Spatial Relationships Between Submerged Aquatic Vegetation and Water Quality in Honghu Lake, China

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Relationships Between Submerged Aquatic Vegetation and Water Quality in Honghu Lake, China by PSP Volume 25 – No. 3/2016, pages 896-909 Fresenius Environmental Bulletin SPATIAL RELATIONSHIPS BETWEEN SUBMERGED AQUATIC VEGETATION AND WATER QUALITY IN HONGHU LAKE, CHINA Ting Zhang1,2, Xuan Ban1,3, Xuelei Wang1,3, Enhua Li1,3, Chao Yang1,2 and Qing Zhang1,2 1Institute of Geodesy and Geophysics, Chinese Academy of Sciences, No.340 Xudong Rd., Wuhan 430077, Hubei, China 2University of Chinese Academy of Sciences, No.19A Yuquan Rd., Beijing 100049, China 3Hubei Key Laboratory of Environment and Disaster Monitoring and Evaluation, No.340 Xudong Rd., Wuhan 430077, Hubei, China ABSTRACT phosphorus from sediments and water in the process of growth and limit phytoplankton Water environment characteristics play a development. They reduce water velocity, limit significant role in wetland submerged aquatic sediment resuspension and increase water vegetation (SAV). With increased human activities, transparency. SAV has become a commonly used water quality conditions change significantly; such ecological engineering method for nutrient change affects the distribution and diversity of retention to manage shallow eutrophic lakes [1,2]. SAV. Revealing the relationship between SAV and The major factors that affect the growth of SAV are water environmental characteristics at a spatial light availability, nutrients, sediments, suspended scale to assess the impact of human activity is solids, water flow and water temperature [3-8]. The necessary. Canonical correspondence analysis physical and chemical properties of a water body (CCA) and redundancy analysis (RDA) were are important factors that affect the biomass and employed to investigate the spatial relationship community distribution of SAV, which in turn between SAV distribution and water environmental affect the growth, reproduction and distribution of variables in Honghu Lake, China. Results reveal submerged aquatic plants [9-11]. that obvious spatial variations exhibit in the Honghu Lake is the largest lake in Hubei diversity and abundance of SAV and water quality Province and the most typical shallow lake in the characteristics. The diversity indices and wet middle reaches of Yangtze River in China. As one biomass of SAV are significantly higher in the of the “Species Gene Pool”, Honghu Lake is middle-southern region than in the northern important wetland with rich biodiversity and regions. Accordingly, the middle-southern region genetic diversity, and is listed in the Ramsar has a higher value of transparency and lower Wetlands of International Importance. The lake is concentrations of nitrogen and phosphorus than the also the breeding and wintering habitat for some northern regions. The results of CCA and RDA rare or endangered species, such as Ciconia indicate that water transparency is the most boyciana and Mergus squamatus. Recently, large- important variable that affects SAV distribution in scale fish farming and increased discharge of Honghu Lake. The relationship between diversity agricultural and industrial wastewater from the and water transparency differs in the regions. The upstream region have resulted in the drastic sensitive nutrient that influences the SAV deterioration of water quality [12]. Several studies community in the northern regions is total have shown that human activity greatly influenced phosphorus. The results of this research can serve the macrophyte growth and water quality in as an important basis for decision making on Honghu Lake. Before 2004, the trophic state of wetland ecosystem management. Honghu Lake began to change from mesotrophic to eutrophic. The distribution area of SAV KEYWORDS: significantly decreased. Total phosphorus (TP), submerged aquatic vegetation; water quality; ordination permanganate index (CODMn) and total nitrogen analysis; Honghu Lake (TN) were believed to be the major pollutants in Honghu Lake [13]. Li et al. [14] respectively evaluated the effects of different fishery INTRODUCTION development intensities on two categories of aquatic plants (favoured or not favoured by fish). Submerged aquatic vegetation (SAV) plays This study summarized the importance of both of an essential role in aquatic ecosystems. Aquatic fish-open-culture scale and the utilizing way of plants absorb large