Making Renewable Heating 'Fit For

Total Page:16

File Type:pdf, Size:1020Kb

Making Renewable Heating 'Fit For REGULATORY ASSISTANCE PROJECT (RAP)® FIT FOR 55 | 1 JUNE 2021 REGULATORY ASSISTANCE PROJECT Making renewable heating ‘Fit for 55’ Samuel Thomas, Dominic Scott and Jan Rosenow1 Summary In this paper, we propose four design features for a mandatory renewable heating and cooling (RES-H) target:2 1. Caps on the use of unsustainable bioenergy, potentially set at zero. 2. Allowing renewable electricity to count towards the target. 3. A multiplier for ambient heat (including heat pumps — ground, air, water — geothermal and solar thermal). 4. Reporting requirements to ensure the Efficiency First principle is applied. The European Union has committed to reduce its carbon emissions by 55% net by 2030 compared with 1990 levels. The European Commission (EC) expects the 2020s to be the decade of rapid buildings sector decarbonisation. Building fabric renovation and heating system replacements are both projected to increase the share of renewable heating and cooling in all heating and cooling energy. The EC expects a major driver of change will be the replacement of coal, fossil gas and oil heating systems with heat pumps, which use electricity to transfer ambient heat to buildings. Revisions to the Renewable Energy Directive (RED) need to aim to help achieve this goal. A more ambitious and mandatory RES-H target would support this effort, but only if it does not lead to increases in the consumption of unsustainable bioenergy that warms the climate in the next decades and if it is aligned with the rest of the Fit for 55 package. 1 The authors would like to acknowledge and express their appreciation to the following people who provided helpful insights into drafts of this paper: Femke de Jong (European Climate Foundation), Hannah Mowat (Fern), Linde Zuidema (European University Institute), Alex Mason (World Wildlife Fund), and Bram Claeys and Richard Cowart (Regulatory Assistance Project). Tim Simard and Ruth Hare provided editorial assistance. 2 A mandatory renewable heat target would place an obligation on Member States to derive a certain portion of heating and cooling from sources defined as renewable. Member States may then introduce policy measures to help meet this target, such as through imposition of an obligation on heat businesses. 2 | FIT FOR 55TITLETITLE REGULATORY ASSISTANCE PROJECT (RAP)® Caps on unsustainable bioenergy Switching from fossil fuels to some types of bioenergy, such as primary3 biomass from existing forests, would likely increase carbon emissions by 2030 (and in many cases by 2050) compared with fossil fuels, increasing the risk of irreversible climate change.4 In addition, unsustainable bioenergy consumption accelerates biodiversity loss, while the burning of biomass causes local air pollution, with associated health impacts. Weak sustainability criteria that do not discriminate among feedstocks, coupled with funding for biomass — which may extend to unsustainable varieties — conspire to make an increase in unsustainable bioenergy use a strong possibility. Currently, bioenergy accounts for over 80% of renewable heating and cooling, and an analysis of national energy and climate plans (NECPs) concluded that bioenergy use in the sector is set to increase 11% by 2030. Stronger climate targets and a mandatory RES-H target could lead to even larger increases. To help deal with this issue, the RES-H target could adopt either caps — potentially set at zero — or multipliers. Caps would limit the amount, or share, that some forms of bioenergy can contribute to the target. Multipliers would adjust the value of different options to Member States charged with meeting the target. Multipliers may be in the form of an uplift (a multiplier greater than 1) and a downshift (a multiplier lower than 1), applied to the credits of renewable heat options in meeting the target. Multipliers are more economically efficient when the relative values and risks associated with each of the renewable energy options are well understood. Caps are a blunter instrument and are more appropriate when the risks of an increase in the use of some energy sources is high and would undermine the achievement of the overarching policy goal. Given the risks associated with the potential increased use of unsustainable bioenergy, we propose the inclusion of caps for certain types of bioenergy, linked to Member States’ baseline consumption of these sources. This would provide some confidence that increases in renewable heat supply will not simply be met by unsustainable bioenergy sources that increase emissions compared with fossil fuels, delay investment in genuinely low-carbon technologies, and engender other negative environmental and health impacts. Allowing renewable electricity to count towards the target Amongst the most sustainable methods of heating buildings, electrically powered heat pumps are disadvantaged by the current RES-H accounting framework, which does not allow for the renewable portion of electricity consumption to be counted towards the target. There is no reasonable justification for what is in effect a cap of zero on renewable electricity. Removing it would allow heat pumps to deliver a higher proportion of the RES-H target, aligning it with the expectations set out in the EC’s Carbon Plan Impact Assessment. 