Waterway: Key Projects Implemented
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Landscape Analysis of Geographical Names in Hubei Province, China
Entropy 2014, 16, 6313-6337; doi:10.3390/e16126313 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Landscape Analysis of Geographical Names in Hubei Province, China Xixi Chen 1, Tao Hu 1, Fu Ren 1,2,*, Deng Chen 1, Lan Li 1 and Nan Gao 1 1 School of Resource and Environment Science, Wuhan University, Luoyu Road 129, Wuhan 430079, China; E-Mails: [email protected] (X.C.); [email protected] (T.H.); [email protected] (D.C.); [email protected] (L.L.); [email protected] (N.G.) 2 Key Laboratory of Geographical Information System, Ministry of Education, Wuhan University, Luoyu Road 129, Wuhan 430079, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-27-87664557; Fax: +86-27-68778893. External Editor: Hwa-Lung Yu Received: 20 July 2014; in revised form: 31 October 2014 / Accepted: 26 November 2014 / Published: 1 December 2014 Abstract: Hubei Province is the hub of communications in central China, which directly determines its strategic position in the country’s development. Additionally, Hubei Province is well-known for its diverse landforms, including mountains, hills, mounds and plains. This area is called “The Province of Thousand Lakes” due to the abundance of water resources. Geographical names are exclusive names given to physical or anthropogenic geographic entities at specific spatial locations and are important signs by which humans understand natural and human activities. In this study, geographic information systems (GIS) technology is adopted to establish a geodatabase of geographical names with particular characteristics in Hubei Province and extract certain geomorphologic and environmental factors. -
Download Article
Advances in Economics, Business and Management Research, volume 70 International Conference on Economy, Management and Entrepreneurship(ICOEME 2018) Research on the Path of Deep Fusion and Integration Development of Wuhan and Ezhou Lijiang Zhao Chengxiu Teng School of Public Administration School of Public Administration Zhongnan University of Economics and Law Zhongnan University of Economics and Law Wuhan, China 430073 Wuhan, China 430073 Abstract—The integration development of Wuhan and urban integration of Wuhan and Hubei, rely on and Ezhou is a strategic task in Hubei Province. It is of great undertake Wuhan. Ezhou City takes the initiative to revise significance to enhance the primacy of provincial capital, form the overall urban and rural plan. Ezhou’s transportation a new pattern of productivity allocation, drive the development infrastructure is connected to the traffic artery of Wuhan in of provincial economy and upgrade the competitiveness of an all-around and three-dimensional way. At present, there provincial-level administrative regions. This paper discusses are 3 interconnected expressways including Shanghai- the path of deep integration development of Wuhan and Ezhou Chengdu expressway, Wuhan-Ezhou expressway and from the aspects of history, geography, politics and economy, Wugang expressway. In terms of market access, Wuhan East and puts forward some suggestions on relevant management Lake Development Zone and Ezhou Gedian Development principles and policies. Zone try out market access cooperation, and enterprises Keywords—urban regional cooperation; integration registered in Ezhou can be named with “Wuhan”. development; path III. THE SPACE FOR IMPROVEMENT IN THE INTEGRATION I. INTRODUCTION DEVELOPMENT OF WUHAN AND EZHOU Exploring the path of leapfrog development in inland The degree of integration development of Wuhan and areas is a common issue for the vast areas (that is to say, 500 Ezhou is lower than that of central urban area of Wuhan, and kilometers from the coastline) of China’s hinterland. -
Verification of Wind Field Retrieval of Doppler Radar Velocity-Azimuth