amounts of nitrogen and aquatic plants favoured by fish for the sustainable development. Cheng and Li [15] analysed the 896 by PSP Volume 25 – No. 3/2016, pages 896-909 Fresenius Environmental Bulletin eutrophication process and characteristics of abundance, diversity and water environmental Honghu Lake, both of which caused the variables are analysed, the key water environmental deterioration of the water quality of the lake. In factors that influence SAV distribution in different 2004, the Demonstration Project of Aquatic regions are elucidated and the correlation between Vegetation Protection and Restoration was SAV diversity and key water environmental implemented to reduce the impact of human variables is identified. The results are expected to activity, and the scale of fish farming was provide scientific basis for restoring aquatic regulated. SAV coverage increased, and the vegetation and enacting regional lake management concentration of nitrogen and phosphorus nutrients measures, which is important for reducing the gradually reduced [13]. Mo et al. [16] evaluated the damaging human activities influences and ecosystem health of Honghu Lake before and after sustaining ecological balance in Honghu Lake. the project was implemented in 2004 and demonstrated that the project was effective for the wetland protection. Ban et al. [17] indicated that the MATERIAL AND METHODS water quality of Honghu Lake deteriorated from 2001 to 2005 and gradually improved after 2006 Study site. Honghu Lake (29° 49' N and because the measures implemented. Since 2008, 113° 17' E), which is located in Honghu County with the rebound of human activity interference, the and Jianli County in the southeast Hubei Province, wetlands’ ecological environment has been under is the largest natural freshwater lake in Jianghan threat once again [18]. Plain and Four-lake Basin in central China (Figure Many studies have examined the 1). The lake has an area of 308 km2, a mean depth relationship between water quality and SAV of 1.34 m and a maximum depth of 2.3 m [11]. through different methods. Most studies adopted Honghu Lake was formed as a natural dammed lake laboratory-scale approaches [19]. Through a within the depression between the Yangtze River numerical simulation, Rasmussen et al. [20] and Dongjing River (a tributary of the Han River). developed a combined hydrodynamic–ecology The lake is also a catchment that collects the flow numeric model to analyse the changes in water from the Four-lake Basin, which originally quality and simulated the response of submerged connected with Yangtze River and had been rooted vegetation by reducing the nutrient loads. separated from the river by sluices since the 1950s. Traditional numeral statistics based on field surveys Honghu Lake has become a controlled lake with have also been employed in previous research. main function of flood regulation, water supply and Scheffer et al. [21] studied the response of fisheries [25]. The lake is a shallow aquatic system Potamogeton pectinatus and Potamogeton with abundant aquatic organism resources, which perfoliatus to water quality by using multiple includes SAV species such as Potamogeton logistic regressions. The results concluded that both maackianus, Hydrilla verticillata, Myriophyllum species were predominantly related to rooting depth verticillatum, Potamogeton crispus, Potamogeton and water transparency. Grzybowski [22] analysed pectinatus and Ceratophyllum demersum. Most the similarities and differences in eutrophic water SAV species in the lake are perennial, except for quality index and aquatic macrophytes between Potamogeton crispus, which is a hibernal annual dimictic and polymictic lakes and found that plant. aquatic vegetation in lakes may have a delayed response to phosphorus nutrient supply. Data collection and laboratory procedure. Previous studies based on field surveys often Water environmental characteristics and plant focused on the relationship between environmental community structure were measured in spring and parameters and SAV in different lake types at a autumn from 2011 to 2014 with the support of large spatial scale [23-24]. Few studies emphasised Xiaogang Wetland Ecological Station, Chinese the relationship between SAV communities and Academy of Sciences. Such seasonal sampling was water environmental characteristics that intensively based on the comprehensive consideration of considered the influence of human activities. This hydrological