Crystal Structure of a Phycourobilin-Containing Phycoerythrin at 1.90-Å Resolution1

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Structure of a Phycourobilin-Containing Phycoerythrin at 1.90-Å Resolution1 Journal of Structural Biology 126, 86–97 (1999) Article ID jsbi.1999.4106, available online at http://www.idealibrary.com on Crystal Structure of a Phycourobilin-Containing Phycoerythrin at 1.90-Å Resolution1 Stephan Ritter,*,2 Roger G. Hiller,† Pamela M. Wrench,† Wolfram Welte,‡ and Kay Diederichs‡,3 *Institut fu¨ r Biophysik und Strahlenbiologie, Universita¨t Freiburg, Albertstrasse 23, D-79104 Freiburg, Germany; †School of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; and ‡Fakulta¨tfu¨ r Biologie, Universita¨t Konstanz (M656), D-78457 Konstanz, Germany Received December 22, 1998, and in revised form February 16, 1999 INTRODUCTION The structure of R-phycoerythrin (R-PE) from the red alga Griffithsia monilis was solved at 1.90-Å The process of photosynthesis converts light en- resolution by molecular replacement, using the ergy to chemical energy. For the absorption of light, atomic coordinates of cyanobacterial phycocyanin cyanobacteria and red algae use water-soluble light- from Fremyella diplosiphon as a model. The crystal- harvesting complexes, called phycobilisomes, which lographic R factor for the final model is 17.5% (Rfree are attached to the stromal side of the thylakoid 22.7%) for reflections in the range 100–1.90 Å. The membrane. They have a molecular mass of approxi- ␣␤ model consists of an ( )2 dimer with an internal mately 7–15 ϫ 106 Da and transfer the absorbed noncrystallographic dyad and a fragment of the energy with an efficiency of over 95% (Gantt and ␥ ␣ -polypeptide. The -polypeptide (164 amino acid Lipschultz, 1973; Sauer, 1975; Glazer, 1989) to the residues) has two covalently bound phycoerythrobi- photosynthetic reaction center. lins at positions ␣82 and ␣139. The ␤-polypeptide Phycobilisomes are made up of two structural (177 residues) has two phycoerythrobilins bound to residues ␤82 and ␤158 and one phycourobilin cova- subunits: a core complex, located close to the reac- lently attached to rings A and D at residues ␤50 and tion center, and rod-like segments that are attached ␤61, respectively. The electron density of the ␥-poly- to this core. Both subunits contain different phycobili- peptide is mostly averaged out by threefold crystal- proteins in the form of stacked single discs. The lographic symmetry, but a dipeptide (Gly-Tyr) and various phycobiliproteins differ predominantly in one single Tyr could be modeled. These two tyrosine the number and nature of the pigments they carry residues of the ␥-polypeptide are in close proximity and therefore in their absorption spectra. Their to the phycoerythrobilins at position ␤82 of two arrangement is such that those absorbing in the symmetry-related ␤-polypeptides and are related by blue/green region of the spectrum are located at the ␣␤ the same noncrystallographic dyad as the ( )2 end of the rods, while those absorbing in the red dimer. Possible energy transfer pathways are dis- region are located in the core complex. cussed briefly. ௠ 1999 Academic Press The core complex consists predominantly of allo- Key Words: light-harvesting complexes; red algae; 4 phycobiliproteins; protein structure; molecular phycocyanin (APC), with an absorption maximum ␭ replacement. max at approximately 650 nm, while the major constituents of the rods are phycocyanin (PC), with ␭max at 615–620 nm, and phycoerythrin (PE), with ␭max at 495–565 nm (MacColl and Guard-Friar, 1987). The polypeptide composition of cyanobacterial and 1 This work was supported by the Deutsche Forschungsgemein- algal phycobiliproteins is very similar. Two polypep- schaft/SFB 60 and by Macquarie University. tides of about 15 (␣) and 17 kDa (␤) form an (␣␤) 2 Present address: Medizinische Universita¨tsklinik Abt. Sport- heterodimer, which is the basic structural unit in medizin, Hugstetterstrasse 55, D-79106 Freiburg, Germany. 