Cramer's Rule 1 Cramer's Rule
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tomographic Reconstruction Algorithms Using Optoelectronic Devices Tongxin Lu Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 Tomographic reconstruction algorithms using optoelectronic devices Tongxin Lu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons, Signal Processing Commons, and the Systems and Communications Commons Recommended Citation Lu, Tongxin, "Tomographic reconstruction algorithms using optoelectronic devices " (1992). Retrospective Theses and Dissertations. 10330. https://lib.dr.iastate.edu/rtd/10330 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
Systems of Linear Equations
Systems of Linear Equations 0.1 Definitions Recall that if A 2 Rm×n and B 2 Rm×p, then the augmented matrix [A j B] 2 Rm×n+p is the matrix [AB], that is the matrix whose first n columns are the columns of A, and whose last p columns are the columns of B. Typically we consider B = 2 Rm×1 ' Rm, a column vector. We also recall that a matrix A 2 Rm×n is said to be in reduced row echelon form if, counting from the topmost row to the bottom-most, 1. any row containing a nonzero entry precedes any row in which all the entries are zero (if any) 2. the first nonzero entry in each row is the only nonzero entry in its column 3. the first nonzero entry in each row is 1 and it occurs in a column to the right of the first nonzero entry in the preceding row Example 0.1 The following matrices are not in reduced echelon form because they all fail some part of 3 (the first one also fails 2): 01 1 01 00 1 0 21 2 0 0 0 1 0 1 0 0 1 @ A @ A 0 1 0 1 0 1 0 0 1 1 A matrix that is in reduced row echelon form is: 01 0 1 01 @0 1 0 0A 0 0 0 1 A system of m linear equations in n unknowns is a set of m equations, numbered from 1 to m going down, each in n variables xi which are multiplied by coefficients aij 2 F , whose sum equals some bj 2 R: 8 a x + a x + ··· + a x = b > 11 1 12 2 1n n 1 > <> a21x1 + a22x2+ ··· + a2nxn = b2 (S) . -
Systems of Differential Equations
Chapter 11 Systems of Differential Equations 11.1: Examples of Systems 11.2: Basic First-order System Methods 11.3: Structure of Linear Systems 11.4: Matrix Exponential 11.5: The Eigenanalysis Method for x′ = Ax 11.6: Jordan Form and Eigenanalysis 11.7: Nonhomogeneous Linear Systems 11.8: Second-order Systems 11.9: Numerical Methods for Systems Linear systems. A linear system is a system of differential equa- tions of the form x = a x + + a x + f , 1′ 11 1 · · · 1n n 1 x2′ = a21x1 + + a2nxn + f2, (1) . · · · . · · · x = a x + + a x + f , m′ m1 1 · · · mn n m where ′ = d/dt. Given are the functions aij(t) and fj(t) on some interval a<t<b. The unknowns are the functions x1(t), . , xn(t). The system is called homogeneous if all fj = 0, otherwise it is called non-homogeneous. Matrix Notation for Systems. A non-homogeneous system of linear equations (1) is written as the equivalent vector-matrix system x′ = A(t)x + f(t), where x1 f1 a11 a1n . · · · . x = . , f = . , A = . . · · · xn fn am1 amn · · · 11.1 Examples of Systems 521 11.1 Examples of Systems Brine Tank Cascade ................. 521 Cascades and Compartment Analysis ................. 522 Recycled Brine Tank Cascade ................. 523 Pond Pollution ................. 524 Home Heating ................. 526 Chemostats and Microorganism Culturing ................. 528 Irregular Heartbeats and Lidocaine ................. 529 Nutrient Flow in an Aquarium ................. 530 Biomass Transfer ................. 531 Pesticides in Soil and Trees ................. 532 Forecasting Prices ................. 533 Coupled Spring-Mass Systems ................. 534 Boxcars ................. 535 Electrical Network I ................. 536 Electrical Network II ................. 537 Logging Timber by Helicopter ................ -
Computing the Strict Chebyshev Solution of Overdetermined Linear Equations
MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 140 OCTOBER 1977, PAGES 974-983 Computing the Strict Chebyshev Solution of Overdetermined Linear Equations By Nabih N. Abdelmalek Abstract. A method for calculating the strict Chebyshev solution of overdetermined systems of linear equations using linear programming techniques is described. This method provides: (1) a way to determine, for the majority of cases, all the equations belonging to the characteristic set, (2) an efficient method to obtain the inverse of the matrix needed to calculate the strict Chebyshev solution, and (3) a way of recog- nizing when an element of the Chebyshev solution equals a corresponding element of the strict Chebyshev solution. As a result, in general, the computational effort is con- siderably reduced. Also the present method deals with full rank as well as rank defi- cient cases. Numerical results are given. 1. Introduction. Consider the overdetermined system of linear equations (1) Ca = f, where C is a given real n x m matrix of rank k < m < n and / is a given real «-vector. Let E denote the set of n equations (1). The Chebyshev solution (C.S.) of system (1) is the OT-vectora* = (a*) which minimizes the Chebyshev norm z, (2) z = max\r¡(a)\, i E E, where r, is the rth residual in (1) and is given by (3) a-,.= cixax+ ••• + cimam - f¡, i E E. Let us denote the C.S. a* by (a*)c s . It is known that if C satisfies the Haar condition, the C.S. (a*)c s is unique. Otherwise it may not be unique. -
CHAPTER 8: MATRICES and DETERMINANTS
(Section 8.1: Matrices and Determinants) 8.01 CHAPTER 8: MATRICES and DETERMINANTS The material in this chapter will be covered in your Linear Algebra class (Math 254 at Mesa). SECTION 8.1: MATRICES and SYSTEMS OF EQUATIONS PART A: MATRICES A matrix is basically an organized box (or “array”) of numbers (or other expressions). In this chapter, we will typically assume that our matrices contain only numbers. Example Here is a matrix of size 2 3 (“2 by 3”), because it has 2 rows and 3 columns: 102 015 The matrix consists of 6 entries or elements. In general, an m n matrix has m rows and n columns and has mn entries. Example Here is a matrix of size 2 2 (an order 2 square matrix): 4 1 3 2 The boldfaced entries lie on the main diagonal of the matrix. (The other diagonal is the skew diagonal.) (Section 8.1: Matrices and Determinants) 8.02 PART B: THE AUGMENTED MATRIX FOR A SYSTEM OF LINEAR EQUATIONS Example 3x + 2y + z = 0 Write the augmented matrix for the system: 2x z = 3 Solution Preliminaries: Make sure that the equations are in (what we refer to now as) standard form, meaning that … • All of the variable terms are on the left side (with x, y, and z ordered alphabetically), and • There is only one constant term, and it is on the right side. Line up like terms vertically. Here, we will rewrite the system as follows: 3x + 2y + z = 0 2x z = 3 (Optional) Insert “1”s and “0”s to clarify coefficients. -
Fundamentals of the Mechanics of Solids
Paolo Maria Mariano Luciano Galano Fundamentals of the Mechanics of Solids Paolo Maria Mariano • Luciano Galano Fundamentals of the Mechanics of Solids Paolo Maria Mariano Luciano Galano DICeA DICeA University of Florence University of Florence Firenze, Italy Firenze, Italy Eserciziario di Meccanica delle Strutture Original Italian edition published by © Edizioni CompoMat, Configni, 2011 ISBN 978-1-4939-3132-3 ISBN 978-1-4939-3133-0 (eBook) DOI 10.1007/978-1-4939-3133-0 Library of Congress Control Number: 2015946322 Mathematics Subject Classification (2010): 7401, 7402, 74A, 74B, 74K10 Springer New York Heidelberg Dordrecht London © Springer Science+Business Media New York 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Solving Systems of Linear Equations Using Matrices What Is a Matrix? a Matrix Is a Compact Grid Or Array of Numbers
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations. Matrices have many applications in science, engineering, and math courses. This handout will focus on how to solve a system of linear equations using matrices. How to Solve a System of Equations Using Matrices Matrices are useful for solving systems of equations. There are two main methods of solving systems of equations: Gaussian elimination and Gauss-Jordan elimination. Both processes begin the same way. To begin solving a system of equations with either method, the equations are first changed into a matrix. The coefficient matrix is a matrix comprised of the coefficients of the variables which is written such that each row represents one equation and each column contains the coefficients for the same variable in each equation. The constant matrix is the solution to each of the equations written in a single column and in the same order as the rows of the coefficient matrix. The augmented matrix is the coefficient matrix with the constant matrix as the last column. Example: Write the coefficient matrix, constant matrix, and augmented matrix for the following system of equations: 3 2 + 4 = 9 − 3 − 2 = 5 4 3 − + 2 = 7 Solution: The coefficient matrix is created by taking the coefficients of each variable and − entering them into each row. The first equation will be the first row; the second equation will be the second row, and the third equation will be the third row. -