5.8 VERIFICATION OF WIND FIELD RETRIEVAL OF DOPPLER RADAR VELOCITY-AZIMUTH PROCESSING METHOD Zheng Yongguang1 Liu Shuyuan1 Bai Jie2 Tao Zuyu1 (1 Department of Atmospheric Sciences, School of Physics, Peking University, Beijing 100871, P. R. China; 2 Beijing Aviation Meteorological Institute, Beijing 100085, P. R. China) 1 PRINCIPLE OF VAP METHOD direction and the radar beam. The VAP (Velocity-Azimuth Processing) method was put forward for retrieving the horizontal wind field from single Doppler radar data by Tao Zuyu (1992). Assume that the horizontal wind vectors are uniform in L a very small azimuth interval (i. e., the local uniformity of wind field) and neglect the vertical fall speed of the r L’ particles of low elevation scan, the formula of horizontal wind retrieval based on the distribution of Doppler velocity profiles with azimuth are as follows Figure 1 A schematic diagram of the relation (see Fig. 1): between the wind vectors and the radial velocities on Wind speed: local uniform wind assumption. v − v v = hr1 hr 2 , 2sinα sin ∆θ Because spatial and temporal resolutions of the Wind direction: Doppler radar data are higher than all of other winds v − v observations, it is difficult to obtain the detail tanα = − hr1 hr 2 cot ∆θ = an vhr1 + vhr 2 information of wind field for objectively evaluating the results derived by VAP method. To prove the validity of α = arctan an, vhr1 − vhr 2 > 0,vhr1 + vhr 2 > 0 the meso-β-scale characteristics on the retrieved wind α = arctan an +π , vhr1 − vhr 2 > 0,vhr1 + vhr 2 < 0 fields by VAP method, Choi et. -
CHN33885 – Three Gorges Dam – Protests – Bilharzia
Refugee Review Tribunal AUSTRALIA RRT RESEARCH RESPONSE Research Response Number: CHN33885 Country: China Date: 16 October 2008 Keywords: China – CHN33885 – Three Gorges Dam – Protests – Bilharzia This response was prepared by the Research & Information Services Section of the Refugee Review Tribunal (RRT) after researching publicly accessible information currently available to the RRT within time constraints. This response is not, and does not purport to be, conclusive as to the merit of any particular claim to refugee status or asylum. This research response may not, under any circumstance, be cited in a decision or any other document. Anyone wishing to use this information may only cite the primary source material contained herein. Questions 1.What is the measurement “mu”? 2. Information about the Three Gorges Dam, and forced acquisition of land, including compensation payable to displaced migrants. 3. Information about the worm parasite – Bilharzia. 4. Information about Hong Yunzhou, Tan Guotai, Chen Yichun, Zhou Zhirong and Fu Xiancai. 5. Is there any record of protests re the displaced migrants? RESPONSE 1.What is the measurement “mu”? A mu is a land measure equal to 0.067 hectares. Thus 100,000 mu is 6,700 hectares (‘China quintuples arable land use tax’ 2006, China Daily, 6 December http://www.chinadaily.com.cn/china/2007-12/06/content_6303895.htm – Accessed 16 April 2008 – Attachment 1). 2. Information about the Three Gorges Dam, and forced acquisition of land, including compensation payable to displaced migrants. The Three Gorges Dam, located in Hubei Province, is the world’s largest dam and will be fully operational in 2009. -
Research on Sustainable Land Use Based on Production–Living–Ecological Function: a Case Study of Hubei Province, China
sustainability Article Research on Sustainable Land Use Based on Production–Living–Ecological Function: A Case Study of Hubei Province, China Chao Wei 1, Qiaowen Lin 2, Li Yu 3,* , Hongwei Zhang 3 , Sheng Ye 3 and Di Zhang 3 1 School of Public Administration, Hubei University, Wuhan 430062, China; [email protected] 2 School of Management and Economics, China University of Geosciences, Wuhan 430074, China; [email protected] 3 School of Public Administration, China University of Geosciences, Wuhan 430074, China; [email protected] (H.Z.); [email protected] (S.Y.); [email protected] (D.Z.) * Correspondence: [email protected]; Tel.: +86-185-7163-2717 Abstract: After decades of rapid development, there exists insufficient and contradictory land use in the world, and social, economic and ecological sustainable development is facing severe challenges. Balanced land use functions (LUFs) can promote sustainable land use and reduces land pressures from limited land resources. In this study, we propose a new conceptual index system using the entropy weight method, regional center of gravity theory, coupling coordination degree model and obstacle factor identification model for LUFs assessment and spatial-temporal analysis. This framework was applied to 17 cities in central China’s Hubei Province using 39 indicators in terms of production–living–ecology analysis during 1996–2016. The result shows that (1) LUFs showed an overall upward trend during the study period, while the way of promotion varied with different dimensions. Production function (PF) experienced a continuous enhancement during the study period. Living function (LF) was similar in this aspect, but showed a faster rising tendency. -