3 To whom correspondence should be addressed. Fax: ϩϩ49 most phycobiliproteins. Each polypeptide of the ba- 7531 883183. E-mail: [email protected]. sic (␣␤) heterodimer includes eight ␣-helices (X, Y, A, 4 Abbreviations used: R-PE, R-phycoerythrin; B-PE, B-phycoery- B, E, F, G, and H). Their nomenclature points to the thrin; C-PC, C-phycocyanin; APC, allophycocyanin; PC, phycocyanin; structural similarity of helices A to H to the globin PE, phycoerythrin; PCB, phycocyanobilin; PXB, phycobiliviolin; PEB, phycoerythrobilin; PUB, phycourobilin; rms, root-mean-square; fold (Schirmer et al., 1985). The positions of these NCS, noncrystallographic symmetry. helices are so conserved within the three-dimen- 1047-8477/99 $30.00 86 Copyright ௠ 1999 by Academic Press All rights of reproduction in any form reserved. STRUCTURE OF R-PHYCOERYTHRIN 87 FIG. 1. Chemical structure of the bilin chromophores (top) PEB and (bottom) doubly linked PUB. The nomenclature of the atoms is indicated. sional structures that most of the more recent phyco- (␣␤)6␥ and a molecular mass of about 240 kDa for biliprotein structure determinations could be done both phycobiliproteins. using the method of molecular replacement. The (␣␤) In R-PE and B-PE all pigments are open-chain heterodimer is arranged around a crystallographic tetrapyrrole chromophores (bilins), which are cova- threefold axis to form an (␣␤)3 trimer. With few lently bound to cysteines (Glazer et al., 1976). There exceptions (Schirmer et al., 1985, 1987) this trimer is are, however, differences in pigmentation. B-PE car- then related by a twofold noncrystallographic symme- ries five phycoerythrobilins (PEBs) per (␣␤), while in try (NCS) to form the (␣␤)6 hexamer. In addition, a R-PE two phycoerythrobilins (see Fig. 1, top) are third polypeptide of varying molecular mass is pre- attached to the ␣-polypeptide, and two phycoerythro- sent and functions as a so-called linker protein (for bilins and one doubly linked phycourobilin (PUB, see reviews see Glazer, 1985, 1989; Huber, 1989; Gross- Fig. 1, bottom) are bound to the ␤-polypeptide. The man et al., 1993). In the case of R-phycoerythrin pigment composition of the ␥-polypeptide varies. For (R-PE) and B-phycoerythrin (B-PE), this linker pro- B-PE four bilins (two PEBs and two PUBs) are tein (␥-polypeptide) is pigmented, has a molecular described (Glazer, 1985; Ficner et al., 1992) while for mass of about 30 kDa, and is tightly bound to the ␣- R-PE the amount of pigments varies from four to five and ␤-polypeptides. This yields a stoichiometry of bilins (PEB and PUB), depending on the organism. 88 RITTER ET AL. Up to three different ␥-polypeptides are observed for Sequence determination, model building, and refinement. The R-PE of some species (Apt et al., 1993; Stadnichuk et sequence was obtained by genetic methods and was deposited with the EMBL database (Accession No. Z98528). An alignment al., 1993). with the sequences of R-PE from Pol. boldii (Roell and Morse, In the past few years the structures of various 1993), B-PE from Por. cruentum (Sidler et al., 1989), and C-PC phycobiliproteins could be solved, showing the confor- from Fremyella diplosiphon (Mazel et al., 1988) is shown