On the Histories of Linear Algebra: the Case of Linear Systems Christine Larson, Indiana University There Is a Long-Standing Tr
On the Histories of Linear Algebra: The Case of Linear Systems Christine Larson, Indiana University There is a long-standing tradition in mathematics education to look to history to inform instructional design (see e.g. Avital, 1995; Dorier, 2000; Swetz, 1995). An historical analysis of the genesis of a mathematical idea offers insight into (1) the contexts that give rise to a need for a mathematical construct, (2) the ways in which available tools might shape the development of that mathematical idea, and (3) the types of informal and intuitive ways that students might conceptualize that idea. Such insights can be particularly important for instruction and instructional design in inquiry-oriented approaches where students are expected to reinvent significant mathematical ideas. Sensitivity to the original contexts and notations that afforded the development of particular mathematical ideas is invaluable to the instructor or instructional designer who aims to facilitate students’ reinvention of such ideas. This paper will explore the ways in which instruction and instructional design in linear algebra can be informed by looking to the history of the subject. Three of the most surprising things I have learned from my excursion into the literature on the history of linear algebra had to do with Gaussian elimination. The first surprise was learning that the idea behind Gaussian elimination preceded Gauss by over 2000 years – there is evidence that the Chinese were using an equivalent procedure to solve systems of linear equations as early as 200 BC (Katz, 1995; van der Waerden, 1983). The second surprise was that Gauss developed the method we now call Gaussian elimination without the use of matrices. -
A Proposal for Reconceptualizing Urbanism Gerardo Del Cerro
Volume-1, Issue-3, July-2018: 1-26 International Journal of Current Innovations in Advanced Research ISSN: 2636-6282 The Science of Urbs and Its Discontents: A Proposal for Reconceptualizing Urbanism Gerardo del Cerro Santamaría, Ph.D., Dr. Soc. Sci. U.S. Fulbright Senior Specialist in Urban Planning, New York Invited Professor of Urbanism and Globalization School of Architecture and Urban Planning Shenyang Jianzhu University Shenyang, Liaoning, China Abstract: This paper suggests a mode of inquiry for urbanism based on transdisciplinarity. Our contention is that if massive geohistorical developments pose a fundamental challenge to the entire field of urban studies (its basic epistemological assumptions, categories of analysis, and object of investigation), as posited by some researchers, then a satisfactory way of meeting such challenge cannot come from within urban studies or any other discipline, but rather from a transdisciplinary perspective “beyond and between disciplines,” one that rejects scientific realism and uses its own, distinct epistemological axioms to flesh out the interactions between object and subject (knowledge and design, discovery and creation) in research as the preliminary foundation for a new conception of urbanism. This paper works as a draft where the focus is on collecting and organizing evidence as a first step in our project for a proposal for transdisciplinary urbanism. Keywords: Transdisciplinarity, urban space, phenomenology, urban studies, capitalist urbanization, sociospatial transformations. Citation: Gerardo del Cerro Santamaría. 2018. The Science of Urbs and Its Discontents: A Proposal for Reconceptualizing Urbanism. International Journal of Current Innovations in Advanced Research, 1(3): 1-26. Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
An Algorithm for Solving Parametric Linear Systems +
