Tomographic Reconstruction Algorithms Using Optoelectronic Devices Tongxin Lu Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cramer's Rule 1 Cramer's Rule
Cramer's rule 1 Cramer's rule In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the vector of right hand sides of the equations. It is named after Gabriel Cramer (1704–1752), who published the rule for an arbitrary number of unknowns in 1750[1], although Colin Maclaurin also published special cases of the rule in 1748[2] (and probably knew of it as early as 1729).[3][4][5] General case Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: where the n by n matrix has a nonzero determinant, and the vector is the column vector of the variables. Then the theorem states that in this case the system has a unique solution, whose individual values for the unknowns are given by: where is the matrix formed by replacing the ith column of by the column vector . The rule holds for systems of equations with coefficients and unknowns in any field, not just in the real numbers. It has recently been shown that Cramer's rule can be implemented in O(n3) time,[6] which is comparable to more common methods of solving systems of linear equations, such as Gaussian elimination. Proof The proof for Cramer's rule uses just two properties of determinants: linearity with respect to any given column (taking for that column a linear combination of column vectors produces as determinant the corresponding linear combination of their determinants), and the fact that the determinant is zero whenever two columns are equal (the determinant is alternating in the columns). -
Fundamentals of the Mechanics of Solids
Paolo Maria Mariano Luciano Galano Fundamentals of the Mechanics of Solids Paolo Maria Mariano • Luciano Galano Fundamentals of the Mechanics of Solids Paolo Maria Mariano Luciano Galano DICeA DICeA University of Florence University of Florence Firenze, Italy Firenze, Italy Eserciziario di Meccanica delle Strutture Original Italian edition published by © Edizioni CompoMat, Configni, 2011 ISBN 978-1-4939-3132-3 ISBN 978-1-4939-3133-0 (eBook) DOI 10.1007/978-1-4939-3133-0 Library of Congress Control Number: 2015946322 Mathematics Subject Classification (2010): 7401, 7402, 74A, 74B, 74K10 Springer New York Heidelberg Dordrecht London © Springer Science+Business Media New York 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
On the Histories of Linear Algebra: the Case of Linear Systems Christine Larson, Indiana University There Is a Long-Standing Tr
On the Histories of Linear Algebra: The Case of Linear Systems Christine Larson, Indiana University There is a long-standing tradition in mathematics education to look to history to inform instructional design (see e.g. Avital, 1995; Dorier, 2000; Swetz, 1995). An historical analysis of the genesis of a mathematical idea offers insight into (1) the contexts that give rise to a need for a mathematical construct, (2) the ways in which available tools might shape the development of that mathematical idea, and (3) the types of informal and intuitive ways that students might conceptualize that idea. Such insights can be particularly important for instruction and instructional design in inquiry-oriented approaches where students are expected to reinvent significant mathematical ideas. Sensitivity to the original contexts and notations that afforded the development of particular mathematical ideas is invaluable to the instructor or instructional designer who aims to facilitate students’ reinvention of such ideas. This paper will explore the ways in which instruction and instructional design in linear algebra can be informed by looking to the history of the subject. Three of the most surprising things I have learned from my excursion into the literature on the history of linear algebra had to do with Gaussian elimination. The first surprise was learning that the idea behind Gaussian elimination preceded Gauss by over 2000 years – there is evidence that the Chinese were using an equivalent procedure to solve systems of linear equations as early as 200 BC (Katz, 1995; van der Waerden, 1983). The second surprise was that Gauss developed the method we now call Gaussian elimination without the use of matrices. -
A Proposal for Reconceptualizing Urbanism Gerardo Del Cerro
Volume-1, Issue-3, July-2018: 1-26 International Journal of Current Innovations in Advanced Research ISSN: 2636-6282 The Science of Urbs and Its Discontents: A Proposal for Reconceptualizing Urbanism Gerardo del Cerro Santamaría, Ph.D., Dr. Soc. Sci. U.S. Fulbright Senior Specialist in Urban Planning, New York Invited Professor of Urbanism and Globalization School of Architecture and Urban Planning Shenyang Jianzhu University Shenyang, Liaoning, China Abstract: This paper suggests a mode of inquiry for urbanism based on transdisciplinarity. Our contention is that if massive geohistorical developments pose a fundamental challenge to the entire field of urban studies (its basic epistemological assumptions, categories of analysis, and object of investigation), as posited by some researchers, then a satisfactory way of meeting such challenge cannot come from within urban studies or any other discipline, but rather from a transdisciplinary perspective “beyond and between disciplines,” one that rejects scientific realism and uses its own, distinct epistemological axioms to flesh out the interactions between object and subject (knowledge and design, discovery and creation) in research as the preliminary foundation for a new conception of urbanism. This paper works as a draft where the focus is on collecting and organizing evidence as a first step in our project for a proposal for transdisciplinary urbanism. Keywords: Transdisciplinarity, urban space, phenomenology, urban studies, capitalist urbanization, sociospatial transformations. Citation: Gerardo del Cerro Santamaría. 2018. The Science of Urbs and Its Discontents: A Proposal for Reconceptualizing Urbanism. International Journal of Current Innovations in Advanced Research, 1(3): 1-26. Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Application of Lie-Group Symmetry Analysis to an Infinite Hierarchy Of
Application of Lie-group symmetry analysis to an infinite hierarchy of differential equations at the example of first order ODEs Michael Frewer∗ Tr¨ubnerstr. 42, 69121 Heidelberg, Germany November 3, 2015 Abstract This study will explicitly demonstrate by example that an unrestricted infinite and forward recursive hierarchy of differential equations must be identified as an unclosed system of equations, despite the fact that to each unknown function in the hierarchy there exists a corresponding determined equation to which it can be bijectively mapped to. As a direct consequence, its admitted set of symmetry transformations must be identified as a weaker set of indeterminate equivalence transformations. The reason is that no unique general solution can be constructed, not even in principle. Instead, infinitely many disjoint and thus independent general solution manifolds exist. This is in clear contrast to a closed system of differential equations that only allows for a single and thus unique general solution manifold, which, by definition, covers all possible particular solutions this system can admit. Herein, different first order Riccati-ODEs serve as an example, but this analysis is not restricted to them. All conclusions drawn in this study will translate to any first order or higher order ODEs as well as to any PDEs. Keywords: Ordinary Differential Equations, Infinite Systems, Lie Symmetries and Equivalences, Unclosed Systems, General Solutions, Linear and Nonlinear Equations, Initial Value Problems ; MSC2010: 22E30, 34A05, 34A12, 34A25, 34A34, 34A35, 40A05 1. Introduction, motivation and a brief overview what to expect Infinite systems of ordinary differential equations (ODEs) appear naturally in many appli- cations (see e.g.