Contributions to Aircraft Preliminary Design and Optimization L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of Next Generation Civilian Aircraft
International Journal of Scientific & Engineering Research Volume 11, Issue 12, December-2020 293 ISSN 2229-5518 Development of Next Generation Civilian Aircraft H Sai Manish Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal, Karnataka, India Abstract Designing a NEXT GENERATION FLYING VEHICLE & its JET ENGINE for commercial air transportation civil aviation Service. Implementation of Innovation in Future Aviation & Aerospace. In the ever-changing dynamics of the world of airspace and technology constant Research and Development is required to adapt to meet the requirement of the passengers. This study aims to develop a subsonic passenger aircraft which is designed in a way to make airline travel economical and affordable to everyone. The design and development of this study aims to i) to reduce the various forces acted on the aircraft thereby reducing the fuel consumption, ii) to utilise proper set of materials and composites to reduce the aircraft weight and iii) proper implementation of Engineering Design techniques. This assessment considers the feasibility of the technology and development efforts, as well as their potential commercial prospects given the anticipated market and current regulatory regime. Keywords Aircraft, Drag reduction, Engine, Fuselage, Manufacture, Weight reduction, Wings Introduction Subsonic airlines have been IJSERthe norm now almost reaching speeds of Mach 0.80, with this into consideration all the commercial passenger airlines have adapted to design and implement aircraft to subsonic speeds. Although high speeds are usually desirable in an aircraft, supersonic flight requires much bigger engines, higher fuel consumption and more advanced materials than subsonic flight. A subsonic type therefore costs far less than the equivalent supersonic design, has greater range and causes less harm to the environment. -
A Parametrical Transport Aircraft Fuselage Model for Preliminary Sizing and Beyond
Deutscher Luft- und Raumfahrtkongress 2014 DocumentID: 340104 A PARAMETRICAL TRANSPORT AIRCRAFT FUSELAGE MODEL FOR PRELIMINARY SIZING AND BEYOND D. B. Schwinn, D. Kohlgrüber, J. Scherer, M. H. Siemann German Aerospace Center (DLR), Institute of Structures and Design (BT), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany [email protected], tel.: +49 (0) 711 6862-221, fax: +49 (0) 711 6862-227 Abstract Aircraft design generally comprises three consecutive phases: Conceptual, preliminary and detailed design phase. The preliminary design phase is of particular interest as the basic layout of the primary structure is defined. Up to date, semi-analytical methods are widely used in this design stage to estimate the structural mass. Although these methods lead to adequate results for the major aircraft components of standard configurations, the evaluation of new configurations (e.g. box wing, blended wing body) or specific structural components with complex loading conditions (e.g. center wing box) is very challenging and demands higher fidelity approaches based on Finite Elements (FE). To accelerate FE model generation in multi-disciplinary design approaches, automated processes have been introduced. In order to easily couple different tools, a standardized data format – CPACS (Common Parameterized Aircraft Configuration Schema) - is used. The versatile structural description in CPACS, the implementation in model generation tools but also current limitations and future enhancements will be discussed. Recent development in the progress of numerical process chains for structural sizing but also for further applications including crash on solid ground and ditching (emergency landing on water) are presented in this paper. flight and ground load cases, e.g. +2.5g maneuver, gust 1. -
Systems Engineering Approach in Aircraft Design Education; Techniques and Challenges