environment stability and vegetation study aims to identify the interaction mechanism growth. The two seasons (spring and autumn) with between SAV distribution and water environmental equal water level periods were selected. Twenty- variables in different regions in Honghu Lake, three sampling sites were set up based on a rough where the water ecological environment is complex outline of Honghu Lake (Figure 1). Ten optional and typical. The study also attempts to determine quadrats of SAV were collected in each SAV the promotion and restriction impacts of water sampling site by using a 20 cm × 20 cm tailor-made environmental variables to SAV diversity through iron clamp. The samples from the area were correlation analysis. The spatial variations of SAV representative of the plant community. SAV data 897 by PSP Volume 25 –
Recommended publications
  • Landscape Analysis of Geographical Names in Hubei Province, China
    Entropy 2014, 16, 6313-6337; doi:10.3390/e16126313 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Landscape Analysis of Geographical Names in Hubei Province, China Xixi Chen 1, Tao Hu 1, Fu Ren 1,2,*, Deng Chen 1, Lan Li 1 and Nan Gao 1 1 School of Resource and Environment Science, Wuhan University, Luoyu Road 129, Wuhan 430079, China; E-Mails: [email protected] (X.C.); [email protected] (T.H.); [email protected] (D.C.); [email protected] (L.L.); [email protected] (N.G.) 2 Key Laboratory of Geographical Information System, Ministry of Education, Wuhan University, Luoyu Road 129, Wuhan 430079, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-27-87664557; Fax: +86-27-68778893. External Editor: Hwa-Lung Yu Received: 20 July 2014; in revised form: 31 October 2014 / Accepted: 26 November 2014 / Published: 1 December 2014 Abstract: Hubei Province is the hub of communications in central China, which directly determines its strategic position in the country’s development. Additionally, Hubei Province is well-known for its diverse landforms, including mountains, hills, mounds and plains. This area is called “The Province of Thousand Lakes” due to the abundance of water resources. Geographical names are exclusive names given to physical or anthropogenic geographic entities at specific spatial locations and are important signs by which humans understand natural and human activities. In this study, geographic information systems (GIS) technology is adopted to establish a geodatabase of geographical names with particular characteristics in Hubei Province and extract certain geomorphologic and environmental factors.
    [Show full text]
  • (PIF) PROJECT TYPE: Full-Sized Project TYPE of TRUST FUND:GEF Trust Fund
    PROJECT IDENTIFICATION FORM (PIF) PROJECT TYPE: Full-sized Project TYPE OF TRUST FUND:GEF Trust Fund PART I: PROJECT IDENTIFICATION Project Title: CBPF-MSL: Strengthening the management effectiveness of the wetland protected area system in Hubei Province Country(ies): People's Republic of China GEF Project ID: 4870 GEF Agency(ies): UNDP GEF Agency Project ID: 4823 Other Executing Forestry Department of Hubei Province Submission Date: April 5, 2012 Partner(s): GEF Focal Area (s): Biodiversity Project Duration (months): 60 Name of parent program: China Biodiversity Partnership Framework and Agency Fee ($): 238,929 For SFM/REDD+ n/a Action Plan (CBPF) and Main Streams of Life - Wetland PA System Strengthening Programme FOCAL AREA STRATEGY FRAMEWORK: Focal Area Expected FA Outcomes Expected FA Outputs Trust Fund Indicative grant Indicative co- Objectives amount ($) financing ($) BD-1 Outcome 1.1: Improved management Output 1. New protected areas (1) GEFTF 2,029,271 16,150,314 effectiveness of existing and new covering 50,000 ha of unprotected protected areas. ecosystems and improved management of existing (200,000 ha) PAs Outcome 1.2: Increased revenue for Output 2. Sustainable financing GEFTF 500,000 1,149,900 protected area systems to meet total plans (1) expenditures required for management. Sub-total 2,529,271 17,300,214 Project management cost GEFTF 125,500 858,420 Total project cost 2,654,771 18,158,634 PROJECT FRAMEWORK: Project Objective: To strengthen the management effectiveness of the wetland protected area system of Hubei province in response to existing and emerging threats to the globally significant biodiversity and essential ecosystem services Trust Indicative Indicative Project Gran Fund Grant co- Expected Outcomes Expected Outputs Component t type Amount financing ($) ($) Enhancing TA .