in Table mation of the bound chromophores within the pro- II (for review see Apt et al., 1995). The coordinates of the 1CPC tein (for review see Betz, 1997). The conformation of model (Duerring et al., 1991) were taken from the Brookhaven database and used for molecular replacement. Insertions and phycocyanobilin (PCB) was determined by Schirmer deletions relative to 1CPC were modeled with ‘‘O’’ (Jones et al., et al. (1985, 1986, 1987), Duerring et al. (1991), and 1991). For refinement, molecular dynamics and conventional Brejc et al. (1995). The conformation of phycobilivio- energy restrained least-squares refinement procedures on posi- lin (PXB), phycoerythrobilin, and phycourobilin was tional parameters and B factors were used and water molecules determined by Duerring et al. (1990); Ficner et al. were integrated into the model. A bulk solvent correction was included in the refinement procedure. The free R factor (Bru¨ nger, (1992), Ficner and Huber (1993); and Chang et al. 1997) was used to optimize the refinement strategy. (1996); respectively. In this paper we report the solution of the struc- RESULTS ture by molecular replacement and refinement of Structure Solution by Molecular Replacement R-PE from the red alga Griffithsia monilis at 1.90-Å resolution. The model consists of an ␣-polypeptide As the unit cell parameters of R-PE resemble those carrying two PEBs at positions ␣82 and ␣139 and of of 1CPC, a similar packing was expected. This a ␤-polypeptide carrying two PEBs at positions ␤82 assumption was confirmed by a cross-rotation search. and ␤158 and one PUB doubly-linked to residues ␤50 The (␣␤)2 dimer of 1CPC was placed into a triclinic and ␤61. The two polypeptides ␣ and ␤ are arranged unit cell (a ϭ 155 Å, b ϭ 90 Å, c ϭ 100 Å, ␣ϭ90°, ␤ϭ ␥ϭ around a NCS dyad to form an (␣␤)2 dimer as an 90°, 90°) and its Patterson was generated asymmetric unit. In the following, residues on the with reflections from 15 to 4 Å. The 1000 highest NCS-related ␣-polypeptides of the asymmetric unit Patterson vectors were selected within the radius are designated A and K, respectively. Similarly, 45–5 Å. The cross-rotation function was calculated in residues on the ␤-polypeptide are named B and L, 2.5° steps (0 Յ⌰ϩ Ͻ 720°, 0 Յ⌰2 Յ 180°, respectively. 0 Յ⌰Ϫ Յ 120°; see Rao et al., 1980) in Lattman Although the structure of R-PE from G. monilis is (1972) angle space and gave two clear maxima of expected to be closely related to the structure of equal height at Eulerian angles Ϫ40°, 0°, 0° and 90°, B-PE from Porphyridium sordidum and that of R-PE 180°, 0°. These maxima are related by a 180° rota- from Polysiphonia urceolata, it is of interest because tion and correspond to the internal twofold symme- it was refined to high resolution using the native try of the model dimer. The position of this twofold sequence of G.
Recommended publications
  • Scholarworks@UNO
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-4-2011 Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria Avijit Biswas University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Biswas, Avijit, "Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria" (2011). University of New Orleans Theses and Dissertations. 446. https://scholarworks.uno.edu/td/446 This Dissertation-Restricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation-Restricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Identification and characterization of enzymes involved in biosynthesis of different phycobiliproteins in cyanobacteria A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry (Biochemistry) By Avijit Biswas B.S.
