Jurassic–Cretaceous Terrestrial Transition Red Beds in Northern North

Total Page:16

File Type:pdf, Size:1020Kb

Jurassic–Cretaceous Terrestrial Transition Red Beds in Northern North Available online at www.sciencedirect.com ScienceDirect Palaeoworld 26 (2017) 403–422 Jurassic–Cretaceous terrestrial transition red beds in northern North China and their implication on regional paleogeography, paleoecology, and tectonic evolution ∗ Huan Xu, Yong-Qing Liu , Hong-Wei Kuang, Yan-Xue Liu, Nan Peng Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China Received 21 December 2015; received in revised form 26 April 2016; accepted 19 May 2016 Available online 25 May 2016 Abstract The Jurassic–Cretaceous terrestrial transition red beds in the northern North China Craton are associated with a number of major geological issues that remain controversial, such as paleogeography, biotic transition, and tectonic evolution. Based on previous studies and new progress related to stratigraphy, sedimentology, provenance, biotas, and tectonics, this paper performs a comprehensive review of the red beds in the northern North China Craton represented by the Tuchengzi/Houcheng/Daqingshan Formation (ca. 154–137 Ma) and offers some new perspectives. Based on the 15 measured sections, five facies units including alluvial fan, fluvial, delta, lacustrine, and eolian facies have been recognized and described in detail. Provenance analysis indicates that the red beds were derived from local sources. Deposits in the basins in the eastern Yinshan–Yanshan orogenic belt were derived mainly from volcanic rocks of the Middle–Late Jurassic Tiaojishan Formation and the Mesoproterozoic–Early Paleo- zoic carbonate, siliceous, and clastic rocks present around the basin, especially in the north. In contrast, sediments in the basins in the western Yinshan–Yanshan orogenic belt were provided predominantly by the Neoarchean–Paleoproterozoic metamorphic rocks exposed mainly in the north of the basin. Paleocurrent features in different regions show characteristics of a localized convergent paleo-drainage system, suggest- ing that a series of relatively independent small- to mid-scale basins developed in the northern North China Craton. The east–west-trending Yinshan–Yanshan orogenic belt, formed in the late Middle Jurassic, uplifted successively and constituted a paleogeographic highland in northern North China during the Jurassic–Cretaceous transition time. The presence of eolian deposits in the early Early Cretaceous indicates degradation of the severe arid and hot environment, which may have been an essential factor in the dying out of the Yanliao Biota. Combined with regional Late Jurassic–Early Cretaceous A-type granites, mafic dykes, and metamorphic core complexes and rift basins, this suggests that the Jurassic–Cretaceous transition red beds were formed in an extensional tectonic setting controlled by the post-orogenic collapse of the Mongol–Okhotsk orogenic belt. © 2016 Elsevier B.V. and Nanjing Institute of Geology and Palaeontology, CAS. All rights reserved. Keywords: Jurassic–Cretaceous; Tuchengzi/Houcheng/Daqingshan Formation; Transition red beds; North China Craton 1. Introduction been well recorded in marine strata (Handschumacher et al., 1988; McClelland and Gehrels, 1992; Bertotti et al., 1993; The breakup of Pangea, the expansions of the Atlantic and Monger et al., 1994; Adatte et al., 1996; Jadoul et al., 1998; Tethys Oceans, and the subduction of the Pacific Plate caused Hathway, 2000; McDermid et al., 2002; Ellouz et al., 2003; Ford major impacts on global plate framework, paleogeography, and and Golonka, 2003; Golonka, 2004; Weissert and Erba, 2004; paleoecology during Late Jurassic–Early Cretaceous (Winterer, Isozaki et al., 2010; Sofonova and Santosh, 2014), but remain 1991; Veevers, 2004). These major geological events have poorly studied in terrestrial strata. Two important terrestrial biotas developed in Northeast Asia in late Mesozoic time: the Yanliao Biota (ca. 165–152 Ma) (Y.Q. ∗ Liu et al., 2012a) and the Jehol Biota (ca. 143–120 Ma) (Zhou Corresponding author. Tel.: +86 10 68995462. E-mail address: [email protected] (Y.Q. Liu). et al., 2003; Zhou, 2006; Wei et al., 2008). Both biotas include http://dx.doi.org/10.1016/j.palwor.2016.05.007 1871-174X/© 2016 Elsevier B.V. and Nanjing Institute of Geology and Palaeontology, CAS. All rights reserved. 