Paper ID #11232 Systems Engineering Approach in Aircraft Design Education; Techniques and Challenges Prof. Mohammad Sadraey, Daniel Webster College Mohammad H. Sadraey is an Associate Professor in the Engineering School at the Daniel Webster Col- lege, Nashua, New Hampshire, USA. Dr. Sadraey’s main research interests are in aircraft design tech- niques, and design and automatic control of unmanned aircraft. He received his MSc. in Aerospace Engineering in 1995 from RMIT, Melbourne, Australia, and his Ph.D. in Aerospace Engineering from the University of Kansas, Kansas, USA. Dr. Sadraey is a senior member of the American Institute of Aeronautics and Astronautics (AIAA), and a member of American Society for Engineering Education (ASEE). Prof. Nicholas Bertozzi, Daniel Webster College Nick Bertozzi is a Professor of Engineering at Daniel Webster College (DWC) and Dean of the School of Engineering and Computer Science (SECS). His major interest over the past 18 years has been the concurrent engineering design process, an interest that was fanned into flame by attending an NSF faculty development workshop in 1996 led by Ron Barr and Davor Juricic. Nick has a particular interest in help- ing engineering students develop good communications skills and has made this a SECS priority. Over the past ten years he and other engineering and humanities faculty colleagues have mentored a number of undergraduate student teams who have co-authored and presented papers and posters at Engineering Design Graphics Division (EDGD) and other ASEE, CDIO (www.cdio.org), and American Institute of Aeronautics and Astronautics (AIAA) meetings as well. Nick was delighted to serve as the EDGD pro- gram chair for the 2008 ASEE Summer Conference and as program co-chair with Kathy Holliday-Darr for the 68th EDGD Midyear meeting at WPI in October 2013. -
Design of a Light Business Jet Family David C
Design of a Light Business Jet Family David C. Alman Andrew R. M. Hoeft Terry H. Ma AIAA : 498858 AIAA : 494351 AIAA : 820228 Cameron B. McMillan Jagadeesh Movva Christopher L. Rolince AIAA : 486025 AIAA : 738175 AIAA : 808866 I. Acknowledgements We would like to thank Mr. Carl Johnson, Dr. Neil Weston, and the numerous Georgia Tech faculty and students who have assisted in our personal and aerospace education, and this project specifically. In addition, the authors would like to individually thank the following: David C. Alman: My entire family, but in particular LCDR Allen E. Alman, USNR (BSAE Purdue ’49) and father James D. Alman (BSAE Boston University ’87) for instilling in me a love for aircraft, and Karrin B. Alman for being a wonderful mother and reading to me as a child. I’d also like to thank my friends, including brother Mark T. Alman, who have provided advice, laughs, and made life more fun. Also, I am forever indebted to Roe and Penny Stamps and the Stamps President’s Scholarship Program for allowing me to attend Georgia Tech and to the Georgia Tech Research Institute for providing me with incredible opportunities to learn and grow as an engineer. Lastly, I’d like to thank the countless mentors who have believed in me, helped me learn, and Page i provided the advice that has helped form who I am today. Andrew R. M. Hoeft: As with every undertaking in my life, my involvement on this project would not have been possible without the tireless support of my family and friends. -
Aircraft Requirements for Sustainable Regional Aviation
aerospace Article Aircraft Requirements for Sustainable Regional Aviation Dominik Eisenhut 1,*,† , Nicolas Moebs 1,† , Evert Windels 2, Dominique Bergmann 1, Ingmar Geiß 1, Ricardo Reis 3 and Andreas Strohmayer 1 1 Institute of Aircraft Design, University of Stuttgart, 70569 Stuttgart, Germany; [email protected] (N.M.); [email protected] (D.B.); [email protected] (I.G.); [email protected] (A.S.) 2 Aircraft Development and Systems Engineering (ADSE) BV, 2132 LR Hoofddorp, The Netherlands; [email protected] 3 Embraer Research and Technology Europe—Airholding S.A., 2615–315 Alverca do Ribatejo, Portugal; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Recently, the new Green Deal policy initiative was presented by the European Union. The EU aims to achieve a sustainable future and be the first climate-neutral continent by 2050. It targets all of the continent’s industries, meaning