Trade-Offs in Continuous Integration:Assurance, Security, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rugby - a Process Model for Continuous Software Engineering
INSTITUT FUR¨ INFORMATIK DER TECHNISCHEN UNIVERSITAT¨ MUNCHEN¨ Forschungs- und Lehreinheit I Angewandte Softwaretechnik Rugby - A Process Model for Continuous Software Engineering Stephan Tobias Krusche Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Informatik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Helmut Seidl Prufer¨ der Dissertation: 1. Univ.-Prof. Bernd Brugge,¨ Ph.D. 2. Prof. Dr. Jurgen¨ Borstler,¨ Blekinge Institute of Technology, Karlskrona, Schweden Die Dissertation wurde am 28.01.2016 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Informatik am 29.02.2016 angenommen. Abstract Software is developed in increasingly dynamic environments. Organizations need the capability to deal with uncertainty and to react to unexpected changes in require- ments and technologies. Agile methods already improve the flexibility towards changes and with the emergence of continuous delivery, regular feedback loops have become possible. The abilities to maintain high code quality through reviews, to regularly re- lease software, and to collect and prioritize user feedback, are necessary for con- tinuous software engineering. However, there exists no uniform process model that handles the increasing number of reviews, releases and feedback reports. In this dissertation, we describe Rugby, a process model for continuous software en- gineering that is based on a meta model, which treats development activities as parallel workflows and which allows tailoring, customization and extension. Rugby includes a change model and treats changes as events that activate workflows. It integrates re- view management, release management, and feedback management as workflows. As a consequence, Rugby handles the increasing number of reviews, releases and feedback and at the same time decreases their size and effort. -
SIGSOFT CFP-ICSE04.Qxd
General Chair Richard N. Taylor Call for Participation University of California, Irvine [email protected] ACM SIGSOFT 2004 Program Chair Matthew B. Dwyer Twelfth International Symposium on the Kansas State University Foundations of Software Engineering FSE-12 [email protected] Newport Beach Program Committee Ken Anderson, U Colorado, Boulder, USA October 31 - November 5, 2004 Annie Antón, North Carolina State U, USA Hyatt Newporter Hotel, Newport Beach, California, USA Joanne Atlee, U Waterloo, Canada Prem Devanbu, U California, Davis, USA http://www.isr.uci.edu/FSE-12/ Mary Jean Harrold, Georgia Tech, USA John Hatcliff, Kansas State U, USA Jim Herbsleb, Carnegie Mellon U, USA SIGSOFT 2004 brings together researchers and practitioners from academia and industry to André van der Hoek, U California, Irvine, exchange new results related to both traditional and emerging fields of software engineer- USA ing. SIGSOFT 2004 will feature four workshops, one day of tutorials organized through the Paola Inverardi, U L'Aquila, Italy Educator's Grant Program (EGP), a student resarch forum with posters, along with FSE-12. Gregor Kiczales, U British Columbia, Canada Jeff Kramer, Imperial College London, UK FSE-12 will be held Tuesday-Thursday, November 2-4. We are pleased to announce the Shriram Krishnamurthi, Brown U, USA keynotes: Shinji Kusumoto, Osaka U, Japan Axel van Lamsweerde, U Catholique de Alexander L. Wolf, University of Colorado at Boulder, Tues. Nov. 2 Louvain, Belgium Bashar Nuseibeh, The Open U, UK Joe Marks, Director, Mitsubishi Electric Research Laboratories, Cambridge, Wed. Nov. 3 Mauro Pezzé, U Milano-Bicocca, Italy SIGSOFT Distinguished Research Award winner, Thur. -
Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation
Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation : Application in a Healthcare Company Clément Duffau, Bartosz Grabiec, Mireille Blay-Fornarino To cite this version: Clément Duffau, Bartosz Grabiec, Mireille Blay-Fornarino. Towards Embedded System Agile Develop- ment Challenging Verification, Validation and Accreditation : Application in a Healthcare Company. ISSRE 2017- IEEE International Symposium on Software Reliability Engineering, Oct 2017, Toulouse, France. pp.1-4. hal-01678815 HAL Id: hal-01678815 https://hal.archives-ouvertes.fr/hal-01678815 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation Application in a Healthcare Company Clement´ Duffau Bartosz Grabiec Mireille Blay-Fornarino AXONIC and I3S AXONIC I3S Universite´ Coteˆ d’Azur, CNRS Sophia Antipolis, France Universite´ Coteˆ d’Azur, CNRS Sophia Antipolis, France [email protected] Sophia Antipolis, France [email protected] [email protected] Abstract—When Agile development meets critical embedded to survive. Moreover, with limited human resources, quality systems, verification, validation and accreditation activities are improvement with Agility usage remains to be demonstrated. impacted. Challenges such as tests increase or accreditation The remainder of this paper is organized as follows. -
Devops Point of View an Enterprise Architecture Perspective