    [Show full text]
  • Spatial and Temporal Extinction Dynamics in a Freshwater Cetacean Samuel T
    Proc. R. Soc. B (2010) 277, 3139–3147 doi:10.1098/rspb.2010.0584 Published online 19 May 2010 Spatial and temporal extinction dynamics in a freshwater cetacean Samuel T. Turvey1,*, Leigh A. Barrett2, Tom Hart1, Ben Collen1, Hao Yujiang3,*, Zhang Lei3, Zhang Xinqiao3, Wang Xianyan3, Huang Yadong3, Zhou Kaiya4 and Wang Ding3 1Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK 2vaquita.org Foundation, 6048 Dassia Way, Oceanside, CA 92056, USA 3Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People’s Republic of China 4Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, People’s Republic of China Geographical range contraction is a fundamental ecological characteristic of species population decline, but relatively little investigation has been conducted into general trends in the dynamic properties of range collapse. The Yangtze River dolphin or baiji (Lipotes vexillifer), probably the first large mammal species to have become extinct in over 50 years, was believed to have experienced major range collapse during its decline through progressive large-scale range contraction and fragmentation. This range-collapse model is challenged by a new dataset of 406 baiji last-sighting records collected from across the baiji’s historical range during an interview survey of Yangtze fishing communities. Although baiji regional abun- dance may have varied across its range, analyses of the extensive new sighting series provide comprehensive evidence that baiji population decline was not associated with any major contraction in geographical range across the middle–lower Yangtze drainage, even in the decade immediately before probable global extinction of the species.
    [Show full text]
  • Distribution Patterns of Yangtze Finless Porpoises in The
    bs_bs_banner Animal Conservation. Print ISSN 1367-9430 Distribution patterns of Yangtze finless porpoises in the Yangtze River: implications for reserve management X. Zhao1,2,D.Wang1, S. T. Turvey3, B. Taylor4 & T. Akamatsu5,6 1 Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China 2 China Three Gorges Corporation, Beijing, China 3 Institute of Zoology, Zoological Society of London, Regent’s Park, London, UK 4 NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, USA 5 NRIFE, Fisheries Research Agency, Kamisu, Ibaraki, Japan 6 Japan Science and Technology Agency, CREST, Tokyo, Japan Keywords Abstract acoustic survey; encounter rate; finless porpoise; habitat preferences; line transect The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)isa sampling; moving average; reserve design highly threatened cetacean endemic to the middle and lower reaches of the Yangtze River that has suffered a dramatic decline in recent decades. We charac- Correspondence terize and quantify recent distribution patterns of porpoises in the Yangtze River Ding Wang, Institute of Hydrobiology, in order to facilitate strategic management of existing in situ cetacean reserves and Chinese Academy of Sciences, Wuhan maximize effective utilization of limited conservation resources. We calculated 430072, China. Tel: +86 27 68780178; porpoise relative abundance (encounter rate) using a 1-km moving average along Fax: +86 27 68780123 the Yangtze main stem based on a combined visual and acoustic survey conducted Email: [email protected]; in 2006. We then evaluated conservation priority areas based on encounter rates [email protected] along the river. High-porpoise density areas (> 0.20 porpoises km-1) cover approximately one-third (33.9%, 599 km) of the survey area and contain approxi- Editor: Karina Acevedo-Whitehouse mately two-thirds of the porpoise population, making them priority areas for Associate Editor: Rob Williams porpoise conservation.
    [Show full text]
  • Research on Urban Network of Wuhan Metropolitan Area in China Based on Social Network Analysis
    International Journal of Culture and History, Vol. 3, No. 1, March 2017 Research on Urban Network of Wuhan Metropolitan Area in China Based on Social Network Analysis Jing-Xin Nie, Ya-Ping Huang, and Pei Chen according to enterprise organizations [22], [23]. Abstract—This article is based on the retrospect of theoretical The essence of urban network is intercity relation, and way and analysis method of town correlation measure, relational data is always applied in urban network research. summarized the advantages and disadvantages. Then the article With the rapid development of information and proposed the social network analysis method with network data of express, in order to analyze the town correlation measure. communication technology, distance of space and time Taking Wuhan metropolitan area in china as practical between cities is greatly compressed, and the connections experiment objects, and found out the network characteristics of between cities are more and more closely. Excavating it, which dominance and polarization coexisted, axes and relational data has become a new trend in research of urban corridors gathered in space. In the view of social network, the network. Social Network Analysis, SNA for short, is a urban system of Wuhan metropolitan area has not been methodology which describes the whole form, characteristics completed, though the inner core group has formed, but the connection between the low-level nodes is not strong enough. and structure of network. SNA has obvious advantage in relation expression; a network can be regarded either as a Index Terms—Express network, social network analysis, whole or a part, so that reveals the integration and hierarchy of Wuhan metropolitan area, urban network.
    [Show full text]
  • Wudang Mountain (Famous for Martial Arts)  Shennongjia (A Place of Primitive Forest), Etc
    Welcome to China! Welcome to Hubei! Welcome to Wuhan! Part I. About Hubei Province Part II.About Wuhan City I.Brief Introduction II.Hubei Food III.Hubei Celebrities IV.Hubei Attractions V.Hubei Customs I. Brief Introduction Basic Facts E (鄂)for short the Province of a Thousand Lakes---千湖之省 provincial capital---Wuhan Hometown of the first ancestor of the Chinese nation,the emperor Yan( Shennong) Rich in agriculture, fishery ,forestry and hydropower resources. Main industries : iron and steel, machinery, power and automobile. Historic interest and scenic beauty the Three Gorges of the Yangtze River the East Lake and the Yellow Crane Tower in Wuhan the Temple of Emperor Yan in Suizhou the Hometown of Quyuan in Zigui Wudang Mountain (famous for martial arts) Shennongjia (a place of primitive forest), etc. Geography 186,000 square kilometers. Population : 60,700,000 HUBEI---the north of the Dongting Lake. High in the west and low in the east and wide open to the south, the Jianghan Plain. North--- Henan South---Jiangxi &Hunan East --- Anhui West ---Sichuan Northwest ---Shaanxi Climate Hubei has a sub-tropical monsoonal climate, with a mean annual temperature of 15oC- 17oC -- the hottest month, July, averaging 27- 30oC and the coldest month, January, 1-5oC -- and a mean annual precipitation of 800-1600 mm. Administrative Division and Population 1 autonomous prefecture: Enshi Tujiazu 12 prefecture-level cities: Wuhan, Huangshi, Shiyan, Jingzhou, Yichang, Xiangfan, Ezhou, Jingmen, Xiaogan, Huanggang, Xianning, Suizhou 24 county-level cities 39 counties 2 autonomous counties 1 forest district: Shennongjia ethnic groups :Han, Tu, Miao, Hui, Dong, Manchu, Zhuang, and Mongolian.
    [Show full text]
  • Comparison of Photosynthetic Fluorescence Characteristics of Several Submerged Plants in Honghu Lake, China
    Zhu Y-Q et al . (2021) Notulae Botanicae Horti Agrobotanici Cluj-Napoca Volume 49, Issue 2, Article number 12173 Notulae Botanicae Horti AcademicPres DOI:10.15835/nbha49212173 Agrobotanici Cluj-Napoca Research Article Comparison of photosynthetic fluorescence characteristics of several submerged plants in Honghu Lake, China Yuan-Qin ZHU 1, Bo-Han JING 1, Long-Yi YUAN 1,2 * 1Yangtze University, College of Horticulture and Gardening, Jingzhou, 434025, China; [email protected] ; [email protected] 2Yangtze University, Engineering Research Center of Ecology and Agricultural Use of Wetland, Jingzhou,434025, China; [email protected] (*corresponding author) Abstract Submerged plants are the pioneer species of eutrophic water remediation, and they are important for maintaining the health of aquatic ecosystem, while light is the main limiting factor for the growth of submerged plants. In this study, we measured the maximal quantum yields of photosystem Ⅱ(Fv/F m) and rapid light curves (RLCs) of five dominant submerged macrophytes in situ by using pulse-amplitude modulated fluorometer (Diving-PAM). Results revealed that P. crispus L. and M. verticillatum L. had the highest Fv/F m value, all species’ Fv/F m are less than 0.8. In addition, the variation trends of Fv' /F m' and Fv/F m were same. All species showed statistically significant differences in α, while P. crispus L. and M. verticillatum L. showed the highest α value in the five species. And the variation trends of rETR m and E k were basically the same. It indicated that P. crispus L. and M. verticillatum L., both of which had high photosynthetic efficiency, had excellent ability to withstand hard light.
    [Show full text]
  • Are River Protected Areas Sufficient for Fish Conservation?
    Xie et al. BMC Ecol (2019) 19:42 https://doi.org/10.1186/s12898-019-0258-4 BMC Ecology RESEARCH ARTICLE Open Access Are river protected areas sufcient for fsh conservation? Implications from large-scale hydroacoustic surveys in the middle reach of the Yangtze River Xiao Xie1,2, Hui Zhang1,2, Chengyou Wang2, Jinming Wu2, Qiwei Wei1,2* , Hao Du1,2, Junyi Li2 and Huan Ye2 Abstract Background: The Yangtze River is the third largest river in the world and sufers from extensive anthropogenic impacts. The fshes in the Yangtze River are essential for the sustainable development of freshwater fsheries and the conservation of aquatic biodiversity in China. However, the fshery resources in the Yangtze River Basin have shown rapid decline due to various human activities. In recent years, nature reserves and germplasm resource reserves have become important means to protect fshes in the Yangtze River. However, nature reserves and germplasm resource reserves that regard freshwater fshes as the main object of protection are not common and have been rarely studied in China. In this paper, a hydroacoustic method and systematic conservation planning tool (Marxan) were combined to evaluate the efectiveness of reserves based on the spatial and temporal patterns of mature fshes in the middle reach of the Yangtze River (MRYR) from 2010 to 2017. Results: The hydroacoustic survey results indicated that in the longitudinal direction, low densities of mature fsh species were observed in the Jingzhou (S2) and Jianli (S4, S5, S6) sections, whereas high densities of fsh were observed in other sections, such as the Yichang (S1), Chenglingji to Huangsangkou (S7–S12), and Hukou (S15) sec- tions.
    [Show full text]
  • Waterway: Key Projects Implemented
    2 | Tuesday, January 5, 2021 HONG KONG EDITION | CHINA DAILY PAGE TWO Waterway: Key projects implemented Patrol boat crews check the Yangtze River in Wuhan, Hubei province, last month after the introduction of a 10­year fishing ban on the waterway. CHENG MIN / XINHUA From page 1 and more beautiful,” he added. ter in the Yangtze River Valley, espe­ patrols more than 100 km along the His company has invested more cially the wetlands around Poyang banks of the Yangtze on his electric During the meeting, Xi called for than 90 million yuan ($13.74 mil­ Lake — one of the river’s main bod­ scooter every day. a comprehensive improvement in lion) in the renovation project, for ies of water. The 50­year­old has always lived the efficient use of resources and for which dozens of local villagers have In 2017, Zhou and a group of vol­ on Kaisha Island in the city’s accelerated green and low­carbon been employed. unteers rented the 200,000­square­ Tongzhou district. His ancestors development. “I hope that people on the vessels meter lotus field south of the lake were fishermen and Shi never imag­ In spring, Tongluo Flower Valley that pass by can enjoy the beautiful near Nanchang and adapted it to ined that one day he would monitor in the Nanan district of Chongqing scenery in the river valley,” Zhang form a suitable conservation area the river to help enforce a fishing became a popular destination for added. for the cranes. ban. local people and a scenic spot for “With the support of the govern­ “I cannot recall when I started cruises along the Yangtze.