aviation must contribute to these changes as well. By employing a systems engineering approach, this high-level task can be split into different levels to get from the vision to the relevant system or product itself. Part of this iterative process involves the aircraft requirements, which make the goals more achievable on the system level and allow validation of whether the designed systems fulfill these requirements. Within this work, the top-level aircraft requirements (TLARs) for a hybrid-electric regional aircraft for up to 50 passengers are presented. Apart from performance requirements, other requirements, like environmental ones, Citation: Eisenhut, D.; Moebs, N.; are also included. -
E. Runway Length Analysis
JOSLIN FIELD, MAGIC VALLEY REGIONAL AIRPORT DECEMBER 2012 E. Runway Length Analysis This appendix describes the runway length analysis conducted for the Airport. Runway 7-25, the Airport’s primary runway, has a length of 8,700 feet and the existing crosswind runway (Runway 12-30) has a length of 3,207 feet. A runway length analysis was conducted to determine if additional runway length is required to meet the needs of aircraft forecasted to operate at the Airport through the planning period. The analysis was conducted according to Federal Aviation Administration (FAA) guidance contained in Advisory Circular (AC) 150/5325-4B, Runway Length Requirements for Airport Design. The runway length analysis set forth in AC 150/5325-4B relates to both arrivals and departures, although departures typically require more runway length. Runway length requirements were determined separately for Runway 7-25 and Runway 12-30. E.1 Primary Runway Length Requirements According to AC 150/5325-4B, the design objective for the primary runway is to provide a runway length for all aircraft without causing operational weight restrictions. The methodology used to determine required runway lengths is based on the MTOW of the aircraft types to be evaluated, which are grouped into the following categories: Small aircraft (MTOW of 12,500 pounds or less) – Aircraft in this category range in size from ultralight aircraft to small turboprop aircraft. Within this category, aircraft are broken out by approach speeds (less than 30 knots, at least 30 knots but less than 50 knots, and more than 50 knots). Aircraft with approach speeds of more than 50 knots are further broken out by passenger seat capacity (less than 10 passenger seats and 10 or more passenger seats). -
General Aviation Aircraft Design
Contents 1. The Aircraft Design Process 3.2 Constraint Analysis 57 3.2.1 General Methodology 58 1.1 Introduction 2 3.2.2 Introduction of Stall Speed Limits into 1.1.1 The Content of this Chapter 5 the Constraint Diagram 65 1.1.2 Important Elements of a New Aircraft 3.3 Introduction to Trade Studies 66 Design 5 3.3.1 Step-by-step: Stall Speed e Cruise Speed 1.2 General Process of Aircraft Design 11 Carpet Plot 67 1.2.1 Common Description of the Design Process 11 3.3.2 Design of Experiments 69 1.2.2 Important Regulatory Concepts 13 3.3.3 Cost Functions 72 1.3 Aircraft Design Algorithm 15 Exercises 74 1.3.1 Conceptual Design Algorithm for a GA Variables 75 Aircraft 16 1.3.2 Implementation of the Conceptual 4. Aircraft Conceptual Layout Design Algorithm 16 1.4 Elements of Project Engineering 19 4.1 Introduction 77 1.4.1 Gantt Diagrams 19 4.1.1 The Content of this Chapter 78 1.4.2 Fishbone Diagram for Preliminary 4.1.2 Requirements, Mission, and Applicable Regulations 78 Airplane Design 19 4.1.3 Past and Present Directions in Aircraft Design 79 1.4.3 Managing Compliance with Project 4.1.4 Aircraft Component Recognition 79 Requirements 21 4.2 The Fundamentals of the Configuration Layout 82 1.4.4 Project Plan and Task Management 21 4.2.1 Vertical Wing Location 82 1.4.5 Quality Function Deployment and a House 4.2.2 Wing Configuration 86 of Quality 21 4.2.3 Wing Dihedral 86 1.5 Presenting the Design Project 27 4.2.4 Wing Structural Configuration 87 Variables 32 4.2.5 Cabin Configurations 88 References 32 4.2.6 Propeller Configuration 89 4.2.7 Engine Placement 89 2. -
14 CFR Ch. I (1–1–16 Edition) § 23.1589
