Living with Pigments: the Colour Palette of Antarctic Life

Total Page:16

File Type:pdf, Size:1020Kb

Living with Pigments: the Colour Palette of Antarctic Life Chapter 4 Living with Pigments: The Colour Palette of Antarctic Life Juan José Marizcurrena, María Fernanda Cerdá, Diego Alem, and Susana Castro-Sowinski Abstract The production of pigments is a common feature that may help microor- ganisms to cope with the harsh conditions found in Antarctica. They have functions such as protection against UV irradiation and superoxide and nitrogen reactive spe- cies (antioxidant activity) and modulation of membrane fluidity under cold stress. In addition, they act as antibiotics, modulating the microbial communities in their natural environments, and harvest light for increasing the efficiency of photosynthe- sis, thus influencing the biogeochemical cycles. This chapter deals with the chemis- try and the biological role of microbial pigments (except chlorophylls) in the Antarctic environment and also includes a brief overview of the potential biotech- nological use of pigments. Keywords Microbial production of pigments · UV-resistance · Antioxidant activity · Membrane fluidity · Photosynthesis · Antimicrobial activity J. J. Marizcurrena · S. Castro-Sowinski (*) Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay e-mail: [email protected] M. F. Cerdá Laboratory of Biomaterials, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay D. Alem Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay Epigenetics and Genomics Instability Laboratory, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay © Springer Nature Switzerland AG 2019 65 S. Castro-Sowinski (ed.), The Ecological Role of Micro-organisms in the Antarctic Environment, Springer Polar Sciences, https://doi.org/10.1007/978-3-030-02786-5_4 66 J. J. Marizcurrena et al. 4.1 Introduction The ultraviolet (UV) solar radiation is divided into UVC (170–280 nm), UVB (280– 315 nm) and UVA (315–400 nm). UVC, as well as most UVB radiation, does not reach the Earth’s surface due to the filtering effect of the ozone layer located at the stratosphere. This UV irradiation is damaging for the life on Earth, but many life forms produce pigments as protecting molecules among other adaptations to protect themselves. Biological pigments are substances whose presence in tissues or cells colours them. They are found in different sources, as animals and higher plants, but they are also produced by bacteria, algae, lichen or moss. Dyes act as light-harvesting­ molecules, protecting organism from radiation, and are also used for synthetic purposes. During the early stage of life, the selective pressure of solar irradiation may have slanted the microbial evolution (Garcia-Pichel 1998; Cockell and Horneck 2001). The new life forms should have to develop different mechanisms to cope with the harmful effect of solar irradiation, and probably, by natural selection, they produced different pigments as cellular products that served for multiple purposes. Pigments conferred unique features, such as photon harvesting for energy income, and protec- tion of vital molecules like DNA and proteins (Wynn-Williams et al. 2002).Thus, constant UV irradiation would have been shielded by these new pigments, avoiding oxidative stress and direct DNA damage, protecting cells from the UV mutagenic potential (Mulkidjanian and Junge 1997). Currently, as a consequence of the depletion of the ozone layer, organisms from Earth are exposed to increased levels of UV irradiation. Therefore, various organ- isms have developed mechanisms for protection against the damage caused by UV irradiation. They can produce and accumulate absorbing molecules to decrease the transmission of incident light. Alternatively, they can produce UV screening com- pounds such as phenolic compounds, able to absorb and re-emit the UV radiation as fluorescence or thermal radiation. A molecule is able to absorb light from the HOMO to the LUMO orbital, and then several pathways can dissipate the energy. The energy can return to the basal state dissipating the excess of energy by produc- ing heat or by radioactive processes (fluorescence or phosphorescence). Instead, transfer to other molecules, inducing structural modifications via reversible or irre- versible pathways, can dissipate the energy. Finally, the last protective strategy is the production of repairing macromolecules such as the production of photolyases, enzymes that repair the DNA damage induced by UV irradiation (Sancar et al. 2004). Among others, Antarctic bacteria are a good source of highly efficient pho- tolyases (Marizcurrena et al. 2017). This chapter deals with the chemistry and the biological role of pigments pro- duced by microorganisms, with the focus in Antarctic microbes. We will describe a set of pigments, but the well-known photosynthetic pigment chlorophyll has not been included in this chapter. 