    [Show full text]
  • GIS/RS-Based Flood Risk Mapping for the Eastern Honghu Flood Diversion Area
    第 15 卷增刊 湖 泊 科 学 Vol. 15, Suppl 2003 年 12 月 Journal of Lake Sciences Dec. , 2003 GIS/RS-Based Flood Risk Mapping for the Eastern Honghu Flood Diversion Area Marco GEMMER (Centre for International Development and Environmental Research and Department of Geography, Justus Liebig University, Giessen, Germany) Abstract A first case study for the estimation of flood damages in the eastern Honghu flood di- version area is presented in this paper. The results display flood risk zones based on simulated esti- mation depths. They are the basis for an integrated model for flood damage estimation which com- bines a GIS-based hydrodynamic model for flood depth estimation with flow propagation and a GIS-, and RS-based unit flood damage model with different tangibles of flood damages. Hereby, the inte- grated flood damage estimation model proofs to be applicable at the Yangtze River. Keywords: Honghu flood diversion area, flood inundation estimation, flood risk mapping At present, great attention regarding flood protection is paid to the construction of the Three Gorges Project (TGP) at the Yangtze River. The TGP will definitively reduce the flood risk downstream of the dam but it is not the final solution for flood protection at the Yangtze River. The floods in 2002 have shown that the Yangtze tributaries contribute much to the flood risk at the Yangtze River. In addition, several flood events might occur until the dam will have full op- erational use for flood prevention in the year 2009. Precipitation as the main reason for floods at the Yangtze River can be regarded as being underlying positive and negative trends [1].
    [Show full text]
  • Genetic Identification of Spirometra Erinaceieuropaei Spargana in Liaoning and Hubei Provinces, PR China
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 57, No. 3: 309-312, June 2019 ▣ BRIEF COMMUNICATION https://doi.org/10.3347/kjp.2019.57.3.309 Genetic Identification of Spirometra erinaceieuropaei Spargana in Liaoning and Hubei Provinces, PR China 1,2 3 1 1 1, Li He , Zheng-Ming Fang , Ting Xue , Er-Fu Zhang , Chun-Li An * 1Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang 110122, PR. China; 2Department of Inspection, 4th Affiliated Hospital of China Medical University, Shenyang 110032, PR. China; 3Department of Parasitology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR. China Abstract: Spargana were collected from human and frogs in Liaoning and Hubei Provinces, China. PCR amplification and direct sequencing of A cox1 fragment was PCR-amplified from genomic DNA extracted from 7 specimens (5 from humans and 2 from frogs). The cox1 fragment (390 bp) showed 97-100% similarity to the reference sequence of S. erina- ceieuropaei and 88-89% to the reference sequence of S. decipiens. There were 1-12 bases different between these worms, but no obvious genetic variation (0-3.3%) to the references. There was little difference of cox1 gene between sparganum samples of humans and frogs (1-3%). This study is the first report on S. erinaceieuropaei spargana from hu- mans in Liaoning and Hubei Provinces. Key words: Spirometra erinaceieuropaei, spargana, cox1, genetic analysis Sparganosis is a zoonotic parasitic disease caused by the ple- since the first patient appeared in Xiamen in 1882.
    [Show full text]
  • Report on Qianjiang Hubei Province Red Swamp Crayfish Fisheries
    Report on Qianjiang Hubei Province Red Swamp Crayfish fisheries A Technical Review Document for the Development of a Fishery Improvement Project SAI Global Marine Office Dave Garforth Senior Consultant, Seafood SAI Global /Global Trust Quayside Business Park, Mill Street Dundalk, County Louth, Ireland T: +353 (0) 42 932 0912 M: +353 (0) 87 7978480 E: [email protected] http://www.saiglobal.com COMMERCIAL IN CONFIDENCE Issue Date: 8 April 2016 © SAI Global Limited Copyright 2012 - ABN 67 050 611 642 I Page 1 of 38 Contents 1. Background ....................................................................................................................... 3 1.1 Responsible fishery management practices in the Red Swamp Chinese Crawfish (Crayfish) Fishery ........................................................................................................................... 3 2. Hubei Province Crayfish Fishery Review ............................................................................. 5 2.1 Geography of the Hubei Province ....................................................................................... 5 2.2 Biology and Habitat of the Species ..................................................................................... 6 2.3 History and Production of Crayfish fisheries in China and Hubei ....................................... 8 2.4 Crayfish fishery Systems ..................................................................................................... 9 2.5 Chinese Fishery Management .........................................................................................
    [Show full text]