DevOps Point of View An Enterprise Architecture perspective Amsterdam, 2020 Management summary “It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change.”1 Setting the scene Goal of this Point of View In the current world of IT and the development of This point of view aims to create awareness around the IT-related products or services, companies from transformation towards the DevOps way of working, to enterprise level to smaller sizes are starting to help gain understanding what DevOps is, why you need it use the DevOps processes and methods as a part and what is needed to implement DevOps. of their day-to-day organization process. The goal is to reduce the time involved in all the An Enterprise Architecture perspective software development phases, to achieve greater Even though it is DevOps from an Enterprise Architecture application stability and faster development service line perspective, this material has been gathered cycles. from our experiences with customers, combined with However not only on the technical side of the knowledge from subject matter experts and theory from organization is DevOps changing the playing within and outside Deloitte. field, also an organizational change that involves merging development and operations teams is Targeted audience required with an hint of cultural changes. And last but not least the skillset of all people It is specifically for the people within Deloitte that want to involved is changing. use this as an accelerator for conversations and proposals & to get in contact with the people who have performed these type of projects. -
White Paper Getting Started with Continuous Integration in Software
WHITE PAPER GETTING STARTED WITH CONTINUOUS INTEGRATION IN SOFTWARE DEVELOPMENT Amruta Kumbhar, Madhavi Shailaja & Ravi Shankar Anupindi Introduction DevOps culture is gaining rapid momentum in the IT industry as it enables business to adopt agile software delivery methodologies like Continuous Integration (henceforth referred to as CI) & Continuous Delivery (henceforth referred to as CD) .These methodologies enable quicker issue resolution, instant feedback loops, improved software quality and cost saving to meet the ever- increasing demand to deliver better software faster. It would not be wrong to say that CI-CD practices will soon become the de- facto software delivery standards across the industry. Though both these methodologies (CI and CD) This article compiles insights gained from complement each other, CI is the pre-requisite our practical experiences across various CI phase for enabling CD as the latter is built on enablement programs which we have been Gartner says “By 2016, top of the former. The primary goal of CI is associated with. not only to enable build automation through DevOps will evolve Some of these experiences might vary continuous test and quality checks but also to from a niche to a depending on the choice of tools, provide project insights through reports and infrastructure setup, organization policies mainstream strategy dashboards. Since this phase is all about tools, and project requirements. In spite of the employed by 25 it imposes various integration challenges. differences, we hope, this article will act as Having a good knowledge of the tools Percent of global 2000 a helping guide to all those planning for CI involved, their integration aspects and the organizations” setup in their projects. -
Improving Web Services Maintenance Through Regression Testing Divya Rohatgi, Prof
Volume 3, Issue 5, May-2016, pp. 261-265 ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Improving Web Services Maintenance through Regression Testing Divya Rohatgi, Prof. (Col) Gurmit Singh 1. Research Scholar, Computer Science and Engineering Department Sam Higginbottom Institute of Agriculture, Technology and Sciences Deemed University, Allahabad, India 2. Professor, Computer Science and Engineering Department Sam Higginbottom Institute of Agriculture, Technology and Sciences Deemed University, Allahabad, India Abstract: - Software maintenance is considered to be the most expensive activity in software development and is used to ensure quality to the product. Regression Testing is a part of software maintainers which is done every time the software is changed. For software like Web services which represent a class of Service oriented architectures this activity is a challenging task. Since web services incorporate business functionality thus maintaining proper quality is an important concern. Due to inherent distributed, heterogeneous and dynamic in nature, regression testing is difficult and time consuming activity. Thus in order to reduce maintenance cost we have to reduce regression testing cost. Thus in this paper, we have given a comprehensive study of regression testing of web services exploring the challenges, approaches and tools used for them to ensure proper quality and inherently reducing the maintenance costs. Keywords – Software Engineering, Software Maintenance, Regression Testing, Web Service. —————————— —————————— 1. INTRODUCTION implications deriving from the adoption of the standardized stack of technology underlying web In today’s growing and competitive scenario Service– services (e.g., SOAP, WSDL, UDDI, etc.); oriented architectures are having a crucial role in the way in which systems are developed and designed. -
Softwareprozesse: Timeboxing & Continuous Delivery