    [Show full text]
  • Extractuion, Partial Pirificatuon and Anti
    J. Algal Biomass Utln. 2012, 3 (3): 7– 11 Purification, and antibacterial activity of phycocyanin from Spirulina © PHYCO SPECTRUM INC Extraction, partial purification, and antibacterial activity of phycocyanin from Spirulina isolated from fresh water body against various human pathogens M. Muthulakshmi, A. Saranya, M. Sudha, and G. Selvakumar* Department of Microbiology and Biochemistry, Nadar Saraswathi College of Arts & Science, Theni 625531, Tamil Nadu, India *Department of Microbiology, Department of Distance Education, Alagappa University, Karaikudi, Tamil Nadu, India ABSTRACT The phycobilin pigments are intensively fluorescence and water soluble. They are categorized into three types: pigments containing high energies (phycoerythrins), intermediate energies (phycocyanins), and low energies (allophycocyanins). Among them, crude-phycocyanin (c-pc) has been considered to be the most preferred one. The present study was undertaken to evaluate the antibacterial activity of c-pc which was isolated from the blue green algae Spirulina platensis. C-pc was extracted by sonication, followed by centrifugation and filtration. The crude form of phycocyanin was purified by ammonium sulphate precipitation, membrane filtration, and dialysis method. Antibacterial activities were obtained from various human pathogens. The results showed that all Spirulina maxima extracts exhibited great potential antibacterial activities against five bacterial strains with inhibition zones of range 7–13 mm. Key words: Spirulina maxima, c-phycocyanin, antibacterial activity INTRODUCTION the cells enclosed in a thin sheath. Spirulina has a Microalgae are a very diverse group of organisms very long history of being served as a source of food that consist of both prokaryotic and eukaryotic for human being. forms. Although most microalgae are phototropic some species are also capable of showing Spirulina is a spiral filament generally found in heterotrophic growth.
    [Show full text]
  • Photosynthetic Characteristics of Phycoerythrin- Containing Marine Synechococcus Spp
    MARINE ECOLOGY - PROGRESS SERIES Vol. 39: 191-196, 1987 Published August 24 Mar. Ecol. Prog. Ser. I Photosynthetic characteristics of phycoerythrin- containing marine Synechococcus spp. 11. Time course responses of photosynthesis to ph.otoinhibition R. G.Barlow. R. S. ~lberte' Department of Molecular Genetics and Cell Biology, Barnes Laboratory, The University of Chicago, 5630 S. Ingleside Avenue, Chicago, Illinois 60637, USA ABSTRACT Marine Synechococcus spp. optimize growth and photosynthesis at low light levels and show photoinhibition of photosynthesis at high levels. We exam~nedthe photosynthetic response to, and recovery from, exposure to photoinhibitory light levels after growth at low photon flux densities in 2 clones of Synechococcus spp. Clones WH 7803 and WH 8018 were grown at 25 pE m-' S-', exposed to photoinhibitory light (1500 pE m-' S-') for 3 h, and then returned to the growth light level. Clone WH 7803 showed a 40 % decrease in P,,, while Clone WH 8018 showed a 30 % decrease during the exposure. This was accompanied by a proportional increase in whole-cell phycoerythrin fluorescence and by a decrease in the cellular content of P700, the photochemical reaction center of Photosystem I. On return to low light, photochemically active P700 recovered to pre-photoinhibitory levels within 1 h in Clone WH 8018 and within 2 h in Clone WH 7803. Photosynthetic rates and phycoerythrin fluorescence required 2 to 3 h and 3 to 4 h to recover in Clones WH 8018 and WH 7803, respectively. During exposure and recovery, no changes in cellular levels of chlorophyll or phycobiliproteins were observed. It is concluded that (1) the primary deleterious effect of photoinhibition of photosynthesis was reversible losses in Photosystem I activity, and (2) recovery from photoinhibition was rapid and occurred within hours.