4 Living with Pigments: The Colour Palette of Antarctic Life 67 4.2 Living with Carotenoids Carotenoids are organic liposoluble pigments from the group of isoprenoids, found naturally in plants and other photosynthetic organisms, and are responsible for most of the yellow, orange or red colours in nature. They are divided into two groups: (1) non-oxygenated molecules as β-carotene and (2) oxygenated molecules as xantho- phylls (Fig. 4.1). The maximum absorptions of carotenoids are between 440 and 520 nm, with a strong molar absorption coefficient (ca. 105 L mol−1 cm−1). They protect cells from photo-oxidative damage by (i) preventing the formation of reac- tive oxygen species through the thermal dissipation of the excess of energy; and (ii) quenching of the excited states of chlorophyll and singlet oxygen. During their emergence in the early life, carotenoids may have function as light-­harvesting antenna, acting as accessory pigments for chlorophylls. As carot- enoids collect energy from a wider spectrum of visible light compared with chlo- rophylls, it may increase the photosynthetic efficiency (Lichtenthaler 1987), thus a OH b HO O c O O HO d O O O OH e HO Fig. 4.1 Structures of (a) β-carotene (b) and lutein (c) cathaxanthin (d) fucoxanthin and (e) zeaxanthin 68 J. J. Marizcurrena et al. influencing the biogeochemical cycling of carbon. On a geological time scales, the evidence support that there is an important impact of photosynthesis in bio- geochemical cycles (Falkowski 1994). Pigments also provide photoprotection against UV irradiation, absorbing light and preserving DNA and proteins from photodamage and oxidizing agents that produce reactive oxygen species (ROS; antioxidant properties). Alternatively, carotenoids provide protection against other physiological stresses such as low temperature, another common feature in Antarctica (Tian and Hua 2010). Carotenoids are also involved in cell differentiation and cell cycle regulation. They also act as growth factor regulators, as immune systems inducers and as intra- cellular signalling molecules, among others functions (Fiedor and Burda 2014). Chemically, they have hydrophobic chains that attach them into the lipid bilayer of cell membranes; thus, changes in the amount of membrane carotenoids influence the thickness, fluidity and rigidity of the membranes, an important feature in a roast- ing early habitat and also in the cold Antarctic environment (Wisniewska and Subczynski 1998, 2006). The advantage of counting on a wide range of carotenoids (β-carotenes and xanthophylls) not only influences the stability of the cell mem- brane, it also improves the resistance to ROS. Carotenoids like β-carotene absorb UVA and UVC light, both inducing oxidative stress and DNA photodamage, respectively. In Antarctica, microorganisms have been detected in all habitats such as lakes, ponds, rivers, streams, rocks and soil. Among pigments, carotenoids are the main pigments found in microbes. They have been reported as cryo- or solar radiation protectants as well as light harvesters in photovoltaic cells (Montagni et al. 2018). Carotenoids such as nostoxanthin and zeaxanthin have been found in Pseudomonas, whereas canthaxanthin or 2′-hydroxyflexixanthin has been found in Hymenobacter isolates (Klassen and Foght 2008). Also the phytoplankton is a rich source of pig- ments including chlorophylls, xanthins and α- and β-carotenes; these photosynthetic and photoprotective pigments may allow the adaptation of life under low light con- ditions (Ferreira et al. 2017). Among other carotenoid-producing Antarctic microorganisms, it has been shown that the bacterium Sphingobacterium antarcticus produces at least three carotenoids (zeaxanthin, β-cryptoxanthin and β-carotene). Another example of an Antarctic carotenoid-producing bacterium is Arthrobacter agilis, isolated from a sea ice sam- ple, that increases the content of carotenoids (C-50 bacterioruberin-type carotenoid and its glycosylated derivatives) at low temperatures of growth; interestingly, the production of carotenoid decreased when growing at high-salinity conditions (Fong et al. 2001). In addition to cold adaptation, the production of carotenoids by Antarctic heterotrophic bacteria is a strategy to withstand other environmental stresses, such as freeze-thaw cycles and solar irradiation (Dieser et al. 2010). The production of carotenoid-like pigments by Arctic microorganisms is also involved in physiological plasticity, a rapid response to a gradual decrease in temperature and freeze-thaw (Singh et al. 2017). Finally, the very well-known radio-resistant bacte- rium Deinococcus radiodurans produces the carotenoid deinoxanthin,