Softwareprozesse: Timeboxing & Continuous Delivery BENJAMIN PROJDAKOV The Timeboxing Process Model •Voller Titel: The Timeboxing Process Model for Iterative Software Development •Verfasser: • Professor Pankaj Jalote Department of Computer Science and Engineering Indian Institute of Technology Kanpur • Aveejeet Palit, Priya Kurien Infosys Technologies Limited Bangalore Einführung: Wasserfallmodell •Linear •Nicht iterativ •Lange Entwicklungsdauer typisch •Anforderungen: • Müssen vollständig bekannt sein • Änderungen schwierig •Entwicklung in Phasen •Ergebnis: Vollständige Software •Komplexität der Software eher gering Einführung: Iterative Modelle •Linear •Entwicklung: • In Zyklen • Zyklus unterteilt sich in Phasen •Kurze Entwicklungsdauer pro Zyklus •Anforderungen: • Müssen pro Iteration bekannt sein • Änderungen in nächster Iteration möglich •Ergebnis: Funktionierende Software nach jedem Zyklus Timeboxing Modell •Entwicklung: • In Zyklen • Zyklus unterteilt sich in Phasen • Ausführung mit Versatz parallel •Feste Entwicklungsdauer pro Zyklus • Wochen bis Monate •Anforderungen: • Müssen pro Iteration bekannt sein • Änderungen in nächster Iteration •Ergebnis: • Häufige Releases • Funktionierende Software nach jedem Zyklus Timeboxing Modell: Phasen & Teams •Phasen: •Teams: • Anzahl Variabel • Eine Aufgabe pro Team • Gleiche Dauer ideal • Größe abgestimmt auf Dauer Timeboxing Modell: Phasen & Teams •Ungleiche Boxen führen zu ineffizienter Teamauslastung •Lösungen: • “Right-scaling” von Teams • Ressourcenumverteilung •Kann auch durch Verzögerungen -
FINAL PROGRAM University of California, Irvine [email protected] Program Chair Matthew B
General Chair Richard N. Taylor FINAL PROGRAM University of California, Irvine [email protected] Program Chair Matthew B. Dwyer ACM SIGSOFT 2004 University of Nebraska-Lincoln [email protected] Twelfth International Symposium on the Program Committee Ken Anderson, U Colorado, Boulder, USA Foundations of Software Engineering FSE-12 Annie Antón, North Carolina State U, USA Joanne Atlee, U Waterloo, Canada Prem Devanbu, U California, Davis, USA Mary Jean Harrold, Georgia Tech, USA John Hatcliff, Kansas State U, USA Jim Herbsleb, Carnegie Mellon U, USA André van der Hoek, U Calif., Irvine, USA Paola Inverardi, U L'Aquila, Italy Gregor Kiczales, U British Columbia, Canada Jeff Kramer, Imperial College London, UK Shriram Krishnamurthi, Brown U, USA Shinji Kusumoto, Osaka U, Japan Axel van Lamsweerde, U Catholique de Louvain, Belgium Bashar Nuseibeh, The Open U, UK Mauro Pezzé, U Milano-Bicocca, Italy Gian Pietro Picco, Politecnico di Milano, Italy David Rosenblum, U College London, UK Gregg Rothermel, U Nebraska-Lincoln, USA Wilhelm Schäfer, U Paderborn, Germany Douglas Schmidt, Vanderbilt U, USA Peri Tarr, IBM T.J. Watson, USA Frank Tip, IBM T.J. Watson, USA Willem C. Visser, NASA Ames, USA http://www.isr.uci.edu/FSE-12/ Student and Diversity Programs Co-Chairs October 31 - November 5, 2004 Educators Grant Program and Tutorials Hyatt Newporter Hotel, Newport Beach, California, USA Mary Jean Harrold Georgia Tech [email protected] Mary Lou Soffa SIGSOFT 2004 brings together researchers and practitioners from academia and industry to University of Virginia exchange new results related to both traditional and emerging fields of software engineering. -
Continuous Integration (CI) Needs and Wishes for Developers of Proprietary Code
Continuous Integration (CI) Needs and Wishes for Developers of Proprietary Code Michael Hilton, Nicholas Nelson, Danny Dig Timothy Tunnell, Darko Marinov School of EECS, Oregon State University CS Department, University of Illinois {hiltonm,nelsonni,digd}@oregonstate.edu {tunnell2,marinov}@illinois.edu Abstract—Continuous integration (CI) systems automate the Open-source projects are often considered fundamentally dif- compilation, building, and testing of software. Despite CI being ferent from proprietary-code projects [6]. Differences between one of the most widely used processes in software engineering, open-source and proprietary-code projects include that open- we do not know what motivates developers to use CI, and what barriers and unmet needs they face. Without such knowledge source projects foster more creativity [7], have fewer defects [7], developers make easily avoidable errors, managers reduce the and assign work differently [8]. However, similarities have also productivity of developers by making misinformed decisions, tool been found, including how GitHub is used [9], overall project builders invest in the wrong direction, and researchers miss many complexity [7], and amount of modularity [7]. opportunities for improving the software engineering practice. There are still many gaps in our knowledge about why Given the large fraction of proprietary code development, un- derstanding how proprietary developers are using CI is vital to developers use CI, and what barriers they face, especially for improving it. projects of proprietary code. What motivates developers to use We present the first study of how CI is used in the proprietary CI? What are the barriers that developers face when using development of software. We conduct 16 semi-structured inter- CI? What needs do developers have that are unmet by their views with developers from different industries and development current CI system(s)? Do proprietary developers have the same scale. -
Curriculum Vitae James A