    [Show full text]
  • Scalable Production of Biliverdin Ixα by Escherichia Coli Dong Chen1, Jason D Brown1, Yukie Kawasaki2, Jerry Bommer3 and Jon Y Takemoto1,2*
    Chen et al. BMC Biotechnology 2012, 12:89 http://www.biomedcentral.com/1472-6750/12/89 RESEARCH ARTICLE Open Access Scalable production of biliverdin IXα by Escherichia coli Dong Chen1, Jason D Brown1, Yukie Kawasaki2, Jerry Bommer3 and Jon Y Takemoto1,2* Abstract Background: Biliverdin IXα is produced when heme undergoes reductive ring cleavage at the α-methene bridge catalyzed by heme oxygenase. It is subsequently reduced by biliverdin reductase to bilirubin IXα which is a potent endogenous antioxidant. Biliverdin IXα, through interaction with biliverdin reductase, also initiates signaling pathways leading to anti-inflammatory responses and suppression of cellular pro-inflammatory events. The use of biliverdin IXα as a cytoprotective therapeutic has been suggested, but its clinical development and use is currently limited by insufficient quantity, uncertain purity, and derivation from mammalian materials. To address these limitations, methods to produce, recover and purify biliverdin IXα from bacterial cultures of Escherichia coli were investigated and developed. Results: Recombinant E. coli strains BL21(HO1) and BL21(mHO1) expressing cyanobacterial heme oxygenase gene ho1 and a sequence modified version (mho1) optimized for E. coli expression, respectively, were constructed and shown to produce biliverdin IXα in batch and fed-batch bioreactor cultures. Strain BL21(mHO1) produced roughly twice the amount of biliverdin IXα than did strain BL21(HO1). Lactose either alone or in combination with glycerol supported consistent biliverdin IXα production by strain BL21(mHO1) (up to an average of 23. 5mg L-1 culture) in fed-batch mode and production by strain BL21 (HO1) in batch-mode was scalable to 100L bioreactor culture volumes.
    [Show full text]
  • Adaptation to Blue Light in Marine Synechococcus Requires Mpeu, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases
    University of New Orleans ScholarWorks@UNO Biological Sciences Faculty Publications Department of Biological Sciences 2-21-2017 Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases Wendy M. Schluchter University of New Orleans, [email protected] Rania Mohamed Mahmoud Joseph Sanfilippo Adam A. Nguyen Johann A. Strnat See next page for additional authors Follow this and additional works at: https://scholarworks.uno.edu/biosciences_facpubs Part of the Microbiology Commons Recommended Citation Mahmoud, R. M., Sanfilippo, J. E., Nguyen, A. A., Strnat, J. A., Partensky, F., Garczarek, L., El Kassem, N. A., Kehoe, D. M., & Schluchter, W. M. (2017). Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases. Frontiers in Microbiology, 8. This Article is brought to you for free and open access by the Department of Biological Sciences at ScholarWorks@UNO. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Authors Wendy M. Schluchter, Rania Mohamed Mahmoud, Joseph Sanfilippo, Adam A. Nguyen, Johann A. Strnat, Frédéric Partensky, Laurence Garczarek, Nabil Kassem, and David M. Kehoe This article is available at ScholarWorks@UNO: https://scholarworks.uno.edu/biosciences_facpubs/37 fmicb-08-00243 February 17, 2017 Time: 18:21 # 1 ORIGINAL RESEARCH published: 21 February 2017 doi: 10.3389/fmicb.2017.00243 Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases Rania M. Mahmoud1,2†, Joseph E. Sanfilippo1†, Adam A. Nguyen3,4, Johann A.
    [Show full text]
  • 33 Subunit of R-Phycoerythrin from Gracilaria Chilensis Has a Typical Double Linked Phycourobilin Similar to Γ Subunit
    RESEARCH ARTICLE The γ33 subunit of R-phycoerythrin from Gracilaria chilensis has a typical double linked phycourobilin similar to γ subunit Aleikar VaÂsquez-SuaÂrez1☯, Francisco Lobos-GonzaÂlez1☯, Andrew Cronshaw2, Jose Sepu lveda-Ugarte1, Maximiliano Figueroa1, Jorge Dagnino-Leone1, Marta Bunster1*, Jose MartõÂnez-Oyanedel1* 1 Laboratorio de BiofõÂsica Molecular, Departamento de BioquõÂmica y BiologõÂa Molecular, Facultad de Ciencias BioloÂgicas Universidad de ConcepcioÂn, ConcepcioÂn, Chile, 2 Michael Swann Building, Kings' a1111111111 Buildings, University of Edinburgh, Edinburgh, Scotland, United Kingdom a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] (MB); [email protected] (JM-O) a1111111111 Abstract Phycobilisomes (PBS) are accessory light harvesting protein complexes formed mainly by OPEN ACCESS phycobiliproteins (PBPs). The PBPs absorb light that is efficiently transferred to Photosys- Citation: VaÂsquez-SuaÂrez A, Lobos-GonzaÂlez F, tems due to chromophores covalently bound to specific cysteine residues. Besides phycobi- Cronshaw A, SepuÂlveda-Ugarte J, Figueroa M, liproteins (PE), the PBS contains linker proteins responsible for assembly and stabilization 33 Dagnino-Leone J, et al. (2018) The γ subunit of of the whole complex and the tuning of energy transfer steps between chromophores. The R-phycoerythrin from Gracilaria chilensis has a 33 typical double linked phycourobilin similar to γ linker (γ ) from Gracilaria chilensis, is a chromophorylated rod linker associated to (αβ)6 subunit. PLoS ONE 13(4): e0195656. https://doi. hexamers of R-phycoerythrin (R-PE). Its role in the energy transfer process is not clear yet. org/10.1371/journal.pone.0195656 Structural studies as well as the composition and location of the chromophores are essential Editor: Peter Butko, Nagoya University, JAPAN to understand their involvement in the energy transfer process in PBS.