404 H. Xu et al. / Palaeoworld 26 (2017) 403–422 a large number of exceptionally well-preserved feathered non- northern Mongolia and Russia, represents the locus of final amal- avian dinosaurs, mammals, pterosaurs, fish, and insects (Ji et al., gamation of the Siberian Craton with the Mongolia–North China 1998, 2002; Ren, 1998; X. Xu et al., 1999, 2002; Gao and block (Zorin, 1999). To the south, the Qinling–Dabie–Sulu oro- Shubin, 2003; X.L. Wang et al., 2005; J. Meng et al., 2006; Luo genic belt separates the NCC from the South China Craton et al., 2007; Hu et al., 2009; Yuan et al., 2013), recording two (Ratschbacher et al., 2003). The Yinshan–Yanshan orogenic successive terrestrial ecosystems in the age of dinosaur. In the belt (YYOB), related to the Yanshan movement proposed by lithological succession between the strata that contain Yanliao Weng (1927), is a Mesozoic intracontinental orogenic belt in and Jehol biotas, there exists a suite of very thick terrestrial red the northern NCC (Fig. 1A). beds crossing the Jurassic–Cretaceous (J-K) boundary, namely Northern North China evolved into a continental environment the Tuchengzi/Houcheng/Daqingshan Formation in the northern since Early Triassic and preserved thick and widely distributed part of North China Craton (NCC). The J-K transition red beds Jurassic–Cretaceous strata (Fig. 1B). In northern Hebei–western and their contemporary strata are widely distributed in the north- Liaoning, the Jurassic–Cretaceous can be divided into four eastern part of North China, Northeast China, and East Mongolia volcanic-sedimentary cycles (Fig. 2): the first cycle is character- (Davis et al., 2001; Graham et al., 2001; H. Xu et al., 2011). Due ized by the Early–Middle Jurassic basic–intermediate volcanic to the paucity of contained fossils, the red beds remain poorly rocks and coal-bearing clastic rocks; the second cycle comprises studied. the late Middle Jurassic–early Early Cretaceous intermediate- In recent years, notable progress has been made concerning acid volcanic rocks and coarse clastic rocks; the third cycle the evolution of terrestrial biota as well as its paleogeographic, consists of the middle Early Cretaceous acid volcanic rocks and paleoecological, and paleoclimatic settings in the transitional fine-grained clastic rocks, which are absent in western Liao- period of J-K boundary (Lockley et al., 2006; X.J. Zhao et al., ning; the fourth cycle is composed of the late Early Cretaceous 2006; H. Xu et al., 2011, 2013a; Xing et al., 2012, 2014; J.P. basic-intermediate volcanic rocks and clastic rocks. The Yanliao Zhang et al., 2012). and Jehol biotas are preserved in the second and third cycles, The J-K transition red beds have been increasingly recog- respectively. In western Inner Mongolia (Yinshan–Daqingshan nized as stratigraphically and geologically important for the area), in contrast, volcanic activities were weak and occurred regional tectonic evolution of northern NCC in the Mesozoic only in the late Early Cretaceous, and the clastic deposits are (Y. Zhao, 1990; Davis et al., 1998, 2001; He et al., 1998, 1999, thick (Fig. 2). Two regional angular unconformities represent- 2007, 2008; Davis, 2005; Cope et al., 2007; S.F. Liu et al., 2007; ing an intracontinental orogeny (Yanshan movement) are present H. Xu et al., 2011, 2012, 2013b; J. Liu et al., 2014). However, the in northern North China; one is under the Tiaojishan/Lanqi basin structural properties of the Jurassic–Cretaceous deposits Formation, and the other is under the Yixian and Lisangou and regional tectonic background are hotly debated. These con- formations. troversies include whether the intense products were controlled The J-K transition red beds, represented by the Tuchengzi by the compression from thrust faults (Davis et al., 1998, 2001; Formation in western Liaoning, the Houcheng Formation in He et al., 1998; Cope et al., 2007) or by intraplate extension (Ma northern Hebei, and the Daqingshan Formation in western Inner et al., 2002; Shao et al., 2003; Y.Q. Liu et al., 2015) or the deep Mongolia, are characterized by light purple, purple-red clastic strike-slip faults in the northern margin of the NCC (Qu et al., rocks with regional stability (Figs. 3 and 4). Large amounts of 2006) or by the back-arc extension resulted from subduction of high-precision isotopic dating data have constrained the age of the paleo-Pacific plate (H. Xu et al., 2011). Recent studies based the red beds to 154–137 Ma (H. Xu et al., 2012, 2014) (Fig. 4). on metamorphic core complexes (MCC), mafic dykes, volcanic The J-K transition red beds are widespread in northern North rocks, A-type granites and rift basins in NCC and Northeast China, with thickness of 800–4000 m (Figs. 1C and 4). In gen- Asia indicate that large-scale extension may have been initiated eral, they consist of thick-bedded