Recommended publications
  • Investigating the Initial Steps in the Biosynthesis of Cyanobacterial Sunscreen Scytonemin
    Investigating the Initial Steps in the Biosynthesis of Cyanobacterial Sunscreen Scytonemin The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Balskus, Emily P., and Christopher T. Walsh. 2008. “Investigating the Initial Steps in the Biosynthesis of Cyanobacterial Sunscreen Scytonemin.” Journal of the American Chemical Society 130 (46) (November 19): 15260–15261. Published Version doi:10.1021/ja807192u Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12153245 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP NIH Public Access Author Manuscript J Am Chem Soc. Author manuscript; available in PMC 2009 November 19. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Am Chem Soc. 2008 November 19; 130(46): 15260±15261. doi:10.1021/ja807192u. Investigating the Initial Steps in the Biosynthesis of Cyanobacterial Sunscreen Scytonemin Emily P. Balskus and Christopher T. Walsh Contribution from the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 Photosynthetic cyanobacteria have evolved a variety of strategies for coping with exposure to damaging solar UV radiation,1 including DNA repair processes,2 UV avoidance behavior,3 and the synthesis of radiation-absorbing pigments.4 Scytonemin (1) is the most widespread and extensively characterized cyanobacterial sunscreen.5 This lipid soluble alkaloid accumulates in the extracellular sheaths of cyanobacteria upon exposure to UV-A light, where 6 it absorbs further incident radiation λmax = 384 nm).
    [Show full text]
  • Bacteria Increase Arid-Land Soil Surface Temperature Through the Production of Sunscreens
    Lawrence Berkeley National Laboratory Recent Work Title Bacteria increase arid-land soil surface temperature through the production of sunscreens. Permalink https://escholarship.org/uc/item/0gm2g8mx Journal Nature communications, 7(1) ISSN 2041-1723 Authors Couradeau, Estelle Karaoz, Ulas Lim, Hsiao Chien et al. Publication Date 2016-01-20 DOI 10.1038/ncomms10373 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 9 Jun 2015 | Accepted 3 Dec 2015 | Published 20 Jan 2016 DOI: 10.1038/ncomms10373 OPEN Bacteria increase arid-land soil surface temperature through the production of sunscreens Estelle Couradeau1, Ulas Karaoz2, Hsiao Chien Lim2, Ulisses Nunes da Rocha2,w, Trent Northen3, Eoin Brodie2,4 & Ferran Garcia-Pichel1,3 Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparent and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales.
    [Show full text]
  • Thi Thu Tram NGUYEN
    ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Chimie Ecole doctorale Sciences De La Matière Thi Thu Tram NGUYEN Préparée dans l’unité de recherche UMR CNRS 6226 Equipe PNSCM (Produits Naturels Synthèses Chimie Médicinale) (Faculté de Pharmacie, Université de Rennes 1) Screening of Thèse soutenue à Rennes le 19 décembre 2014 mycosporine-like devant le jury composé de : compounds in the Marie-Dominique GALIBERT Professeur à l’Université de Rennes 1 / Examinateur Dermatocarpon genus. Holger THÜS Conservateur au Natural History Museum Londres / Phytochemical study Rapporteur Erwan AR GALL of the lichen Maître de conférences à l’Université de Bretagne Occidentale / Rapporteur Dermatocarpon luridum Kim Phi Phung NGUYEN Professeur à l’Université des sciences naturelles (With.) J.R. Laundon. d’Hô-Chi-Minh-Ville Vietnam / Examinateur Marylène CHOLLET-KRUGLER Maître de conférences à l’Université de Rennes1 / Co-directeur de thèse Joël BOUSTIE Professeur à l’Université de Rennes 1 / Directeur de thèse Remerciements En premier lieu, je tiens à remercier Monsieur le Dr Holger Thüs et Monsieur le Dr Erwan Ar Gall d’avoir accepté d’être les rapporteurs de mon manuscrit, ainsi que Madame la Professeure Marie-Dominique Galibert d’avoir accepté de participer à ce jury de thèse. J’exprime toute ma gratitude au Dr Marylène Chollet-Krugler pour avoir guidé mes pas dès les premiers jours et tout au long de ces trois années. Je la remercie particulièrement pour sa disponibilité et sa grande gentillesse, son écoute et sa patience.