    [Show full text]
  • I Topic - Algal Pigments and Algal Classification(ALGAE) Prepared by –Prof.(Dr.)Jainendra Kumar Coordinated By: Prof.(Dr) Shyam Nandan Prasad
    Course- M.Sc. Botany Part -I Paper -I Topic - Algal Pigments and algal Classification(ALGAE) Prepared by –Prof.(Dr.)Jainendra Kumar Coordinated by: Prof.(Dr) Shyam Nandan Prasad The algae were broadly divided by F.F.Fritsch (1935) into eleven classes according to their colour - 1. Chlorophyceae or green algae 2. Xanthophyceae or yellow-green algae 3. Chrysophyceae 4. Bacillariophyceae or golden-brown algae 5. Cryptophyceae 6. Dinophyceae 7. Chloromonadineae 8. Eugleninae 9. Phaeophyceae or brown algae 10. Rhodophyceae or red algae, and 11. Myxophyceae or blue-green algae Normally, classification of algae is based on - 1. Nuclear Organization 2. Nature of Cell Wall Components 3. Pigmentation and Photosynthetic Apparatus The pigment is one of the most important criteria used in differentiation of classes in algae. The pigments in algae can be chlorophylls, carotenoids and biloproteins. These pigments are present in sac like structures called thylakoids. The thylakoids are arranged in stacks in the granum of the chloroplasts. Different groups of algae have different types of pigments and organization of thylakoids in chloroplast. The chlorophylls in algae are chlorophyll a, b, c, d and e types. Chlorophyll a is present in all classes of algae. Chlorophyll b is primary pigment of Chlorophyceae and Euglenineae. Chlorophyll c is found in Phaeophyceae and Cryptophyceae. Chlorophyll d is found in Rhodophyceae. Chlorophyll e is confined to Tribonema of Xanthophyceae. Pigments are chemical compounds which reflect only certain wavelengths of visible light. This makes them appear colourful. More important than their reflection of light is the ability of pigments to absorb certain wavelengths. Since each pigment reacts with only a narrow range of the spectrum, it is important for algae to produce pigments of different colours to capture more of the sun's energy.