or massive conglomerate in in the Late Jurassic (S. Liu et al., 2008; Ying et al., 2010; T. Wang the lowermost part, medium–thick-bedded sandstone, siltstone, et al., 2012; Charles et al., 2013; W.L. Xu et al., 2013; Qi et al., mudstone, and limestone interbedded with conglomerate and 2015). Based on these new results and a more detailed analysis tuff in the lower–middle part, and thick-bedded conglomer- of the depositional environment and sediment provenance on the ate and cross-bedded sandstone interbedded with tuff in the J-K transition red beds, this paper comprehensively reviews the middle–upper part in an ascending order (Fig. 3). Tuffaceous geological issues, such as paleogeographic, paleoenvironmen- or volcanic interlayer is absent in the Daqingshan Forma- tal, paleoecological, paleoclimatic and tectonic settings in the tion in Yinshan–Daqingshan. The J-K transition red beds have transitional period of J-K boundary in the northern NCC. conformable or unconformable contacts with the underlying Tiaojishan (intermediate volcanic rocks, volcaniclastic rocks, 2.
Recommended publications
  • Volume 2, Chapter 10-2: Arthropods: Crustacea
    Glime, J. M. 2017. Arthropods: Crustacea – Ostracoda and Amphipoda. Chapt. 10-2. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-2-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-2 ARTHROPODS: CRUSTACEA – OSTRACODA AND AMPHPODA TABLE OF CONTENTS CLASS OSTRACODA ..................................................................................................................................... 10-2-2 Adaptations ................................................................................................................................................ 10-2-3 Swimming to Crawling ....................................................................................................................... 10-2-3 Reproduction ....................................................................................................................................... 10-2-3 Habitats ...................................................................................................................................................... 10-2-3 Terrestrial ............................................................................................................................................ 10-2-3 Peat Bogs ............................................................................................................................................ 10-2-4 Aquatic ...............................................................................................................................................
    [Show full text]
  • Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with Some Considerations on the Morphological Evolution of Ancient Asexuals
    Belg. J. Zool., 141 (2) : 55-74 July 2011 Description of a new genus and two new species of Darwinulidae (Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with some considerations on the morphological evolution of ancient asexuals Giampaolo Rossetti1*, Ricardo L. Pinto 2 & Koen Martens 3 1 University of Panna, Department of Enviromnental Sciences, Viale G.P. Usberti 33 A, 1-43100 Panna, Italy 2 University of Brasilia, Institute of Geosciences, Laboratory of Micropaleontology, ICC, Campus Universitário Darcy Ribeiro Asa Norte, 70910-900 Brasilia, DF, Brazil 3 Royal Belgian Institute of Natural Sciences, Freshwater Biology, Vautierstraat 29, B-1000 Brussels, Belgium, and University of Ghent, Department of Biology, K.L. Ledeganckstraat 35, B-9000 Gent, Belgimn * Conesponding author: Giampaolo Rossetti. Mail: giampaolo.rosscttin unipr.it ABSTRACT. Darwinulidae is believed to be one of the few metazoan taxa in which fully asexual reproduction might have persisted for millions of years. Although rare males in a single darwinulid species have recently been found, they may be non-functional atavisms. The representatives of this family are characterized by a slow evolutionary rate, resulting in a conservative morphology in the different lineages over long time frames and across wide geographic ranges. Differences between species and genera, although often based on small details of valve morphology and chaetotaxy, are nevertheless well-recognizable. Five recent genera ( Darwinula, Alicenula, Vestcdemilct, Penthesilemila and Microdarwimda) and about 35 living species, including also those left in open nomenclature, are included in this family. Previous phylogenetic analyses using both morphological characters and molecular data confirmed that the five genera are good phyletic units.