§ 23.1589 14 CFR Ch. I (1–1–16 Edition) (11) The altimeter system calibration (1) Canard, tandem-wing, close-coupled, or required by § 23.1325(e). tailless arrangements of the lifting surfaces; (2) Biplane or multiplane wing arrange- [Doc. No. 27807, 61 FR 5194, Feb. 9, 1996, as ments; amended by Amdt. 23–62, 76 FR 75763, Dec. 2, (3) T-tail, V-tail, or cruciform-tail ( + ) ar- 2011] rangements; (4) Highly-swept wing platform (more than § 23.1589 Loading information. 15-degrees of sweep at the quarter-chord), The following loading information delta planforms, or slatted lifting surfaces; or must be furnished: (5) Winglets or other wing tip devices, or (a) The weight and location of each outboard fins. item of equipment that can be easily removed, relocated, or replaced and A23.3 Special symbols. that is installed when the airplane was n1 = Airplane Positive Maneuvering Limit weighed under the requirement of Load Factor. § 23.25. n2 = Airplane Negative Maneuvering Limit (b) Appropriate loading instructions Load Factor. for each possible loading condition be- n3 = Airplane Positive Gust Limit Load Fac- tor at VC. tween the maximum and minimum n = Airplane Negative Gust Limit Load Fac- weights established under § 23.25, to fa- 4 tor at VC. cilitate the center of gravity remain- nflap = Airplane Positive Limit Load Factor ing within the limits established under With Flaps Fully Extended at VF. § 23.23. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–45, 58 FR 42167, Aug. 6, 1993; Amdt. 23–50, 61 FR 5195, Feb. -
The Changing Structure of the Global Large Civil Aircraft Industry and Market: Implications for the Competitiveness of the U.S
ABSTRACT On September 23, 1997, at the request of the House Committee on Ways and Means (Committee),1 the United States International Trade Commission (Commission) instituted investigation No. 332-384, The Changing Structure of the Global Large Civil Aircraft Industry and Market: Implications for the Competitiveness of the U.S. Industry, under section 332(g) of the Tariff Act of 1930, for the purpose of exploring recent developments in the global large civil aircraft (LCA) industry and market. As requested by the Committee, the Commission’s report on the investigation is similar in scope to the report submitted to the Senate Committee on Finance by the Commission in August 1993, initiated under section 332(g) of the Tariff Act of 1930 (USITC inv. No. 332-332, Global Competitiveness of U.S. Advanced-Technology Manufacturing Industries: Large Civil Aircraft, Publication 2667) and includes the following information: C A description of changes in the structure of the global LCA industry, including the Boeing-McDonnell Douglas merger, the restructuring of Airbus Industrie, the emergence of Russian producers, and the possibility of Asian parts suppliers forming consortia to manufacture complete airframes; C A description of developments in the global market for aircraft, including the emergence of regional jet aircraft and proposed jumbo jets, and issues involving Open Skies and free flight; C A description of the implementation and status of the 1992 U.S.-EU Large Civil Aircraft Agreement; C A description of other significant developments that affect the competitiveness of the U.S. LCA industry; and C An analysis of the aforementioned structural changes in the LCA industry and market to assess the impact of these changes on the competitiveness of the U.S. -
Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis
NASA Contractor Report 4700 Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis Steven L. Baughcum, Terrance G. Tritz, Stephen C. Henderson, and David C. Pickett Contract NAS1-19360 Prepared for Langley Research Center April 1996 NASA Contractor Report 4700 Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis Steven L. Baughcum, Terrance G. Tritz, Stephen C. Henderson, and David C. Pickett Boeing Commercial Airplane Group • Seattle Washington National Aeronautics and Space Administration Prepared for Langley Research Center Langley Research Center • Hampton, Virginia 23681-0001 under Contract NAS1-19360 April 1996 Printed copies available from the following: NASA Center for AeroSpace Information National