Fundamentals of the Mechanics of Solids

Total Page:16

File Type:pdf, Size:1020Kb

Fundamentals of the Mechanics of Solids Paolo Maria Mariano Luciano Galano Fundamentals of the Mechanics of Solids Paolo Maria Mariano • Luciano Galano Fundamentals of the Mechanics of Solids Paolo Maria Mariano Luciano Galano DICeA DICeA University of Florence University of Florence Firenze, Italy Firenze, Italy Eserciziario di Meccanica delle Strutture Original Italian edition published by © Edizioni CompoMat, Configni, 2011 ISBN 978-1-4939-3132-3 ISBN 978-1-4939-3133-0 (eBook) DOI 10.1007/978-1-4939-3133-0 Library of Congress Control Number: 2015946322 Mathematics Subject Classification (2010): 7401, 7402, 74A, 74B, 74K10 Springer New York Heidelberg Dordrecht London © Springer Science+Business Media New York 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer Science+Business Media LLC New York is part of Springer Science+Business Media (www. springer.com) Preface This book emerged from an “experiment in didactics” that has been under devel- opment at the University of Florence (Italy) since the academic year 2006/2007: teaching the mechanics of solids to undergraduate students in mechanical engineer- ing in a deductive way from a few first principles, including essential elements of the description of finite-strain behavior and paying attention to the role of invariance properties under changes in observers. We do not claim originality for this program and are also conscious of the advantages of other approaches: ours is just a description of the origin of a choice dictated by personal taste and history. It has been also motivated by the consciousness that a merely descriptive style can risk reducing the treatment to a list of special examples or formulas with unexplained origin, while an inductive approach could give, even indirectly, prominence to reasoning by analogy, blurring in some way the logical structure of the theory. Since its inception, about 170 have taken the 84-hour course each year. All students had previous training in analysis and geometry, including basic elements of linear algebra. They were also trained in rational mechanics of mass points and rigid bodies, which is taught in a course of the same length. Their mathematical background had been enlarged during the course by requisite notions from tensor algebra and analysis. We collect the pertinent material in an appendix, where we clarify further the notation adopted in the text. One of us (PMM) developed the “experiment” varying the course every year according to student response and the changes in his perception. The other (LG) began later to transfer appropriate por- tions of the spirit of the course to analogous courses in other fields of engineering. There are several introductory textbooks on the mechanics of solids. Some of them follow a strictly deductive program rather than being primarily descriptive or having an inductive approach. We have written this book by following our personal taste, with the goal of organizing the subject matter in a way that prepares the readers for further study, being conscious that the development of mechanics could require even modifications of the first principles. Beyond the technical aspects, our conviction is that the subject must be presented in a critical way, without giving v vi Preface the reader the impression that it has been constructed as an immutable structure crystallized once and for all. In fact, it seems to us that a merely dogmatic approach to mechanics does not contribute to the possibility of deeply investigating the foundational aspects of the subject. In contrast, the attention to foundational aspects is the primary tool for constructing new models, even new theories: families of interconnected models. The interest for the analysis of the theoretical foundations is not a mere interest for the formal structure of the theories; rather, it has to be stimulated in the students in university courses, even though perhaps only a few of them will be involved in research activities after the completion of their education. To us, even those who will work as professional engineers can take meaningful advantage of this type of program so that they might eventually have the flexibility to learn and (perhaps) manage new models and techniques, those that might be developed to satisfy future technological needs or, above all, for giving us a better knowledge of nature. Moreover, an attitude that favors the comprehension and analysis of the foundational aspects of mechanical theories encourages one to search for the physical meaning of every formal step we do, on the basis of our analytical, geometric, and/or computational skills. In this spirit, we begin with the definition of bodies and deformation, recovering the kinematics of the rigid ones as a special case. In this way, we establish a link with the basic courses in rational mechanics of mass points and rigid bodies, showing how the subject matter we present is a natural continuation of the previous topics. We distinguish between the space in which we select the reference point for a body and the one in which we record shapes that we consider deformed. The second space is what we consider the physical one, the first being just a “room” used for comparing