    [Show full text]
  • Ostracoda, Crustacea) in Turkey
    LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 5(1): 47-59 (2019) Fossil and Recent Distribution and Ecology of Ancient Asexual Ostracod Darwinula stevensoni (Ostracoda, Crustacea) in Turkey Mehmet YAVUZATMACA * , Okan KÜLKÖYLÜOĞLU Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey ABSTRACT ARTICLE INFO In order to determine distribution, habitat and ecological preferences of RESEARCH ARTICLE Darwinula stevensoni, data gathered from 102 samples collected in Turkey between 2000 and 2017 was evaluated. A total of 1786 individuals of D. Received : 28.08.2018 stevensoni were reported from eight different aquatic habitats in 14 provinces in Revised : 21.10.2018 six of seven geographical regions of Turkey. Although there are plenty of samples Accepted : 30.10.2018 from Central Anatolia Region, recent form of the species was not encountered. Unlike recent, fossil forms of species were encountered in all geographic regions Published : 25.04.2019 except Southeastern Anatolia. The oldest fossil record in Turkey was reported from the Miocene period (ca 23 mya). Species occurred in all climatic seasons in DOI:10.17216/LimnoFish.455722 Turkey. D. stevensoni showed high optimum and tolerance levels to different ecological variables. Results showed a positive and negative significant * CORRESPONDING AUTHOR correlations of the species with pH (P<0.05) and elevation (P<0.01), respectively. [email protected] It seems that the ecological preferences of the species are much wider than Phone : +90 537 769 46 28 previously known. Our results suggest that if D. stevensoni is used to estimate past and present environmental conditions, attention and care should be paid on its ecology and distribution.
    [Show full text]
  • On Two New Species of Darwinula BRADY & ROBERTSON, 1885
    BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE, BIOLOGIE, 67: 57-66, 1997 '' BULLETIN VAN HET KONrNKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN, BIOLOGIE, 67: 57-66, 1997 On two new species of Darwinula BRADY & ROBERTSON, 1885 (Crustacea, Ostracoda) from South African dolomitic springs by Koen MARTENS & Giampaolo ROSSETTI Abstract 1968 (represented by only one extant spec1es, M. zimmeri) and the nominate genus Danvinula BRADY Two new Recent darwinulid ostrac ds (Darwinu/a molopoensis & ROB ERTSON, 1885. SOHN (1987) reported 23 living spec. nov. and D. inversa spec. nov.) are described from dolomitic species and 2 subspecies for Darwinula (D. dicastrii springs in the former North West Province (the former Transvaal), LOFFLER was missing from this list); amon·g these RSA. The two new taxa can be distinguished by both soft part species, only D. stevensoni can be considered truly and valve morphology. Darwinula molopoensis spec. nov. belongs ubiquitous. to the D. africana lineage (with D. incon5picua KuE as its Except for a few papers on D. stevensoni (McGREGOR & closest relative), D. inversa spec. nov. belongs into the D. serricaudata group. The synonymy of D. serricaudata espinosa WETZEL 1968, MCGREGOR 1969; RANTA, 1979), little is PINTO & KOTZIAN, 1961 with D. serricaudata KLIE, 1935 is known on the biology and ecology of the Darwinuloidea. discussed. Also taxonomic relationships within this group remain Key words: Ostracods, Darwinu/a mo/opoensis spec. nov., " "unclear, in s'pite of valuable contributions by DAN IELOPOL Darwinula inversa spec. nov., morphology, taxonomy, ancient (1968, 1970, 1980). Indeed, the morphological uniformity asexuals, parthenogenesis, biodiversity. of the Darwinuloidea makes it difficult to single out unequivocal characters suitable for discriminating species and genera.