    [Show full text]
  • Coexistence of Phycoerythrin and a Chlorophyll A/B Antenna in a Marine Prokaryote (Prochlorophyta/Cyanobacteria/Phycobilins/Photosynthesis/Endosymbiosis) WOLFGANG R
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11126-11130, October 1996 Microbiology Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote (Prochlorophyta/cyanobacteria/phycobilins/photosynthesis/endosymbiosis) WOLFGANG R. HESs*t, FREDEIRIC PARTENSKYt, GEORG W. M. VAN DER STAAYI, JOSE' M. GARCIA-FERNANDEZt, THOMAS BORNER*, AND DANIEL VAULOTt *Department of Biology, Humboldt-University, Chausseestrasse 117, D-10115 Berlin, Germany; and tStation Biologique de Roscoff, Centre National de la Recherche Scientifique Unite Propre de Recherche 9042 and Universite Pierre et Marie Curie, BP 74, F-29682 Roscoff Cedex, France Communicated by Hewson Swift, The University of Chicago, Chicago, IL, July 1Z 1996 (received for review June 7, 1996) ABSTRACT Prochlorococcus marinus CCMP 1375, a ubiq- tation maximum of the major chromophore bound by PE-III uitous and ecologically important marine prochlorophyte, corresponds to that of phycourobilin. was found to possess functional genes coding for the a and 1 subunits of a phycobiliprotein. The latter is similar to phy- coerythrins (PE) from marine Synechococcus cyanobacteria MATERIALS AND METHODS and bind a phycourobilin-like pigment as the major chro- Flow Cytometric Measurements. Sea water samples were mophore. However, differences in the sequences of the ca and collected at different depths during the France-Joint Global 13 chains compared with known PE subunits and the presence Ocean Flux Study OLIPAC cruise held in November 1994 of a single bilin attachment site on the a subunit designate it aboard the N.O. l'Atalante. Samples were analyzed immedi- as a novel PE type, which we propose naming PE-III. P. ately using a FACScan (Becton Dickinson) flow cytometer and marinus is the sole prokaryotic organism known so far that cell concentrations of Prochlorococcus and Synechococcus contains chlorophylls a and b as well as phycobilins.
    [Show full text]
  • The Roles of the Chaperone-Like Protein Cpez and the Phycoerythrobilin Lyase Cpey in Phycoerythrin Biogenesis
    University of New Orleans ScholarWorks@UNO Biological Sciences Faculty Publications Department of Biological Sciences 2019 The Roles of the Chaperone-like Protein CpeZ and the Phycoerythrobilin Lyase CpeY in Phycoerythrin Biogenesis Wendy M. Schluchter University of New Orleans, [email protected] D. M. Kehoe J. A. Karty T. Blensdorf A. Gutu See next page for additional authors Follow this and additional works at: https://scholarworks.uno.edu/biosciences_facpubs Part of the Biology Commons Recommended Citation Kronfel, C. M., Biswas, A., Frick, J. P., Gutu, A., Blensdorf, T., Karty, J. A., Kehoe, D. M., & Schluchter, W. M. (2019). The roles of the chaperone-like protein CpeZ and the phycoerythrobilin lyase CpeY in phycoerythrin biogenesis. Biochimica et Biophysica Acta, 1860(7), 549–561. (post print) This Article Post-Print is brought to you for free and open access by the Department of Biological Sciences at ScholarWorks@UNO. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Authors Wendy M. Schluchter, D. M. Kehoe, J. A. Karty, T. Blensdorf, A. Gutu, J. P. Frick, A. Biswas, and C. M. Kronfel This article post-print is available at ScholarWorks@UNO: https://scholarworks.uno.edu/biosciences_facpubs/42 The roles of the chaperone-like protein CpeZ and the phycoerythrobilin lyase CpeY in phycoerythrin biogenesis Christina M. Kronfela1, Avijit Biswasb2, Jacob P. Fricka, Andrian Gutuc3, Tyler Blensdorfd4, Jonathan A. Kartyd, David M. Kehoec, Wendy M. Schluchtera* From the aDepartments of Biological Sciences and bChemistry, University of New Orleans, New Orleans, LA 70148, USA; cDepartment of Biology, Indiana University, Bloomington, IN 47405, USA; dDepartment of Chemistry, Indiana University, Bloomington, IN 47405, USA *To whom the correspondence should be addressed: Dr.