lengths, areas, volumes, with their prototypical counterparts that we declare to be undeformed. This unusual distinction allows us to clarify some statements concerning changes in observers and related invariance properties. We distinguish also between material and spatial metrics, each defined in the pertinent space. Then finite-strain measures emerge from the comparison between one metric and the pullback of the other in the space where we decide to compare the two. Small-strain deformation tensors arise from the linearization process. This is the topic of Chapter 1. Chapter 2 deals with the definition of observers and a class of their possible changes, those determined by rotating and translating frames (i.e., coordinate systems) in the ambient physical space. We call these changes in observers classical. We suggest options for them, all pertaining to the way in which we alter frames in space, indeed, irrespectively of the type of body considered; in fact, the class of changes in observers is not to be confused with the class of admissible motions for a body, although the two classes intersect. In Chapter 3, we tackle the representation of bulk and contact actions in terms of the power they develop. We write just the external power on a generic part of the body and require its invariance under classes of isometric changes in observers. The integral balances of forces and couples emerge as a result. Then they are used to derive the action–reaction principle, the existence of the stress tensor, the balance Preface vii equation in Eulerian and Lagrangian descriptions, the expression of the internal (or inner) power in both representations. The approach follows the spirit of a 1963 proposal by Walter Noll.1 Chapter 4 deals with constitutive issues. We discuss the way of restricting a priori the set of possible constitutive structures on the basis of the second law of thermodynamics—here presented as a mechanical dissipation inequality—and on requirements of objectivity. Our attention is essentially focused on nonlinear and linearized elasticity. We discuss also the notion of material isomorphism. Incidentally, when we foresee changes in observers in the reference (material) space, the requirement that the observers record the same material forces the change in observer itself to preserve the volume, according to the definition of material diffeomorphism, irrespectively of the type of body under scrutiny. Such classes of changes in observers become crucial in the description of material mutations, a topic not treated here, since it goes beyond the scope of this book. In Chapter 5, we discuss variational principles in linearized elasticity. Among them, the Hellinger–Prange–Reissner and Hu–Washizu principles are additional to the material constituting the course mentioned repeatedly above. The chapter includes also Kirchhoff’s uniqueness theorem, and the Navier and Beltrami– Donati–Michell equations. The latter equations are essential tools for the analyses developed in the subsequent chapter. We end the chapter with some remarks on two-dimensional equilibrium problems. Chapter 6 deals with the de Saint-Venant problem: the statics of a linear elastic slender cylinder, free of weight, loaded just on its bases. There are two ways of discussing such a problem: in terms of displacements or stresses. We follow the second approach and are indebted to the 1984 treatise in Italian on the matter by Riccardo Baldacci.2 The chapter ends with a proof of the basic Toupin’s theorem on the de Saint-Venant principle. Chapter 7 includes a description of some yield criteria and a discussion of their role in the representation of the material behavior. There are several criteria, introduced for various reasons, not all of the same importance.
Recommended publications
  • Cramer's Rule 1 Cramer's Rule
    Cramer's rule 1 Cramer's rule In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the vector of right hand sides of the equations. It is named after Gabriel Cramer (1704–1752), who published the rule for an arbitrary number of unknowns in 1750[1], although Colin Maclaurin also published special cases of the rule in 1748[2] (and probably knew of it as early as 1729).[3][4][5] General case Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: where the n by n matrix has a nonzero determinant, and the vector is the column vector of the variables. Then the theorem states that in this case the system has a unique solution, whose individual values for the unknowns are given by: where is the matrix formed by replacing the ith column of by the column vector . The rule holds for systems of equations with coefficients and unknowns in any field, not just in the real numbers. It has recently been shown that Cramer's rule can be implemented in O(n3) time,[6] which is comparable to more common methods of solving systems of linear equations, such as Gaussian elimination. Proof The proof for Cramer's rule uses just two properties of determinants: linearity with respect to any given column (taking for that column a linear combination of column vectors produces as determinant the corresponding linear combination of their determinants), and the fact that the determinant is zero whenever two columns are equal (the determinant is alternating in the columns).