    [Show full text]
  • Scholarworks@UNO
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-4-2011 Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria Avijit Biswas University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Biswas, Avijit, "Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria" (2011). University of New Orleans Theses and Dissertations. 446. https://scholarworks.uno.edu/td/446 This Dissertation-Restricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation-Restricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Identification and characterization of enzymes involved in biosynthesis of different phycobiliproteins in cyanobacteria A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry (Biochemistry) By Avijit Biswas B.S.
    [Show full text]
  • Marine Natural Products: a Source of Novel Anticancer Drugs
    marine drugs Review Marine Natural Products: A Source of Novel Anticancer Drugs Shaden A. M. Khalifa 1,2, Nizar Elias 3, Mohamed A. Farag 4,5, Lei Chen 6, Aamer Saeed 7 , Mohamed-Elamir F. Hegazy 8,9, Moustafa S. Moustafa 10, Aida Abd El-Wahed 10, Saleh M. Al-Mousawi 10, Syed G. Musharraf 11, Fang-Rong Chang 12 , Arihiro Iwasaki 13 , Kiyotake Suenaga 13 , Muaaz Alajlani 14,15, Ulf Göransson 15 and Hesham R. El-Seedi 15,16,17,18,* 1 Clinical Research Centre, Karolinska University Hospital, Novum, 14157 Huddinge, Stockholm, Sweden 2 Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden 3 Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222 Dayr Atiyah, Syria 4 Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt 5 Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, 11835 New Cairo, Egypt 6 College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China 7 Department of Chemitry, Quaid-i-Azam University, Islamabad 45320, Pakistan 8 Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany 9 Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622 Giza, Egypt 10 Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait 11 H.E.J. Research Institute of Chemistry,
    [Show full text]
  • Response of Desert Biological Soil Crusts to Alterations in Precipitation Frequency
    Oecologia (2004) 141: 306–316 DOI 10.1007/s00442-003-1438-6 PULSE EVENTS AND ARID ECOSYSTEMS Jayne Belnap . Susan L. Phillips . Mark E. Miller Response of desert biological soil crusts to alterations in precipitation frequency Received: 15 May 2003 / Accepted: 20 October 2003 / Published online: 19 December 2003 # Springer-Verlag 2003 Abstract Biological soil crusts, a community of cyano- treatment. The crusts dominated by the soil lichen bacteria, lichens, and mosses that live on the soil surface, Collema, being dark and protruding above the surface, occur in deserts throughout the world. They are a critical dried the most rapidly, followed by the dark surface component of desert ecosystems, as they are important cyanobacterial crusts (Nostoc-Scytonema-Microcoleus), contributors to soil fertility and stability. Future climate and then by the light cyanobacterial crusts (Microcoleus). scenarios predict alteration of the timing and amount of This order reflected the magnitude of the observed precipitation in desert environments. Because biological response: crusts dominated by the lichen Collema showed soil crust organisms are only metabolically active when the largest decline in quantum yield, chlorophyll a, and wet, and as soil surfaces dry quickly in deserts during late protective pigments; crusts dominated by Nostoc-Scytone- spring, summer, and early fall, the amount and timing of ma-Microcoleus showed an intermediate decline in these precipitation is likely to have significant impacts on the variables; and the crusts dominated by Microcoleus physiological functioning of these communities. Using the showed the least negative response. Most previous studies three dominant soil crust types found in the western of crust response to radiation stress have been short-term United States, we applied three levels of precipitation laboratory studies, where organisms were watered and frequency (50% below-average, average, and 50% above- kept under moderate temperatures.
    [Show full text]
  • Mutational Studies of Putative Biosynthetic Genes for the Cyanobacterial Sunscreen Scytonemin in Nostoc Punctiforme ATCC 29133
    fmicb-07-00735 May 14, 2016 Time: 12:18 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ASU Digital Repository ORIGINAL RESEARCH published: 18 May 2016 doi: 10.3389/fmicb.2016.00735 Mutational Studies of Putative Biosynthetic Genes for the Cyanobacterial Sunscreen Scytonemin in Nostoc punctiforme ATCC 29133 Daniela Ferreira and Ferran Garcia-Pichel* School of Life Sciences, Arizona State University, Tempe, AZ, USA The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed Edited by: (1scyD, 1scyE, and 1scyF) and their phenotypes studied. Expectedly, 1scyE presents Martin G. Klotz, a scytoneminless phenotype, but no accumulation of the predicted intermediaries. City University of New York, USA Surprisingly, 1scyD retains scytonemin production, implying that it is not required Reviewed by: for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely Rajesh P. Rastogi, Sardar Patel University, India originated in a duplication event from scyE, and unlike other genes in the operon, it has Iris Maldener, not been subjected to purifying selection.