Curriculum Vitae James A. Jones General Information Bio Highlights Professor Jones is perhaps best known for the creation of the influential Tarantula technique that spawned a new field of \spectra-based" fault localization. For this work, he was awarded the prestigious ACM SIGSOFT Award in 2015. Also, he is a recipient of the prestigious National Science Foundation Faculty Early Career Development (CAREER) Award, which recognizes outstanding research and excellent education. Jones's research contributions span the duration of his undergrad, professional, graduate, and professorial career. Throughout this time, Jones created tools and techniques for software analysis (static and dynamic), techniques to help manage test suites for safety-critical software systems, techniques to support several aspects of software debugging and comprehension, and has studied the ways that software behaves in order to better model and predict it. Jones received the Ph.D. in Computer Science at Georgia Tech, advised by Professor Mary Jean Harrold. At UC Irvine, Jones leads the Spider Lab (http://spideruci.org) and advises Ph.D., Masters, and undergraduate students to study and improve software development and maintenance processes. Jones is a regular author and reviewer for top-tier research conferences (e.g., ICSE, FSE, ISSTA, ASE) and has co-organized events such as the 1st Working Conference on Software Visualization (VISSOFT) and the 10th Workshop on Dynamic Analysis (WODA). Contact Information University of California, Irvine Bren School of Information and Computer Sciences Department of Informatics Institute for Software Research Spider Lab Research Group (http://spideruci.org) 5214 Bren Hall, Irvine, CA 92697-3440 +1 (949) 824-0942 +1 (949) 824-4056 [email protected] http://jamesajones.com http://spideruci.org Jones, James A. -
Continuous Integration in Salesforce Development By: Diptiman Prusty 1
Whitepaper Continuous Integration in Salesforce Development By: Diptiman Prusty 1. Introduction In current SFDC software development scenario, it pays to be quick to market and be able to focus on the business requirements rather than the development process details. DevOps culture for software development has gained rapid momentum in SFDC development industry in the last few years. It involves adopting agile software development methodologies like Continuous Deployment, Continuous Integration (CI) and Continuous Delivery (CD). This enables them to resolve issues quicker, get instant feedback on new products and features, improve the quality of software and ultimately save cost and gain market share. As we shall see below, Salesforce platform is very well suited to use the Continuous Integration and Continuous Delivery methodology to enable organizations to be agile. Page - 2 2. Agile Software Development 3. CI and CD In Salesforce Business enterprises today face several Continuous Integration (CI) and challenges starting from highly competitive Continuous Deployment (CD) are environment, rapidly changing business development practice that requires scenarios and the need to scale up. developers to commit code into a common To overcome the shortcomings of lengthy software source every time they have working code. development cycle, enterprises today have embraced Each commit known as a check-in gets verified by an the AGILE methodology for software development. automated build process. This allows the problems to be identified early in the development process. By integrating regularly, the team can detect errors quickly, Task Board Burndown To In Done and take necessary remedial action. In fact in recent Chart Do Progress years it has come to encompass the whole cycle from Product code check-in till the production deployment. -
Agile Automated Software Testing Into Automotive V-Model Process
Agile automated software testing into automotive V-Model process: A practical case Xavier Martin Artal Software QA Manager [email protected] es.linkedin.com/pub/xavier-martin/6/a89/723/ Agenda • Introduction • Automotive Trends: Car Connectivity • Car Telematics project Challenges • Use Case Solution: From V-Model to Agile Testing • Results and Conclusions Introduction What is this presentation about? • Expose a practical case of adoption of Agile techniques in automotive testing • Converge Spice automotive V-Model to Agile Spice V-Model Agile • Present Technical Solution adopted: Automation Test Framework • Discuss results and Agile adequacy to Automotive industry Automotive Trends: Vehicle Connectivity Car Telematics • Car Manufacturers start to add 3G/4G capabilities • Connectivity opens new opportunities to develop services for both clients and manufacturers Connectivity Services – Emergency Call – Fleet Management – Car Sharing – Remote Car Diagnostics – Stolen Vehicle Tracking (SVT) – WOTA Update – Dealer Services – User Premium Services Car telematics: eCall • Emergency Call Service for Europe • U.E Council proposes eCall obligatory in European Cars for end 2017 • Automatic call in case of accident or emergency will force car manufacturers to add IVTU to every new car for European Service • Similar regulations for Russia, USA, BRA and PRC Car Telematics Project Challenges What is an iVTU? iVTU = in Vehicle Telematics Unit - Electronic Unit in charge of granting 2G/3G/LTE connectivity to vehicles - Two Main processors architecture: