Continuous Integration, Delivery and Deployment: a Systematic Review on Approaches, Tools, Challenges and Practices”, IEEE Access, 2017

Total Page:16

File Type:pdf, Size:1020Kb

Continuous Integration, Delivery and Deployment: a Systematic Review on Approaches, Tools, Challenges and Practices”, IEEE Access, 2017 M. Shahin, M. Ali Babar, and L. Zhu, ―Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices”, IEEE Access, 2017. Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices Mojtaba Shahina, Muhammad Ali Babara, Liming Zhub a CREST – The Centre for Research on Engineering Software Technologies, The University of Adelaide, Australia b Data61, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW 2015, Australia [email protected], [email protected], [email protected] Abstract—Context: Continuous practices, i.e., continuous integration, delivery, and deployment, are the software I. INTRODUCTION development industry practices that enable organizations to With increasing competition in software market, frequently and reliably release new features and products. organizations pay significant attention and allocate resources With the increasing interest in and literature on continuous to develop and deliver high-quality software at much practices, it is important to systematically review and accelerated pace [1]. Continuous Integration (CI), Continuous synthesize the approaches, tools, challenges, and practices DElivery (CDE), and Continuous Deployment (CD), called reported for adopting and implementing continuous practices. continuous practices for this study, are some of the practices aimed at helping organisations to accelerate their Objective: This research aimed at systematically reviewing development and delivery of software features without the state of the art of continuous practices to classify compromising quality [2]. Whilst CI advocates integrating approaches and tools, identify challenges and practices in this work-in-progress multiple times per day, CDE and CD are regard, and identify the gaps for future research. about ability to quickly and reliably release values to Method: We used systematic literature review (SLR) method customers by bringing automation support as much as for reviewing the peer-reviewed papers on continuous possible [3, 4]. practices published between 2004 and 1st June 2016. We Continuous practices are expected to provide several applied thematic analysis method for analysing the data benefits such as: (1) getting more and quick feedback from extracted from reviewing 69 papers selected using predefined the software development process and customers; (2) having criteria. frequent and reliable releases, which lead to improved customer satisfaction and product quality; (3) through CD, Results: We have identified thirty approaches and associated the connection between development and operations teams is tools, which facilitate the implementation of continuous strengthened and manual tasks can be eliminated [5, 6]. A practices in the following ways: (1) ―reducing build and test growing number of industrial cases indicate that the time in continuous integration (CI)‖; (2) ―increasing visibility continuous practices are making inroad in software and awareness on build and test results in CI‖; (3) development industrial practices across various domains and ―supporting (semi-) automated continuous testing‖; (4) sizes of organizations [5, 7, 8]. At the same time, adopting ―detecting violations, flaws and faults in CI‖; (5) ―addressing continuous practices is not a trivial task since organizational security and scalability issues in deployment pipeline‖, and processes, practices, and tool may not be ready to support the (6) ―improving dependability and reliability of deployment highly complex and challenging nature of these practices. process‖. We have also determined a list of critical factors Due to the growing importance of continuous practices, an such as ―testing (effort and time)‖, ―team awareness and increasing amount of literature describing approaches, tools, transparency‖, ―good design principles‖, ―customer‖, ―highly practices, and challenges has been published through diverse skilled and motivated team‖, ―application domain‖, and venues. An evidence for this trend is the existence of five ―appropriate infrastructure‖ that should be carefully secondary studies on CI, rapid release, CDE and CD [9-13]. considered when introducing continuous practices in a given These practices are highly correlated and intertwined, in organization. The majority of the reviewed papers were which distinguishing these practices are sometimes hard and validation (34.7%) and evaluation (36.2%) research types. their meanings highly depends on how a given organization This review also reveals that continuous practices have been interprets and employs them [14]. Whilst CI is considered the successfully applied to both greenfield and maintenance first step towards adopting CDE practice [15], truly projects. implementing CDE practice is necessary to support Conclusion: Continuous practices have become an important automatically and continuously deploying software to area of software engineering research and practice. Whilst the production or customer environments (i.e., CD practice). We reported approaches, tools, and practices are addressing a noticed that there was no dedicated effort to systematically wide range of challenges, there are several challenges and analyze and rigorously synthesize the literature on continuous gaps which require future research work for: improving the practices in an integrated manner. By integrated manner we capturing and reporting of contextual information in the mean simultaneously investigating approaches, tools, studies reporting different aspects of continuous practices; challenges, and practices of CI, CDE, and CD, which aims to gaining a deep understanding of how software-intensive explore and understand the relationship between them and systems should be (re-) architected to support continuous what steps should be followed to successfully and smoothly practices; addressing the lack of knowledge and tools for move from one practice to another. This study aimed at filling engineering processes of designing and running secure that gap by conducting a Systematic Literature Review (SLR) deployment pipelines. of the approaches, tools, challenges and practices for adopting and implementing continuous practices. Index Terms— continuous integration, continuous delivery, continuous deployment, continuous software engineering, systematic literature review, empirical software engineering 1 FIGURE 1. The relationship between continuous integration, delivery and deployment [16, 17] This SLR provides an in-depth understanding of the Continuous Integration (CI) is a widely established challenges of adopting continuous practices and the strategies development practice in software development industry [4], (e.g., tools) used to address the challenges. Such an in which members of a team integrate and merge understanding is expected to help identify the areas where development work (e.g., code) frequently, for example methodological and tool support to be improved. This multiple times per day. CI enables software companies to increases the efficacy of continuous practices for different have shorter and frequent release cycle, improve software types of organizations and software-intensive applications. quality, and increase their teams‘ productivity [4]. This Moreover, the findings are expected to be used as guidelines practice includes automated software building and testing [5]. for practitioners to become more aware of the approaches, Continuous DElivery (CDE) is aimed at ensuring an tools, challenges and implement appropriate practices that application is always at production-ready state after suit their industrial arrangements. For this review, we have successfully passing automated tests and quality checks [19, systematically identified and rigorously reviewed 69 relevant 20]. CDE employs a set of practices e.g., CI, and deployment papers and synthesized the data extracted from those papers automation to deliver software automatically to a production- in order to answer a set of research questions that motivated like environment [15]. According to [6, 21], this practice this review. The significant contributions of this work are: offers several benefits such as reduced deployment risk, 1. A classification of the reported approaches, associated lower costs and getting user feedback faster. Figure 1 tools, and challenges and practices of continuous practices indicates that having continuous delivery practice requires in an easily accessible format. continuous integration practice. 2. A list of critical factors that should be carefully considered Continuous Deployment (CD) practice goes a step further when implementing continuous practices in both software and automatically and continuously deploys the application to development and customer organizations. production or customer environments [19, 22]. There is 3. An evidence-based guide to select appropriate approaches, robust debate in academic and industrial circles about tools and practices based on the required suitability for defining and distinguishing between continuous deployment different contexts. and continuous delivery [4, 19, 20]. What differentiates 4. A list of researchable issues to direct the future research continuous deployment from continuous delivery is a efforts for advancing the state-of-the-art of continuous production environment (i.e., actual customers): the goal of practices. continuous deployment practice is to automatically and The rest of the paper is organized
Recommended publications
  • Rugby - a Process Model for Continuous Software Engineering
    INSTITUT FUR¨ INFORMATIK DER TECHNISCHEN UNIVERSITAT¨ MUNCHEN¨ Forschungs- und Lehreinheit I Angewandte Softwaretechnik Rugby - A Process Model for Continuous Software Engineering Stephan Tobias Krusche Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Informatik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Helmut Seidl Prufer¨ der Dissertation: 1. Univ.-Prof. Bernd Brugge,¨ Ph.D. 2. Prof. Dr. Jurgen¨ Borstler,¨ Blekinge Institute of Technology, Karlskrona, Schweden Die Dissertation wurde am 28.01.2016 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Informatik am 29.02.2016 angenommen. Abstract Software is developed in increasingly dynamic environments. Organizations need the capability to deal with uncertainty and to react to unexpected changes in require- ments and technologies. Agile methods already improve the flexibility towards changes and with the emergence of continuous delivery, regular feedback loops have become possible. The abilities to maintain high code quality through reviews, to regularly re- lease software, and to collect and prioritize user feedback, are necessary for con- tinuous software engineering. However, there exists no uniform process model that handles the increasing number of reviews, releases and feedback reports. In this dissertation, we describe Rugby, a process model for continuous software en- gineering that is based on a meta model, which treats development activities as parallel workflows and which allows tailoring, customization and extension. Rugby includes a change model and treats changes as events that activate workflows. It integrates re- view management, release management, and feedback management as workflows. As a consequence, Rugby handles the increasing number of reviews, releases and feedback and at the same time decreases their size and effort.
    [Show full text]
  • Continuous Delivery with Spinnaker Fast, Safe, Repeatable Multi-Cloud Deployments
    Continuous Delivery with Spinnaker Fast, Safe, Repeatable Multi-Cloud Deployments Emily Burns, Asher Feldman, Rob Fletcher, Tomas Lin, Justin Reynolds, Chris Sanden, Lars Wander, and Rob Zienert Beijing Boston Farnham Sebastopol Tokyo Continuous Delivery with Spinnaker by Emily Burns, Asher Feldman, Rob Fletcher, Tomas Lin, Justin Reynolds, Chris Sanden, Lars Wan‐ der, and Rob Zienert Copyright © 2018 Netflix, Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐ tions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Acquisitions Editor: Nikki McDonald Interior Designer: David Futato Editor: Virginia Wilson Cover Designer: Karen Montgomery Production Editor: Nan Barber Illustrator: Rebecca Demarest Copyeditor: Charles Roumeliotis Technical Reviewers: Chris Devers and Jess Males Proofreader: Kim Cofer May 2018: First Edition Revision History for the First Edition 2018-05-11: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous Delivery with Spin‐ naker, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsi‐ bility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk.
    [Show full text]
  • Towards an Application Lifecycle Management Framework
    VTT CREATES BUSINESS FROM TECHNOLOGY Technology and market foresight • Strategic research • Product and service development • IPR and licensing Dissertation VTT PUBLICATIONS 759 • Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership • • • VTT PUBLICATIONS 759 TOWARDS AN APPLICATION LIFECYCLE MANAGEMENT FRAMEWORK AN APPLICATION 759 TOWARDS • VTT PUBLICATIONS VTT PUBLICATIONS 742 Elina Mattila. Design and evaluation of a mobile phone diary for personal health management. 2010. 83 p. + app. 48 p. 743 Jaakko Paasi & Pasi Valkokari (eds.). Elucidating the fuzzy front end – Experiences from the INNORISK project. 2010. 161 p. 744 Marja Vilkman. Structural investigations and processing of electronically and protonically conducting polymers. 2010. 62 p. + app. 27 p. 745 Juuso Olkkonen. Finite difference time domain studies on sub-wavelength aperture structures. 2010. 76 p. + app. 52 p. 746 Jarkko Kuusijärvi. Interactive visualization of quality Variability at run-time. 2010. 111 p. 747 Eija Rintala. Effects of oxygen provision on the physiology of baker’s yeast Saccharomyces cerevisiae. 2010. 82 p. + app. 93 p. 748 Virve Vidgren. Maltose and maltotriose transport into ale and lager brewer’s yeast strains. 2010. 93 p. + app. 65 p. 749 Toni Ahonen, Markku Reunanen & Ville Ojanen (eds.). Customer value driven service business development. Outcomes from the Fleet Asset Management Project. 2010. 43 p. + app. 92 p. 750 Tiina Apilo. A model for corporate renewal. Requirements for innovation management. 2010. 167 p. + app. 16 p. 751 Sakari Stenudd. Using machine learning in the adaptive control of a smart environment. 2010. 75 p. 752 Evanthia Monogioudi. Enzymatic Cross-linking of ββ-casein and its impact on digestibility and allergenicity.
    [Show full text]
  • Enterprise Devops: Continuous Delivery Services Accelerate Innovation and Application Release End-To-End
    Services Flyer Application Delivery Management Enterprise DevOps: Continuous Delivery Services Accelerate innovation and application release end-to-end Many organizations recognize DevOps as the collaborate. Adding Continuous Deployment ■ Management of Organizational Change best way to deliver value faster, reduce risk, and and Release is more than adding automated to drive adoption and cultural change achieve outcomes for both the organization infrastructure provisioning. It is about chang- and customers. Many have taken a bottom-up ing how apps and ops teams work together. All Our approach is iterative. We: approach: adopt an initial set of capabilities, these changes necessitate not just new tech- ■ Assess your current capabilities depending on their needs, and expand from nology but alignment of processes, teams, and Develop a prioritized roadmap of there. While this seems like a reasonable ap- KPIs. In fact, it is in the latter components that ■ proach, it suffers from one serious drawback: the tough challenges lie. activities, clearly identifying quick adopting one DevOps capability after another wins as well as mid- and long-term in a piecemeal manner is incredibly challenging DevOps spans the entire IT Value Chain, and initiatives and usually does not deliver on the end-to-end driving adoption of the necessary changes ■ Accelerate implementation using the DevOps promise. across technology, process, culture, and over- Model Office as the reference point all mindset is key to success. ■ Combine coaching with Management Micro Focus® Enterprise DevOps: Continuous of Organizational Change consulting Delivery Services bring a top-down approach Our Approach to assist with the adoption of any new to complement the bottom-up one you have At Micro Focus Professional Services, we have DevOps practices, processes, and tools likely taken.
    [Show full text]
  • Devsecops in Reguated Industries Capgemini Template.Indd
    DEVSECOPS IN REGULATED INDUSTRIES ACCELERATING SOFTWARE RELIABILITY & COMPLIANCE TABLE OF CONTENTS 03... Executive Summary 04... Introduction 07... Impediments to DevSecOps Adoption 10... Playbook for DevSecOps Adoption 19... Conclusion EXECUTIVE SUMMARY DevOps practices enable rapid product engineering delivery and operations, particularly by agile teams using lean practices. There is an evolution from DevOps to DevSecOps, which is at the intersection of development, operations, and security. Security cannot be added after product development is complete and security testing cannot be done as a once-per-release cycle activity. Shifting security Left implies integration of security at all stages of the Software Development Life Cycle (SDLC). Adoption of DevSecOps practices enables faster, more reliable and more secure software. While DevSecOps emerged from Internet and software companies, it can benefit other industries, including regulated and high security environments. This whitepaper covers how incorporating DevSecOps in regulated Industries can accelerate software delivery, reducing the time from code change to production deployment or release while reducing security risks. This whitepaper defines a playbook for DevSecOps goals, addresses challenges, and discusses evolving workflows in DevSecOps, including cloud, agile, application modernization and digital transformation. Bi-directional requirement traceability, document generation and security tests should be part of the CI/CD pipeline. Regulated industries can securely move away
    [Show full text]
  • Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation
    Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation : Application in a Healthcare Company Clément Duffau, Bartosz Grabiec, Mireille Blay-Fornarino To cite this version: Clément Duffau, Bartosz Grabiec, Mireille Blay-Fornarino. Towards Embedded System Agile Develop- ment Challenging Verification, Validation and Accreditation : Application in a Healthcare Company. ISSRE 2017- IEEE International Symposium on Software Reliability Engineering, Oct 2017, Toulouse, France. pp.1-4. hal-01678815 HAL Id: hal-01678815 https://hal.archives-ouvertes.fr/hal-01678815 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards Embedded System Agile Development Challenging Verification, Validation and Accreditation Application in a Healthcare Company Clement´ Duffau Bartosz Grabiec Mireille Blay-Fornarino AXONIC and I3S AXONIC I3S Universite´ Coteˆ d’Azur, CNRS Sophia Antipolis, France Universite´ Coteˆ d’Azur, CNRS Sophia Antipolis, France [email protected] Sophia Antipolis, France [email protected] [email protected] Abstract—When Agile development meets critical embedded to survive. Moreover, with limited human resources, quality systems, verification, validation and accreditation activities are improvement with Agility usage remains to be demonstrated. impacted. Challenges such as tests increase or accreditation The remainder of this paper is organized as follows.