    [Show full text]
  • Phycobiliprotein Evolution (Phycoerythrin/Phycobilisomes/Cell Wall/Photosynthesis/Prokaryotic Evolution) THOMAS A
    Proc. Natd Acad. Sci. USA Vol. 78, No. 11, pp. 6888-6892, November 1981 Botany Morphology of a novel cyanobacterium and characterization of light-harvesting complexes from it: Implications for phycobiliprotein evolution (phycoerythrin/phycobilisomes/cell wall/photosynthesis/prokaryotic evolution) THOMAS A. KURSAR*, HEWSON SwIFTt, AND RANDALL S. ALBERTEt tBarnes Laboratory, Department ofBiology, and *Department of Biophysics and Theoretical Biology, University of Chicago, Chicago, Illinois 60637 Contributed by Hewson Swift, July 2, 1981 ABSTRACT The morphology of the marine cyanobacterium After examining the in vivo spectral properties of several of DC-2 and two light-harvesting complexes from it have been char- the recently discovered species ofcyanobacteria, it came to our acterized. DC-2 has an outer cell wall sheath not previously ob- attention that one of the PE-containing types termed DC-2 served, the purified phycoerythrin shows many unusual proper- showed some rather unusual features. Further study revealed ties that distinguish it from all phycoerythrins characterized to that this species possesses novel PE, phycobilisomes, and outer date, and isolated phycobilisomes have a single absorption band cell wall sheath; these characteristics suggest that it should be at 640 nm in the phycocyanin-allophycocyanin region of the spec- trum. On the basis of these observations we suggest that DC-2, placed in a new phylogenetic branch for the cyanobacteria. rather than being a member of the Synechococcus group, should be placed in its own taxonomic group. In addition, the particular MATERIALS AND METHODS properties of the isolated phycoerythrin suggest that it may be An axenic representative of an early stage in the evolution of the phyco- isolate of Synechococcus sp., clone DC-2, obtained erythrins.
    [Show full text]
  • WO 2015/090697 Al 25 June 2015 (25.06.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/090697 Al 25 June 2015 (25.06.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A23L 1/275 (2006.01) A61K 8/64 (2006.01) kind of national protection available): AE, AG, AL, AM, A23L 2/58 (2006.01) A61K 36/02 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A23K 1/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/EP2014/073057 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 28 October 2014 (28.10.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: glish ( ) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 13 197910.6 18 December 201 3 (18. 12.2013) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: BASF SE [DE/DE]; 67056 Ludwigshafen TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (DE).
    [Show full text]
  • Secondary Metabolites in Cyanobacteria
    Chapter 2 Secondary Metabolites in Cyanobacteria BethanBethan Kultschar Kultschar and Carole LlewellynCarole Llewellyn Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.75648 Abstract Cyanobacteria are a diverse group of photosynthetic bacteria found in marine, fresh- water and terrestrial habitats. Secondary metabolites are produced by cyanobacteria enabling them to survive in a wide range of environments including those which are extreme. Often production of secondary metabolites is enhanced in response to abiotic or biotic stress factors. The structural diversity of secondary metabolites in cyanobacteria ranges from low molecular weight, for example, with the photoprotective mycosporine- like amino acids to more complex molecular structures found, for example, with cyano- toxins. Here a short overview on the main groups of secondary metabolites according to chemical structure and according to functionality. Secondary metabolites are intro- duced covering non-ribosomal peptides, polyketides, ribosomal peptides, alkaloids and isoprenoids. Functionality covers production of cyanotoxins, photoprotection and anti- oxidant activity. We conclude with a short introduction on how secondary metabolites from cyanobacteria are increasingly being sought by industry including their value for the pharmaceutical and cosmetics industries. Keywords: cyanobacteria, secondary metabolites, nonribosomal peptides, polyketides, alkaloids, isoprenoids, cyanotoxins, mycosporine-like amino acids, scytonemin, phycobiliproteins, biotechnology, pharmaceuticals, cosmetics 1. Introduction 1.1. Cyanobacteria Cyanobacteria are a diverse group of gram-negative photosynthetic prokaryotes. They are thought to be one of the oldest photosynthetic organisms creating the conditions that resulted in the evolution of aerobic metabolism and eukaryotic photosynthesis [1, 2]. They © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons © 2018 The Author(s).
