 Beaumont, Texas 1946 Belgrade, Yugoslavia 1926 Belo Horizonte, Brazil 1934 Bergen, Norway 1946 Berlin, Germany 1914 (prior to) Bethlehem, Pennsylvania 1938 Beyrouth, Lebanon 1947 Bilbao, Spain 1946 Birmingham, Alabama 1919 Birmingham, England 1930 Bogota, Colombia 1931 Boise, Idaho 1948 Bordeaux, France 1932 Boston, Massachusetts 1914 Brantford, Ontario 1947 Bremen, Germany 1938 9215FQ14 4 Bridgeport, Connecticut 1919 Brisbane, Australia