3 Primary products (i.e., plant mass) are formed through direct photosynthetic utilisation of solar energy. Secondary products are formed by the conversion or decomposition of organic matter. Marquard & Bahls. (2015, December). Important terms from A to Z: Biomass. https://www.marquard-bahls.com/en/news- info/glossary/detail/term/biomass.html#:~:text=Primary%20products%2C%20i.e.%20plant%20mass,by%20animals%20or%20other%20 consumers 4 Camia, A., Giuntoli, J., Jonsson, K., Robert, N., Cazzaniga, N., Jasinevičius, G., Avitabile, V., Grassi, G., Barredo Cano, J.I., & Mubareka, S. (2020). The use of woody biomass for energy production in the EU. Publications Office of the European Union. https://publications.jrc.ec.europa.eu/repository/handle/JRC122719 REGULATORY ASSISTANCE PROJECT (RAP)® FIT FOR 55 | 3 A multiplier for ambient heat Applying a multiplier to ambient heat over the period to 2030 would encourage Member States to put in place policy measures to help overcome the market failures and barriers that slow the uptake of technologies that transfer ambient heat to buildings (heat pumps, solar thermal, geothermal). These technologies have high upfront costs and low running costs. Myopic decision-making, split incentives between building owners and tenants, and barriers to finance justify policy intervention, if cost- effective. Similarly, the relative novelty of heat pump technology in the heating sector in some European markets means that supply chains and end users can be reluctant to switch from boiler-based systems, particularly when making urgent purchases. A multiplier for ambient heat would encourage innovation in technology design and installation to bring down costs in future. Reporting requirements to ensure the Efficiency First principle is applied RES-H targets are defined as RES-H divided by all renewable heating and cooling. This means that an increase in renewable heating or cooling will help to meet the target, regardless of whether it displaces nonrenewable heat or is purely additional. In the latter case, both the numerator and the denominator increase by the same amount, increasing the renewable fraction. This is not aligned with one of the key principles of the Clean Energy for all Europeans package, which aims to put energy efficiency first. To deal with this issue without scrapping the mandatory nature of the target, a reporting requirement could be introduced, asking Member States to explain how their policy measures avoid the expansion of unnecessary heating and cooling and the oversizing of equipment when cheaper energy efficiency options are available. Introduction Heating in buildings is responsible for almost one‑third of total EU energy demand, and around 75% of heat is still produced by burning fossil fuels.5 The European Union must make decarbonising heat a major priority if it hopes to meet its new more ambitious climate goals for 2030 and beyond. This will require a vast programme of energy efficiency complemented by a shift to renewable heat. To reach the 2030 target, the European Commission foresees significant changes to the fuels used for heating. In 2015, coal, oil and fossil gas accounted for 48% of residential buildings’ final energy consumption. In the commission’s impact assessment scenarios for reaching the new more ambitious 2030 target, this share is halved by 2030, with coal all but disappearing from the mix, oil consumption falling by 80%-84% and fossil gas by 37%-48%. The share of renewable heating and cooling (RES-H) is expected to rise to 39%-41%, largely driven by the take up of heat pumps that use electricity to transfer ambient heat to buildings from the air, the ground or water sources.6 In addition, energy efficiency actions are expected to drive down final energy 5 Rosenow, J. & Lowes, R. (2020). Heating without the hot air: Principles for smart heat electrification. Regulatory Assistance Project. https://www.raponline.org/knowledge-center/heating-without-hot-air-principles-smart-heat-electrification/ 6 European Commission. (2020, 17 September). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Stepping up Europe’s 2030 climate ambition; Investing in a climate-neutral future