    [Show full text]
  • Tomographic Reconstruction Algorithms Using Optoelectronic Devices Tongxin Lu Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 Tomographic reconstruction algorithms using optoelectronic devices Tongxin Lu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons, Signal Processing Commons, and the Systems and Communications Commons Recommended Citation Lu, Tongxin, "Tomographic reconstruction algorithms using optoelectronic devices " (1992). Retrospective Theses and Dissertations. 10330. https://lib.dr.iastate.edu/rtd/10330 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • On the Histories of Linear Algebra: the Case of Linear Systems Christine Larson, Indiana University There Is a Long-Standing Tr
    On the Histories of Linear Algebra: The Case of Linear Systems Christine Larson, Indiana University There is a long-standing tradition in mathematics education to look to history to inform instructional design (see e.g. Avital, 1995; Dorier, 2000; Swetz, 1995). An historical analysis of the genesis of a mathematical idea offers insight into (1) the contexts that give rise to a need for a mathematical construct, (2) the ways in which available tools might shape the development of that mathematical idea, and (3) the types of informal and intuitive ways that students might conceptualize that idea. Such insights can be particularly important for instruction and instructional design in inquiry-oriented approaches where students are expected to reinvent significant mathematical ideas. Sensitivity to the original contexts and notations that afforded the development of particular mathematical ideas is invaluable to the instructor or instructional designer who aims to facilitate students’ reinvention of such ideas. This paper will explore the ways in which instruction and instructional design in linear algebra can be informed by looking to the history of the subject. Three of the most surprising things I have learned from my excursion into the literature on the history of linear algebra had to do with Gaussian elimination. The first surprise was learning that the idea behind Gaussian elimination preceded Gauss by over 2000 years – there is evidence that the Chinese were using an equivalent procedure to solve systems of linear equations as early as 200 BC (Katz, 1995; van der Waerden, 1983). The second surprise was that Gauss developed the method we now call Gaussian elimination without the use of matrices.
    [Show full text]
  • A Proposal for Reconceptualizing Urbanism Gerardo Del Cerro
    Volume-1, Issue-3, July-2018: 1-26 International Journal of Current Innovations in Advanced Research ISSN: 2636-6282 The Science of Urbs and Its Discontents: A Proposal for Reconceptualizing Urbanism Gerardo del Cerro Santamaría, Ph.D., Dr. Soc. Sci. U.S. Fulbright Senior Specialist in Urban Planning, New York Invited Professor of Urbanism and Globalization School of Architecture and Urban Planning Shenyang Jianzhu University Shenyang, Liaoning, China Abstract: This paper suggests a mode of inquiry for urbanism based on transdisciplinarity. Our contention is that if massive geohistorical developments pose a fundamental challenge to the entire field of urban studies (its basic epistemological assumptions, categories of analysis, and object of investigation), as posited by some researchers, then a satisfactory way of meeting such challenge cannot come from within urban studies or any other discipline, but rather from a transdisciplinary perspective “beyond and between disciplines,” one that rejects scientific realism and uses its own, distinct epistemological axioms to flesh out the interactions between object and subject (knowledge and design, discovery and creation) in research as the preliminary foundation for a new conception of urbanism. This paper works as a draft where the focus is on collecting and organizing evidence as a first step in our project for a proposal for transdisciplinary urbanism. Keywords: Transdisciplinarity, urban space, phenomenology, urban studies, capitalist urbanization, sociospatial transformations. Citation: Gerardo del Cerro Santamaría. 2018. The Science of Urbs and Its Discontents: A Proposal for Reconceptualizing Urbanism. International Journal of Current Innovations in Advanced Research, 1(3): 1-26. Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Application of Lie-Group Symmetry Analysis to an Infinite Hierarchy Of
    Application of Lie-group symmetry analysis to an infinite hierarchy of differential equations at the example of first order ODEs Michael Frewer∗ Tr¨ubnerstr. 42, 69121 Heidelberg, Germany November 3, 2015 Abstract This study will explicitly demonstrate by example that an unrestricted infinite and forward recursive hierarchy of differential equations must be identified as an unclosed system of equations, despite the fact that to each unknown function in the hierarchy there exists a corresponding determined equation to which it can be bijectively mapped to. As a direct consequence, its admitted set of symmetry transformations must be identified as a weaker set of indeterminate equivalence transformations. The reason is that no unique general solution can be constructed, not even in principle. Instead, infinitely many disjoint and thus independent general solution manifolds exist. This is in clear contrast to a closed system of differential equations that only allows for a single and thus unique general solution manifold, which, by definition, covers all possible particular solutions this system can admit. Herein, different first order Riccati-ODEs serve as an example, but this analysis is not restricted to them. All conclusions drawn in this study will translate to any first order or higher order ODEs as well as to any PDEs. Keywords: Ordinary Differential Equations, Infinite Systems, Lie Symmetries and Equivalences, Unclosed Systems, General Solutions, Linear and Nonlinear Equations, Initial Value Problems ; MSC2010: 22E30, 34A05, 34A12, 34A25, 34A34, 34A35, 40A05 1. Introduction, motivation and a brief overview what to expect Infinite systems of ordinary differential equations (ODEs) appear naturally in many appli- cations (see e.g.
    [Show full text]