    [Show full text]
  • Binding Affinity of Allophycocyanin to Blood Cells and Nuclei
    Scientific Research and Essay Vol.4 (10), pp. 1132-1135, October, 2009 Available online at http://www.academicjournals.org/sre ISSN 1992-2248 © 2009 Academic Journals Full Length Research Paper Binding affinity of allophycocyanin to blood cells and nuclei M. Kuddus1* and P. W. Ramteke2 1Department of Biotechnology, Integral University, Kursi Road, Bas-ha Lucknow – 226026, India. 2College of Biotechnology and Allied Sciences, Allahabad Agricultural Institute – Deemed University, Allahabad – 211007, India. Accepted 11 September, 2009 Allophycocyanin (APC) was extracted from Anacystis nidulans and examined for its binding affinity towards various cells/nuclei. The various cells and nuclei isolated from human, rat and rabbit blood were stained with APC and examined under fluorescent microscope. Allophycocyanin dye showed high affinity towards nucleus rather than the cell surface. It reacts with the human lymphocytes at high dilution of greater than 10-6. The APC was seen to have no affinity towards anucleated cells such as RBCs and platelets from human, rat and rabbit. Thus, APC may be used to count nucleated cells and can also be employed as potential diagnostic agent to differentiate nucleated cell from anucleated cells. The study also highlights affinity of APC towards genomic DNA and it has no specificity for any other proteins because it could not stain them and thus could be suitably employed in genomic DNA analysis and may be replaced by harmful chemicals used for staining. Key words: Allophycocyanin, DNA staining, fluorescent microscopy, Anacystis nidulans. INTRODUCTION Allophycocyanin (APC), a protein that belongs to the properties of these proteins. They have high quantum light-harvesting phycobiliprotein family, is emerging as yields that are constant over a broad pH range.
    [Show full text]
  • Role of Allophycocyanin As a Light-Harvesting Pigment in Cyanobacteria (Photosynthetic Action Spectra/Phycobilisomes/Phycobiliproteins/Chlorrophyll A) C
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 11, pp. 3130-3133, November 1973 Role of Allophycocyanin as a Light-Harvesting Pigment in Cyanobacteria (photosynthetic action spectra/phycobilisomes/phycobiliproteins/chlorrophyll a) C. LEMASSON*, N. TANDEAU DE MARSACt, AND G. COHEN-BAZIREt * Laboratoire de Photosynthbse, C.N.R.S., 91190 Gif-sur-Yvette, France; and t Service de Physiologie Microbienne, Institut Pasteur, Paris 75015, France Communicated by J. Monod, July 16, 1973 ABSTRACT Photosynthetic action spectra of several perforata, "extends well towards 650 nmr, corresponding to the cyanobacteria show a peak at about 650 nm, the height of high allophycocyanin content of this species." which is correlated with allophycocyanin content in the strains examined. Allophycocyanin harvests light more Gantt and Lipschultz (17) have suggested that allophyco- efficiently than do phycocyanin and phycoerythrin. The cyanin plays a role in energy transfer through the phycobili- contribution of chlorophyll a absorption to photosynthetic some. This proposal was based primarily on the observation activity is barely detectable in cells of normal pigment that when isolated phycobilisomes of the unicellular rhodo- composition. Chlorophyll a becomes the major light- light absorbed harvesting pigment in cells that have been physiologically phyte Porphyridium cruentum are excited with depleted ofphycobiliproteins. by phycoerythrin, they emit fluorescence of a much longer wavelength, attributed to allophycocyanin by these authors. In cyanobacteria ("blue-green algae") and rhodophytes, water-soluble chromoproteins known as phycobiliproteins are MATERIAL AND METHODS always associated with the photosynthetic apparatus. They Biological Material. The axenic cyanobacteria examined are are localized in phycobilisomes, granules about 40 nm in maintained in the culture collection of the Service de Physio- diameter, attached in regular array to the outer membrane logie Microbienne, Institut Pasteur.
    [Show full text]