    [Show full text]
  • Continuous Delivery: the First Steps
    Continuous Delivery: The First Steps By Dave Jabs. Article as published in Article Reprint AccuRev Article Reprint Continuous Delivery: The First Steps Continuous Delivery: The First Steps Continuous delivery integrates many practices that in their totality might seem daunting. But starting with a few basic steps brings immediate benefits. Here’s how. Software development groups that achieve high performance in teams unused to it and, frequently, changes to processes and tools. development and delivery provide a strategic advantage to their For continuous delivery to be done properly, it also requires organi- business. However, many organizations struggle with delivering zational changes. Achieving excellence in continuous delivery isn’t software in a timely manner. The set of practices called “continu- easy, but the reward is enormous: Development teams will be able to ous delivery” is gaining favor as an important part of the work of move at velocities not previously thought possible. delivering new software on time. Continuous delivery defines a set of practices that aim to eliminate mechanical impediments and Steps to Continuous Delivery deliver software with greater velocity to respond to market needs. The overarching concept of continuous delivery is not new; in fact, the first Agile principle states, “the highest priority is to satisfy the customer Continuous Delivery as a Pipeline through early and continuous delivery of valuable software.” Despite this Let’s start by outlining what continuous delivery is. One of my familiarity, many companies—even those committed to Agile processes— favorite definitions comes from Jez Humble of Thoughtworks, whose struggle to just get started. book is the seminal text on the discipline.
    [Show full text]
  • Agile Playbook V2.1—What’S New?
    AGILE P L AY B O OK TABLE OF CONTENTS INTRODUCTION ..........................................................................................................4 Who should use this playbook? ................................................................................6 How should you use this playbook? .........................................................................6 Agile Playbook v2.1—What’s new? ...........................................................................6 How and where can you contribute to this playbook?.............................................7 MEET YOUR GUIDES ...................................................................................................8 AN AGILE DELIVERY MODEL ....................................................................................10 GETTING STARTED.....................................................................................................12 THE PLAYS ...................................................................................................................14 Delivery ......................................................................................................................15 Play: Start with Scrum ...........................................................................................15 Play: Seeing success but need more fexibility? Move on to Scrumban ............17 Play: If you are ready to kick of the training wheels, try Kanban .......................18 Value ......................................................................................................................19
    [Show full text]
  • Apache Ant Best Practices
    08_Lee_ch05.qxd 5/3/06 5:12 PM Page 81 C HAPTER 5 Apache Ant Best Practices This chapter looks in more detail at some best practices for using Ant on real projects. First I describe the use of property files to enable configuration of the build process depending on a user’s role and requirements. I then describe how best to integrate Ant with IBM Rational ClearCase. Finally, I look at some general best practices for supporting the build process on large projects. Aims of This Chapter Apache Ant is a powerful build tool with significant built-in capabilities. However, a few capabil- ities and best practices stand out; they are described here. After reading this chapter, you will be able to • Understand what Ant property files are and how they can be used to make build scripts more maintainable. • Understand how to use Ant’s capabilities to better integrate with IBM Rational ClearCase. • Implement Ant build files that support reuse and maintainability on large projects. This chapter assumes that you are familiar with the basic concepts of Apache Ant that were discussed in Chapter 4, “Defining Your Build and Release Scripts.” Property Files From the perspective of Chapter 4, an Ant build.xml file is a single centralized build file that defines a repeatable process for bringing together an application, usually producing some form of 81 08_Lee_ch05.qxd 5/3/06 5:12 PM Page 82 82 Chapter 5 Apache Ant Best Practices executable output. Although a single build.xml file can be enough to drive the build process, in practice it can quickly become large and unwieldy.