    [Show full text]
  • Phycobiliprotein Evolution (Phycoerythrin/Phycobilisomes/Cell Wall/Photosynthesis/Prokaryotic Evolution) THOMAS A
    Proc. Natd Acad. Sci. USA Vol. 78, No. 11, pp. 6888-6892, November 1981 Botany Morphology of a novel cyanobacterium and characterization of light-harvesting complexes from it: Implications for phycobiliprotein evolution (phycoerythrin/phycobilisomes/cell wall/photosynthesis/prokaryotic evolution) THOMAS A. KURSAR*, HEWSON SwIFTt, AND RANDALL S. ALBERTEt tBarnes Laboratory, Department ofBiology, and *Department of Biophysics and Theoretical Biology, University of Chicago, Chicago, Illinois 60637 Contributed by Hewson Swift, July 2, 1981 ABSTRACT The morphology of the marine cyanobacterium After examining the in vivo spectral properties of several of DC-2 and two light-harvesting complexes from it have been char- the recently discovered species ofcyanobacteria, it came to our acterized. DC-2 has an outer cell wall sheath not previously ob- attention that one of the PE-containing types termed DC-2 served, the purified phycoerythrin shows many unusual proper- showed some rather unusual features. Further study revealed ties that distinguish it from all phycoerythrins characterized to that this species possesses novel PE, phycobilisomes, and outer date, and isolated phycobilisomes have a single absorption band cell wall sheath; these characteristics suggest that it should be at 640 nm in the phycocyanin-allophycocyanin region of the spec- trum. On the basis of these observations we suggest that DC-2, placed in a new phylogenetic branch for the cyanobacteria. rather than being a member of the Synechococcus group, should be placed in its own taxonomic group. In addition, the particular MATERIALS AND METHODS properties of the isolated phycoerythrin suggest that it may be An axenic representative of an early stage in the evolution of the phyco- isolate of Synechococcus sp., clone DC-2, obtained erythrins.
    [Show full text]
  • Full Text in Pdf Format
    AQUATIC MICROBIAL ECOLOGY Published April 28 Aquat microb Ecol Effects of light on pigments and photosynthetic activity in a phycoerythrin-rich strain of Spirulina subsalsa L. Tomaselli, M. C. Margheri, A. Sacchi Centro di Studio dei Microrganismi Autotrofi del CNR. P. le delle Cascine, 1-27-50144 Firenze, Italy ABSTRACT: Data on acclimation to 2 photon flux densities (15 and 100 pm01 photons m-2 S-') in Spir- ulina subsalsa strain 3F, a highly fluorescent phycoerythrin-rich cyanobacterium isolated from the brackish Lake Faro (Messina, Italy), indicated plasticity of the photosynthetlc apparatus of this organ- Ism. High-irradiance grown cells showed the greatest photosynthetlc capacity even though they had a lower chlorophyll and phycobiliprotein content. Carotenoids decreased to a lesser extent but their com- position changed. b-carotene decreased, while the amount of myxoxanthophyll more than doubled. The stability of both C-phycoerythrin and C-phycocyanin ratios in cells grown under different light quality (green and red) demonstrated the lack of complementary chromatic adaptation in S. subsalsa. This factor, combined with the efficient utilization of low-wavelength light, indicates the strong adap- tation of this strain to its habitat. KEY WORDS: Pigments . Oxygen evolution . Photoacclimation . Spirulina subsalsa . Cyanobacteria INTRODUCTION lar strain. Our results, besides contributing to the understanding of photoadaption in S. subsalsa, could Cyanobacteria of the genus Spirulina Turpin are fre- provide useful information for the possible exploitation quently found in thermal springs and in brackish or of this strain as a source of natural fluorescent dye in marine waters, mostly eutrophic, where they can form immunofluorescent assays (Strier et al.
    [Show full text]
  • WO 2015/090697 Al 25 June 2015 (25.06.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/090697 Al 25 June 2015 (25.06.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A23L 1/275 (2006.01) A61K 8/64 (2006.01) kind of national protection available): AE, AG, AL, AM, A23L 2/58 (2006.01) A61K 36/02 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A23K 1/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/EP2014/073057 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 28 October 2014 (28.10.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: glish ( ) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 13 197910.6 18 December 201 3 (18. 12.2013) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: BASF SE [DE/DE]; 67056 Ludwigshafen TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (DE).
    [Show full text]