Are China's Water Resources for Agriculture Sustainable? Evidence from Hubei Province
sustainability Article Are China’s Water Resources for Agriculture Sustainable? Evidence from Hubei Province Hao Jin and Shuai Huang * School of Public Economics and Administration, Shanghai University of Finance and Economics, Shanghai 200433, China; [email protected] * Correspondence: [email protected]; Tel.: +86-21-65903686 Abstract: We assessed the sustainability of agricultural water resources in Hubei Province, a typical agricultural province in central China, for a decade (2008–2018). Since traditional evaluation models often consider only the distance between the evaluation point and the positive or negative ideal solution, we introduce gray correlation analysis and construct a new sustainability evaluation model. Our research results show that only one city had excellent sustainable development capacity of agricultural water resources, and the evaluation value of eight cities fluctuated by around 0.5 (the median of the evaluation result), while the sustainable development capacity of agricultural water resources in other cities was relatively poor. Our findings not only reflect the differences in the natural conditions of water resources among various cities in Hubei, but also the impact of the cities’ policies to ensure efficient agricultural water use for sustainable development. The indicators and methods Citation: Jin, H.; Huang, S. Are in this research are not difficult to obtain in most countries and regions of the world. Therefore, the China’s Water Resources for indicator system we have established by this research could be used to study the sustainability of Agriculture Sustainable? Evidence agricultural water resources in other countries, regions, or cities. from Hubei Province. Sustainability 2021, 13, 3510. https://doi.org/ Keywords: water resources; agricultural water resources; sustainability; gray correlation analysis; 10.3390/su13063510 evaluation model Academic Editors: Daniela Malcangio, Alan Cuthbertson, Juan 1. -
Hubei Province Overview
Mizuho Bank China Business Promotion Division Hubei Province Overview Abbreviated Name E Provincial Capital Wuhan Administrative 12 cities, 1 autonomous Divisions prefecture, and 64 counties Secretary of the Li Hongzhong; Provincial Party Wang Guosheng Committee; Mayor 2 Size 185,900 km Shaanxi Henan Annual Mean Hubei Anhui 15–17°C Chongqing Temperature Hunan Jiangxi Annual Precipitation 800–1,600 mm Official Government www.hubei.gov.cn URL Note: Personnel information as of September 2014 [Economic Scale] Unit 2012 2013 National Share (%) Ranking Gross Domestic Product (GDP) 100 Million RMB 22,250 24,668 9 4.3 Per Capita GDP RMB 38,572 42,613 14 - Value-added Industrial Output (enterprises above a designated 100 Million RMB 9,552 N.A. N.A. N.A. size) Agriculture, Forestry and Fishery 100 Million RMB 4,732 5,161 6 5.3 Output Total Investment in Fixed Assets 100 Million RMB 15,578 20,754 9 4.7 Fiscal Revenue 100 Million RMB 1,823 2,191 11 1.7 Fiscal Expenditure 100 Million RMB 3,760 4,372 11 3.1 Total Retail Sales of Consumer 100 Million RMB 9,563 10,886 6 4.6 Goods Foreign Currency Revenue from Million USD 1,203 1,219 15 2.4 Inbound Tourism Export Value Million USD 19,398 22,838 16 1.0 Import Value Million USD 12,565 13,552 18 0.7 Export Surplus Million USD 6,833 9,286 12 1.4 Total Import and Export Value Million USD 31,964 36,389 17 0.9 Foreign Direct Investment No. -
(PIF) PROJECT TYPE: Full-Sized Project TYPE of TRUST FUND:GEF Trust Fund