Technical Information Service (NTIS) 800 Elkridge Landing Road 5285 Port Royal Road Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171 (301) 621-0390 (703) 487-4650 Executive Summary This report describes the development of a database of aircraft fuel burned and emissions from scheduled air traffic for each month of 1992. In addition, the earlier results (NASA CR-4592) for May 1990 scheduled air traffic have been updated using improved algorithms. These emissions inventories were developed under the NASA High Speed Research Systems Studies (HSRSS) contract NAS1-19360, Task Assignment 53. They will be available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. A detailed database of fuel burned and emissions [NOx, carbon monoxide(CO), and hydrocarbons (HC)] for scheduled air traffic has been calculated for each month of 1992. In addition, the emissions for May 1990 have been recalculated using the same methodology. The data are on a 1° latitude x 1° longitude x 1 km altitude grid. -
Wing, Fuselage and Tail • Mainplane: Airfoil Cross-Section Shape, Taper Ratio Selection, Sweep Angle Selection, Wing Drag Estimation
Design Of Structural Components - Wing, Fuselage and Tail • Mainplane: Airfoil cross-section shape, taper ratio selection, sweep angle selection, wing drag estimation. Spread sheet for wing design. • Fuselage: Volume consideration, quantitative shapes, air inlets, wing attachments; Aerodynamic considerations and drag estimation. Spread sheets. • Tail arrangements: Horizontal and vertical tail sizing. Tail planform shapes. Airfoil selection type. Tail placement. Spread sheets for tail design Main Wing Design 1. Introduction: Airfoil Geometry: • Wing is the main lifting surface of the aircraft. • Wing design is the next logical step in the conceptual design of the aircraft, after selecting the weight and the wing-loading that match the mission requirements. • The design of the wing consists of selecting: i) the airfoil cross-section, ii) the average (mean) chord length, iii) the maximum thickness-to-chord ratio, iv) the aspect ratio, v) the taper ratio, and Wing Geometry: vi) the sweep angle which is defined for the leading edge (LE) as well as the trailing edge (TE) • Another part of the wing design involves enhanced lift devices such as leading and trailing edge flaps. • Experimental data is used for the selection of the airfoil cross-section shape. • The ultimate “goals” for the wing design are based on the mission requirements. • In some cases, these goals are in conflict and will require some compromise. Main Wing Design (contd) 2. Airfoil Cross-Section Shape: • Effect of ( t c ) max on C • The shape of the wing cross-section determines lmax for a variety of the pressure distribution on the upper and lower 2-D airfoil sections is surfaces of the wing. -
Improving the Aircraft Design Process Using Web-Based Modeling and Simulation
Reed. J.;I.. Fdiet7, G. .j. unci AJjeh. ‘-1. ,-I Improving the Aircraft Design Process Using Web-based Modeling and Simulation John A. Reed?, Gregory J. Follenz, and Abdollah A. Afjeht tThe University of Toledo 2801 West Bancroft Street Toledo, Ohio 43606 :NASA John H. Glenn Research Center 2 1000 Brookpark Road Cleveland, Ohio 44135 Keywords: Web-based simulation, aircraft design, distributed simulation, JavaTM,object-oriented ~~ ~ ~ ~~ Supported by the High Performance Computing and Communication Project (HPCCP) at the NASA Glenn Research Center. Page 1 of35 Abstract Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation. Page 2 of 35 1 Introduction Intensive competition in the commercial aviation industry is placing increasing pressure on aircraft manufacturers to reduce the time, cost and risk of product development. To compete effectively in today’s global marketplace, innovative approaches to reducing aircraft design-cycle times are needed. Computational simulation, such as computational fluid dynamics (CFD) and finite element analysis (FEA), has the potential to compress design-cycle times due to the flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs and because it can be used to integrate multidisciplinary analysis earlier in the design process [ 171.