    [Show full text]
  • CADET: Debugging and Fixing Misconfigurations Using Counterfactual Reasoning
    CADET: Debugging and Fixing Misconfigurations using Counterfactual Reasoning Md Shahriar Iqbal∗ Rahul Krishna∗ Mohammad Ali Javidian University of South Carolina Columbia University Purdue University [email protected] [email protected] [email protected] Baishakhi Ray Pooyan Jamshidi Columbia University University of South Carolina [email protected] [email protected] Abstract Swap Mem. Swap Memory Modern computing platforms are highly-configurable with thou- sands of interacting configuration options. However, configuring GPU Resource these systems is challenging and misconfigurations can cause un- 512 Mb Latency 1Gb Memory Pressure expected non-functional faults. This paper proposes CADET (short 2Gb 3Gb for Causal Debugging Toolkit) that enables users to identify, ex- 4Gb Latency plain, and fix the root cause of non-functional faults early and in a GPU Growth GPU Growth principled fashion. CADET builds a causal model by observing the (a) (b) (c) performance of the system under different configurations. Then, it uses casual path extraction followed by counterfactual reason- Figure 1: Observational data (in Fig.1a) (incorrectly) shows ing over the causal model to (a) identify the root causes of non- that high GPU memory growth leads to high latency. The trend functional faults, (b) estimate the effects of various configuration is reversed when the data is segregated by swap memory. options on the performance objective(s), and (c) prescribe candi- date repairs to the relevant configuration options to fix the non- functional fault. We evaluated CADET on 5 highly-configurable systems by comparing with state-of-the-art configuration optimiza- heat dissipation [15, 71, 74, 84]. The sheer number of modalities tion and ML-based debugging approaches.
    [Show full text]
  • Enterprise Application Lifecycle Management Solutions Enterprise Application Lifecycle Management Solutions
    Enterprise Application Lifecycle Management Solutions Enterprise Application Lifecycle Management Solutions This extensive onsite knowledge gained from years of expe- Products and Solutions for rience combined with our trusted relationships with end- users, puts us in a unique position to self-instrument the Comprehensive Enterprise products crucially needed by our customers to successfully accomplish their Enterprise Application Lifecycle Manage- Application Lifecycle ment projects. Management With this in mind, we have developed Our Enterprise Application Lifecycle Ma- RaySuite. nagement Solutions include delivering RaySuite is a comprehensive set of products that automates various tasks within an Enterprise Application Lifecycle. consulting and software packaging ser- vices to enterprises undergoing an OS This automation ranges from the analysis of the existing application portfolio and license inventories via complex migration or implementing a software license management and software packaging, all the way deployment tool. We have successfully to comprehensive quality control and fi nally software deployment in production. These automated processes served over 600 enterprise customers are sustainable and can be replicated for every change and with excellent results. every patch. A central database and a common user interface found throughout all RaySuite products form a consistent solution and off er a strong contrast to existing patchwork solutions that are often found in enterprises, as a result of limited vision and the implementation of various suppliers. Al- though Raynet guarantees a consistent approach with the use of its entire product range, it is still possible to buy and implement the individual products of RaySuite autono- mously as well as integrate them with existing third-party or home-grown products.
    [Show full text]
  • Automatic Deployment of Distributed Software Systems: Definitions and State of the Art
    Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 14816 To link to this article : DOI :10.1016/j.jss.2015.01.040 URL : http://dx.doi.org/10.1016/j.jss.2015.01.040 To cite this version : Arcangeli, Jean-Paul and Boujbel, Raja and Leriche, Sébastien Automatic Deployment of Distributed Software Systems: Definitions and State of the Art. (2015) Journal of Systems and Software, vol. 103. pp. 198-218. ISSN 0164-1212 Any correspondance concerning this service should be sent to the repository administrator: [email protected] Automatic deployment of distributed software systems: Definitions and state of the art a, a b Jean-Paul Arcangeli ∗, Raja Boujbel , Sébastien Leriche a Université de Toulouse, UPS, IRIT, 118 Route de Narbonne, F-31062 Toulouse, France b Université de Toulouse, ENAC, 7 Avenue Édouard Belin, F-31055 Toulouse, France a b s t r a c t Deployment of software systems is a complex post-production process that consists in making software available for use and then keeping it operational. It must deal with constraints concerning both the system and the target machine(s), in particular their distribution, heterogeneity and dynamics, and satisfy requirements from different stakeholders. In the context of mobility and openness, deployment must react to the instability of the network of machines (failures, connections, disconnections, variations in the quality of the resources, etc.).
    [Show full text]