PROJECT IDENTIFICATION FORM (PIF) PROJECT TYPE: Full-sized Project TYPE OF TRUST FUND:GEF Trust Fund PART I: PROJECT IDENTIFICATION Project Title: CBPF-MSL: Strengthening the management effectiveness of the wetland protected area system in Hubei Province Country(ies): People's Republic of China GEF Project ID: 4870 GEF Agency(ies): UNDP GEF Agency Project ID: 4823 Other Executing Forestry Department of Hubei Province Submission Date: April 5, 2012 Partner(s): GEF Focal Area (s): Biodiversity Project Duration (months): 60 Name of parent program: China Biodiversity Partnership Framework and Agency Fee ($): 238,929 For SFM/REDD+ n/a Action Plan (CBPF) and Main Streams of Life - Wetland PA System Strengthening Programme FOCAL AREA STRATEGY FRAMEWORK: Focal Area Expected FA Outcomes Expected FA Outputs Trust Fund Indicative grant Indicative co- Objectives amount ($) financing ($) BD-1 Outcome 1.1: Improved management Output 1. New protected areas (1) GEFTF 2,029,271 16,150,314 effectiveness of existing and new covering 50,000 ha of unprotected protected areas. ecosystems and improved management of existing (200,000 ha) PAs Outcome 1.2: Increased revenue for Output 2. Sustainable financing GEFTF 500,000 1,149,900 protected area systems to meet total plans (1) expenditures required for management. Sub-total 2,529,271 17,300,214 Project management cost GEFTF 125,500 858,420 Total project cost 2,654,771 18,158,634 PROJECT FRAMEWORK: Project Objective: To strengthen the management effectiveness of the wetland protected area system of Hubei province in response to existing and emerging threats to the globally significant biodiversity and essential ecosystem services Trust Indicative Indicative Project Gran Fund Grant co- Expected Outcomes Expected Outputs Component t type Amount financing ($) ($) Enhancing TA . -
Summary Environmental Impact Assessment Yichang
SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT YICHANG-WANZHOU RAILWAY PROJECT IN THE PEOPLE'S REPUBLIC OF CHINA June 2003 CURRENCY EQUIVALENTS (as of 31 May 2003) Currency Unit – Yuan (CNY) CNY1.00 = $0.1208 $1.00 = CNY8.277 ABBREVIATIONS ADB – Asian Development Bank CSRC – China Securities Regulatory Commission EIA – environmental impact assessment EPB – environmental protection bureau FABHP – Fisheries Administration Bureau of Hubei Province GDP – gross domestic product HICAS – Hydrobiology Institute of China Academy of Sciences MOR – Ministry of Railways NH – National Highway NOx – nitrogen oxides pH – measure of acidity/alkalinity PRC – People's Republic of China SEPA – State Environmental Protection Agency YNCZCS – Yichang Natural Conservation Zone for Chinese Sturgeon YWR – Yichang-Wanzhou Railway YRARI – Yangtze River Aquaculture Research Institute WEIGHTS AND MEASURES ° – degrees Celsius ha – hectare kg – kilogram km – kilometer m – meter mm – millimeter s – second t – ton y – year NOTE In this report, "$" refers to US dollars. CONTENTS Page Map 1 Map 2 Map 3 I. INTRODUCTION 1 II. DESCRIPTION OF THE PROJECT 1 III. DESCRIPTION OF THE ENVIRONMENT 2 A. Physical Resources 2 B. Ecological Resources 2 C. Human and Economic Development 4 D. Quality of Life Values 4 IV. ALTERNATIVES 6 V. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 7 A. Noise 9 B. Water 10 C. Air 10 D. Solid Waste 11 E. Flora and Fauna 12 F. Historical, Cultural, and Archeological Sites 13 G. Resettlement 13 H. Safety and Health 14 I. Induced Impacts 14 VI. ECONOMIC ASSESSMENT 15 A. Environmental Protection Costs 15 B. Environmental Benefits 15 VII. INSTITUTIONAL REQUIREMENTS AND ENVIRONMENTAL MONITORING PROGRAM 16 VIII. PUBLIC PARTICIPATION 18 IX. -
Spatial and Temporal Extinction Dynamics in a Freshwater Cetacean Samuel T
Proc. R. Soc. B (2010) 277, 3139–3147 doi:10.1098/rspb.2010.0584 Published online 19 May 2010 Spatial and temporal extinction dynamics in a freshwater cetacean Samuel T. Turvey1,*, Leigh A. Barrett2, Tom Hart1, Ben Collen1, Hao Yujiang3,*, Zhang Lei3, Zhang Xinqiao3, Wang Xianyan3, Huang Yadong3, Zhou Kaiya4 and Wang Ding3 1Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK 2vaquita.org Foundation, 6048 Dassia Way, Oceanside, CA 92056, USA 3Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People’s Republic of China 4Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, People’s Republic of China Geographical range contraction is a fundamental ecological characteristic of species population decline, but relatively little investigation has been conducted into general trends in the dynamic properties of range collapse. The Yangtze River dolphin or baiji (Lipotes vexillifer), probably the first large mammal species to have become extinct in over 50 years, was believed to have experienced major range collapse during its decline through progressive large-scale range contraction and fragmentation. This range-collapse model is challenged by a new dataset of 406 baiji last-sighting records collected from across the baiji’s historical range during an interview survey of Yangtze fishing communities. Although baiji regional abun- dance may have varied across its range, analyses of the extensive new sighting series provide comprehensive evidence that baiji population decline was not associated with any major contraction in geographical range across the middle–lower Yangtze drainage, even in the decade immediately before probable global extinction of the species. -