    [Show full text]
  • Crustacea: Ostracoda) De Pozas Temporales
    Heterocypris bosniaca (Petkowski et al., 2000): Ecología y ontogenia de un ostrácodo (Crustacea: Ostracoda) de pozas temporales. ESIS OCTORAL T D Josep Antoni Aguilar Alberola Departament de Microbiologia i Ecologia Universitat de València Programa de doctorat en Biodiversitat i Biologia Evolutiva Heterocypris bosniaca (Petkowski et al., 2000): Ecología y ontogenia de un ostrácodo (Crustacea: Ostracoda) de pozas temporales. Tesis doctoral presentada por Josep Antoni Aguilar Alberola 2013 Dirigida por Francesc Mesquita Joanes Imagen de cubierta: Vista lateral de la fase eclosionadora de Heterocypris bosniaca. Más detalles en el capítulo V. Tesis titulada "Heterocypris bosniaca (Petkowski et al., 2000): Ecología y ontogenia de un ostrácodo (Crustacea: Ostracoda) de pozas temporales" presentada por JOSEP ANTONI AGUILAR ALBEROLA para optar al grado de Doctor en Ciencias Biológicas por la Universitat de València. Firmado: Josep Antoni Aguilar Alberola Tesis dirigida por el Doctor en Ciencias Biológicas por la Universitat de València, FRANCESC MESQUITA JOANES. Firmado: F. Mesquita i Joanes Profesor Titular de Ecología Universitat de València A Laura, Paco, i la meua família Resumen Los ostrácodos son un grupo de pequeños crustáceos con amplia distribución mundial, cuyo cuerpo está protegido por dos valvas laterales que suelen preservarse con facilidad en el sedimento. En el presente trabajo se muestra la primera cita del ostrácodo Heterocypris bosniaca Petkowski, Scharf y Keyser, 2000 para la Península Ibérica. Se trata de una especie de cipridoideo muy poco conocida que habita pozas de aguas temporales. Se descubrió el año 2000 en Bosnia y desde entonces solo se ha reportado su presencia en Israel (2004) y en Valencia (presente trabajo).
    [Show full text]
  • Mikro-Originale Sammlung BGR/LBEG Hannover
    Mikro-Originale Sammlung BGR/LBEG Hannover Al-Abawi, T. (1973) Miozäne Foraminiferen aus dem NE-Irak. (Miocene foraminifera from the NE Iraq). N.Jb. Geol. Paläont. Abh., 144, 1: 1-23, 9 Abb.; Stuttgart. ? Dorothia sp. Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 55 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 47 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 48 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 49 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 50 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 51 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 52 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 62 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 54 Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 42c Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 56 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 57 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 58 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 59 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 60 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 61 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 53 Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 35c Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 27a-c Holotypus Ammonia acuta n. sp. Abb. 5, Fig. 28a-c Paratypus Ammonia acuta n. sp. Abb. 5, Fig. 29a-c Paratypus Ammonia acuta n. sp. Abb. 5, Fig. 30a-c Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 31c Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 32c Belegexemplar Ammonia acuta n.
    [Show full text]
  • Ostracod Assemblages in the Frasassi Caves and Adjacent Sulfidic Spring and Sentino River in the Northeastern Apennines of Italy
    D.E. Peterson, K.L. Finger, S. Iepure, S. Mariani, A. Montanari, and T. Namiotko – Ostracod assemblages in the Frasassi Caves and adjacent sulfidic spring and Sentino River in the northeastern Apennines of Italy. Journal of Cave and Karst Studies, v. 75, no. 1, p. 11– 27. DOI: 10.4311/2011PA0230 OSTRACOD ASSEMBLAGES IN THE FRASASSI CAVES AND ADJACENT SULFIDIC SPRING AND SENTINO RIVER IN THE NORTHEASTERN APENNINES OF ITALY DAWN E. PETERSON1,KENNETH L. FINGER1*,SANDA IEPURE2,SANDRO MARIANI3, ALESSANDRO MONTANARI4, AND TADEUSZ NAMIOTKO5 Abstract: Rich, diverse assemblages comprising a total (live + dead) of twenty-one ostracod species belonging to fifteen genera were recovered from phreatic waters of the hypogenic Frasassi Cave system and the adjacent Frasassi sulfidic spring and Sentino River in the Marche region of the northeastern Apennines of Italy. Specimens were recovered from ten sites, eight of which were in the phreatic waters of the cave system and sampled at different times of the year over a period of five years. Approximately 6900 specimens were recovered, the vast majority of which were disarticulated valves; live ostracods were also collected. The most abundant species in the sulfidic spring and Sentino River were Prionocypris zenkeri, Herpetocypris chevreuxi,andCypridopsis vidua, while the phreatic waters of the cave system were dominated by two putatively new stygobitic species of Mixtacandona and Pseudolimnocythere and a species that was also abundant in the sulfidic spring, Fabaeformiscandona ex gr. F. fabaeformis. Pseudocandona ex gr. P. eremita, likely another new stygobitic species, is recorded for the first time in Italy. The relatively high diversity of the ostracod assemblages at Frasassi could be attributed to the heterogeneity of groundwater and associated habitats or to niche partitioning promoted by the creation of a chemoautotrophic ecosystem based on sulfur-oxidizing bacteria.
    [Show full text]
  • Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with Some Considerations on the Morphological Evolution of Ancient Asexuals
    Belg. J. Zool., 141 (2) : 55-74 July 2011 Description of a new genus and two new species of Darwinulidae (Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with some considerations on the morphological evolution of ancient asexuals Giampaolo Rossetti1*, Ricardo L. Pinto2 & Koen Martens3 1 University of Parma, Department of Environmental Sciences, Viale G.P. Usberti 33A, I-43100 Parma, Italy 2 University of Brasília, Institute of Geosciences, Laboratory of Micropaleontology, ICC, Campus Universitário Darcy Ribeiro Asa Norte, 70910-900 Brasilia, DF, Brazil 3 Royal Belgian Institute of Natural Sciences, Freshwater Biology, Vautierstraat 29, B-1000 Brussels, Belgium, and University of Ghent, Department of Biology, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium * Corresponding author: Giampaolo Rossetti. Mail: [email protected] ABSTRACT. Darwinulidae is believed to be one of the few metazoan taxa in which fully asexual reproduction might have persisted for millions of years. Although rare males in a single darwinulid species have recently been found, they may be non-functional atavisms. The representatives of this family are characterized by a slow evolutionary rate, resulting in a conservative morphology in the different lineages over long time frames and across wide geographic ranges. Differences between species and genera, although often based on small details of valve morphology and chaetotaxy, are nevertheless well-recognizable. Five recent genera (Darwinula, Alicenula, Vestalenula, Penthesilenula and Microdarwinula) and about 35 living species, including also those left in open nomenclature, are included in this family. Previous phylogenetic analyses using both morphological characters and molecular data confirmed that the five genera are good phyletic units. Here, we report on the results of a study on darwinulid ostracods from Christmas Island (Indian Ocean).
    [Show full text]
  • 62 Anuário Do Instituto De Geociências
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Fauna da Formação Brejo Santo, Neojurássico da Bacia do Araripe, Brasil: Interpretações Paleoambientais The Brejo Santo Formation Fauna, Neojurassic from Araripe Basin, Brazil: Paleoenvironmental Interpretations Bruno Gonçalves Vieira de Melo & Ismar de Souza Carvalho Universidade Federal do Rio de Janeiro, Centro de Ciências Matemáticas e da Natureza, Instituto de Geociências, Departamento de Geologia, Avenida Athos da Silveira Ramos, 274, Bloco F, Ilha do Fundão – Cidade Universitária, Rio de Janeiro, RJ, 21949-900, Brasil E-mails: [email protected]; [email protected] Recebido em: 12/09/2017 Aprovado em:10/10/2017 DOI: http://dx.doi.org/10.11137/2017_3_62_74 Resumo A Bacia do Araripe teve sua origem e evolução relacionadas aos eventos tectônicos que culminaram com o rifteamento do Gondwana e abertura do oceano Atlântico Sul. Os depósitos do Neojurássico da bacia estão inseridos na Tectonossequência Pré-Rifte e compreendem a Formação Brejo Santo. Os macrofósseis e microfósseis incluem peixes Mawsonia gigas e Lepidotes sp., Crocodyliformes, Dinosauria, e invertebrados como ostracodes, conchostráceos, gastrópode, biválvio, além de icnofósseis. A associação fossilífera, aliada às observações sedimentológicas dos aloramentos, torna possível caracterizar o ambiente deposicional. O predomínio de camadas lutíticas vermelhasred beds) ( evidencia a deposição em corpos d’água rasos, em condições oxidantes, de áreas alagadas da planície de inundação, em clima árido, associados a momentos esporádicos de inundação luvial. A ocorrência de níveis carbonáticos e a diversidade de ostracodes mixohalinos (citeráceos), sugerem que as áreas alagadas eram caracterizadas por águas salobras (salinidade entre 1 e 24,7 %), temperadas ou quentes e com pH alcalino.