J. Symbolic Computation (1992) 13, 353-394 An Algorithm for Solving Parametric Linear Systems + WILLIAM Y. SIT Department of Mathematics, The City College of New York, New York, NY 10031, USA 1BM Research, P. 0 .Box 218, Yorktown Heights, NY 10598, USA (Received 17 April 1988) We present a theoretical foundation for studying parametric systems of linear equations and prove an efficient algorithm for identifying all parametric values (including degener- ate cases) for which the system is consistent. The algorithm gives a small set of regimes where for each regime, the solutions of the specialized systems may be given uniformly. For homogeneous linear systems, or for systems where the right hand side is arbitrary, this small set is irredundant. We discuss in detail practical Issues concerning implemen- tations, with particular emphasis on simplification of results. Examples are given based on a close implementation of the algorithm in SCRATCHPAD II. We also give a com- plexity analysis of the Gaussian elimination method and compare that with our algorithm. I. Introduction Consider the following problem: given a parametric system of linear equations (PSLE) over a computable coefficient domain R, with parameters x = (x,, ..., x~,), determine all choices of parametric values ct = (% ..., am) for which the system (which may become degenerate) is solvable, and for each such choice, solve the linear system. Here a+ lies in some computable extension field U of the quotient field F of R; for example, U may be some finite algebraic extension of Q when R = 7/. For obvious reasons, we would prefer the algorithm to give the solutions in the most genetic form, and the set of 0c for which a generic solution is valid should be described as simply as possible. -
Linear Algebra Review
Linear algebra review Dec 10, 2014 1. Solving system of linear equations: Given a system of linear equation Ax = b, where A is an m n matrix. × (a) We first observe the augmented matrix and perform elementary row operations to find the reduced echelon form: [A b] [R c]. | −→ | If there are some rows in [R c] of the form | [0 0 d], ··· where d =0,thenthesystemoflinearequationshasnosolutionandisinconsis- tent; otherwise$ we only need to observe the coefficient matrix A: If rank A = n, then there is a unique solution (no free variables); If rank A<n, then there are infinitely many solutions (still has free variables). Note rank A can never be greater than either m or n. (b) To find the general solutions to the system of linear equations, we still need to use the augmented matrix [R c], the concrete steps are as follows: | Recover a “new” system of linear equations from [R c], solve basic variables using free variables, write them in the parametric vector| form. (c) If A is square matrix (number of the equations equals the number of variables), then Cramer’s rule is an efficient method to determine the existence as well as to calculate the exact solutions of a system of linear equations. There will be formulas involving determinant for the solution. 2. Homogeneous system of linear equations Ax = 0 There are only two possible types of solutions for homogeneous system: If rank A = n (column vectors of A are linearly independent), only trivial solution. If rank A<n, infinitely many solutions. The set of all solutions forms a vector space, called Null space of A. -
Systems of First Order Linear Differential Equations X1
Systems of First Order Linear Differential Equations We will now turn our attention to solving systems of simultaneous homogeneous first order linear differential equations. The solutions of such systems require much linear algebra (Math 220). But since it is not a prerequisite for this course, we have to limit ourselves to the simplest instances: those systems of two equations and two unknowns only. But first, we shall have a brief overview and learn some notations and terminology. A system of n linear first order differential equations in n unknowns (an n × n system of linear equations) has the general form: x1′ = a11 x1 + a12 x2 + … + a1n xn + g1 x2′ = a21 x1 + a22 x2 + … + a2n xn + g2 x3′ = a31 x1 + a32 x2 + … + a3n xn + g3 (*) : : : : : : xn′ = an1 x1 + an2 x2 + … + ann xn + gn Where the coefficients aij ’s, and gi’s are arbitrary functions of t. If every term gi is constant zero, then the system is said to be homogeneous. Otherwise, it is a nonhomogeneous system if even one of the g’s is nonzero. © 2008, 2012 Zachary S Tseng D-1 - 1 The system (*) is most often given in a shorthand format as a matrix-vector equation, in the form: x′ = Ax + g ′ x a a ... a x g 1 11 12 1n 1 1 ′ a a ... a x g x2 21 22 2n 2 2 ′ x a31 a32 ... a3n x3 g3 3 = + : : : : : : : : : : : : : : ′ an1 an2 ... ann xn g n xn x′ A x g Where the matrix of coefficients, A, is called the coefficient matrix of the system. The vectors x′, x, and g are ′ x1 x1 g1 ′ x g x2 2 2 ′ x g x3 3 3 x′ = , x = , g = .