Entity List; One of These Entities Is of an Autopilot and Stability 3911, Email: [email protected]
83416 Federal Register / Vol. 85, No. 246 / Tuesday, December 22, 2020 / Rules and Regulations under Docket No. FAA–2020–1102. DATES: This rule is effective December illustrative list of activities that could be Those special conditions were 18, 2020. considered contrary to the national published in the Federal Register on FOR FURTHER INFORMATION CONTACT: security or foreign policy interests of the December 11, 2020 (85 FR 79826). Chair, End-User Review Committee, United States. Those special conditions pertain to the Office of the Assistant Secretary, Export This rule implements the decision of Bell Textron Canada Limited Model 505 Administration, Bureau of Industry and the ERC to add seventy-seven entities, helicopter, as modified by Garmin Security, Department of Commerce, under a total of seventy-eight entries, to International, Inc., with the installation Phone: (202) 482–5991, Fax: (202) 482– the Entity List; one of these entities is of an autopilot and stability 3911, Email: [email protected]. being added under two entries. These augmentation system. The effective date SUPPLEMENTARY INFORMATION: seventy-seven entities will be listed on was inadvertently omitted from the final the Entity List under the following special conditions. This correction Background destinations, as applicable, China, includes the effective date for those The Entity List (supplement No. 4 to Bulgaria, France, Germany, Hong Kong, special conditions. There are no part 744 of the Export Administration Italy, Malta, Pakistan, Russia, and the substantive changes to the document. Regulations (EAR)) identifies entities for U.A.E. The ERC made the decision to which there is reasonable cause to add each of the seventy-seven entities Issued in Fort Worth, Texas. -
Distribution Patterns of Yangtze Finless Porpoises in The
bs_bs_banner Animal Conservation. Print ISSN 1367-9430 Distribution patterns of Yangtze finless porpoises in the Yangtze River: implications for reserve management X. Zhao1,2,D.Wang1, S. T. Turvey3, B. Taylor4 & T. Akamatsu5,6 1 Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China 2 China Three Gorges Corporation, Beijing, China 3 Institute of Zoology, Zoological Society of London, Regent’s Park, London, UK 4 NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, USA 5 NRIFE, Fisheries Research Agency, Kamisu, Ibaraki, Japan 6 Japan Science and Technology Agency, CREST, Tokyo, Japan Keywords Abstract acoustic survey; encounter rate; finless porpoise; habitat preferences; line transect The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)isa sampling; moving average; reserve design highly threatened cetacean endemic to the middle and lower reaches of the Yangtze River that has suffered a dramatic decline in recent decades. We charac- Correspondence terize and quantify recent distribution patterns of porpoises in the Yangtze River Ding Wang, Institute of Hydrobiology, in order to facilitate strategic management of existing in situ cetacean reserves and Chinese Academy of Sciences, Wuhan maximize effective utilization of limited conservation resources. We calculated 430072, China. Tel: +86 27 68780178; porpoise relative abundance (encounter rate) using a 1-km moving average along Fax: +86 27 68780123 the Yangtze main stem based on a combined visual and acoustic survey conducted Email: [email protected]; in 2006. We then evaluated conservation priority areas based on encounter rates [email protected] along the river. High-porpoise density areas (> 0.20 porpoises km-1) cover approximately one-third (33.9%, 599 km) of the survey area and contain approxi- Editor: Karina Acevedo-Whitehouse mately two-thirds of the porpoise population, making them priority areas for Associate Editor: Rob Williams porpoise conservation.