    [Show full text]
  • Early Carboniferous (Late Tournaisian–Early Viséan) Ostracods from the Ballagan Formation, Central Scotland, UK
    Journal of Micropalaeontology, 24: 77–94. 0262-821X/05 $15.00 2005 The Micropalaeontological Society Early Carboniferous (Late Tournaisian–Early Viséan) ostracods from the Ballagan Formation, central Scotland, UK MARK WILLIAMS1, 2, MICHAEL STEPHENSON1, IAN P. WILKINSON1, MELANIE J. LENG3 & C. GILES MILLER4 1 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK. 2Current address: British Antarctic Survey, Geological Sciences Division, High Cross, Madingley Road, Cambridge CB3 0ET, UK (e-mail: [email protected]. uk). 3NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK. 4Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK. ABSTRACT – The Ballagan Formation (Late Tournaisian–Early Viséan) of central Scotland yields an ostracod fauna of 14 species in ten genera, namely Beyrichiopsis, Cavellina, Glyptolichvinella, Glyptopleura, Knoxiella, Paraparchites, Sansabella, Shemonaella, Silenites and Sulcella. The ostracods, in combination with palynomorphs, are important biostratigraphical indices for correlating the rock sequences, where other means of correlation, especially goniatites, conodonts, foraminifera, brachiopods or corals are absent. Stratigraphical distribution of the ostracods, calibrated with well-established palynomorph biozones, identifies three informally defined intervals: a sub-CM palynomorph Biozone interval with poor ostracod assemblages including Shemonaella scotoburdigalensis; a succeeding interval within the CM palynomorph Biozone where Cavellina coela,
    [Show full text]
  • Article Is Available Online Pod Morphology Before and After the Permian Mass Extinction At
    Biogeosciences, 15, 5489–5502, 2018 https://doi.org/10.5194/bg-15-5489-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda Claudia Wrozyna1,2, Thomas A. Neubauer3,4, Juliane Meyer1, Maria Ines F. Ramos5, and Werner E. Piller1 1Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria 2Institute for Geophysics and Geology, University of Leipzig, 04109 Leipzig, Germany 3Department of Animal Ecology & Systematics, Justus Liebig University, 35392 Giessen, Germany 4Naturalis Biodiversity Center, Leiden, 2300 RA, the Netherlands 5Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio Goeldi, 66077-830, Brazil Correspondence: Claudia Wrozyna ([email protected]) Received: 13 September 2017 – Discussion started: 10 November 2017 Revised: 21 August 2018 – Accepted: 24 August 2018 – Published: 14 September 2018 Abstract. How environmental change affects a species’ phe- ality, annual precipitation and chloride and sulfate concen- notype is crucial not only for taxonomy and biodiversity as- trations. We suggest that increased temperature seasonality sessments but also for its application as a palaeo-ecological slowed down growth rates during colder months, potentially and ecological indicator. Previous investigations addressing triggering the development of shortened valves with well- the impact of the climate and hydrochemical regime on os- developed brood pouches. Differences in chloride and sul- tracod valve morphology have yielded contrasting results. fate concentrations, related to fluctuations in precipitation, Frequently identified ecological factors influencing carapace are considered to affect valve development via controlling shape are salinity, cation, sulfate concentrations, and alkalin- osmoregulation and carapace calcification.
    [Show full text]
  • Biodiversity and Society Understanding Connections, Adapting to Change
    Abstracts cover:Layout 1 2009/09/28 8:47 AM Page 1 BIODIVERSITY AND SOCIETY UNDERSTANDING CONNECTIONS, ADAPTING TO CHANGE A B S T R A C T S DIVERSITAS Open Science Conference 2 13 – 16 October 2009 CAPE TOWN SOUTH AFRICA CONTENTS w w w. d i v e r s i t a s - i n t e r n a t i o n a l . o r g NB: This is an interactive programme. To go to an abstract, click on the letter corresponding to the initial of the first author’s last name. To come back to this Content page, click on “Back to content” on lower right corner of each page. Contents Plenary speakers Symposiums overview Symposiums A-D E-H I-L M-O P-Z Orals A-D E-H I-L M-O P-Z Posters A-D E-H I-L M-O P-Z Plenary speakers • • • • 3 • • • • Plenary speakers Brown George, Lavelle Patrick, Jackson Louise, Brussaard Lijbert Unearthing below-ground biodiversity: Management and conservation implications Embrapa Florestas, Ecology, Brazil, [email protected] Plenary session Soils are living entities and the home of a vast diversity of organisms, with a broad range of body sizes (from bacteria to earthworms), feeding strategies, and life habits. The great spatial and temporal variability in soils promotes a complex niche structure and an incredibly dense packing of species: a typical healthy soil may have a few species of vertebrates, springtails and oligochaetes, dozens of species of nematodes, spiders, mites and myriapods, more than one hundred species of insects and fungi and perhaps thousands of species of bacteria and actinomycetes.
    [Show full text]