Recommended publications
  • Scheme Principles for the Production of Biomass, Biofuels and Bioliquids
    REDcert Scheme principles for the production of biomass, biofuels and bioliquids Version 05 Scheme principles for the production of biomass, bioliquids and biofuels 1 Introduction.................................................................................................................. 4 2 Scope of application .................................................................................................... 4 3 Definitions .................................................................................................................... 6 4 Requirements for sustainable biomass production .................................................. 9 4.1 Land with high biodiversity value (Article 17 (3) of Directive 2009/28/EC) .............. 9 4.1.1 Primary forest and other wooded land ............................................................ 9 4.1.2 Areas designated by law or by the relevant competent authority for nature protection purposes ......................................................................................................10 4.1.3 Areas designated for the protection of rare, threatened or endangered ecosystems or species .................................................................................................11 4.1.4 Highly biodiverse grassland ...........................................................................11 4.2 Land with high above-ground or underground carbon stock (Article 17 (4) of Directive 2009/28/EC) ..........................................................................................................15
    [Show full text]
  • Sustainability Criteria for Biofuels Specified Brussels, 13 March 2019 1
    European Commission - Fact Sheet Sustainability criteria for biofuels specified Brussels, 13 March 2019 1. What has the Commission adopted today? As foreseen by the recast Renewable Energy Directive adopted by the European Parliament and Council, which has already entered into force, the Commission has adopted today a delegated act setting out the criteria for determining high ILUC-risk feedstock for biofuels (biofuels for which a significant expansion of the production area into land with high-carbon stock is observed) and the criteria for certifying low indirect land-use change (ILUC)–risk biofuels, bioliquids and biomass fuels. An Annex to the act demonstrating the expansion of the production area of different kinds of crops has also been adopted. 2. What are biofuels, bioliquids and biomass fuels? Biofuels are liquid fuels made from biomass and consumed in transport. The most important biofuels today are bioethanol (made from sugar and cereal crops) used to replace petrol, and biodiesel (made mainly from vegetable oils) used to replace diesel. Bioliquids are liquid fuels made from biomass and used to produce electricity, heating or cooling. Biomass fuels are solid or gaseous fuels made from biomass. Therefore, all these fuels are made from biomass. They have different names depending on their physical nature (solid, gaseous or liquid) and their use (in transport or to produce electricity, heating or cooling). 3. What is indirect land use change (ILUC)? ILUC can occur when pasture or agricultural land previously destined for food and feed markets is diverted to biofuel production. In this case, food and feed demand still needs to be satisfied, which may lead to the extension of agriculture land into areas with high carbon stock such as forests, wetlands and peatlands.
    [Show full text]
  • Scheme Principles for GHG Calculation
    Scheme principles for GHG calculation Version EU 05 Scheme principles for GHG calculation © REDcert GmbH 2021 This document is publicly accessible at: www.redcert.org. Our documents are protected by copyright and may not be modified. Nor may our documents or parts thereof be reproduced or copied without our consent. Document title: „Scheme principles for GHG calculation” Version: EU 05 Datum: 18.06.2021 © REDcert GmbH 2 Scheme principles for GHG calculation Contents 1 Requirements for greenhouse gas saving .................................................... 5 2 Scheme principles for the greenhouse gas calculation ................................. 5 2.1 Methodology for greenhouse gas calculation ................................................... 5 2.2 Calculation using default values ..................................................................... 8 2.3 Calculation using actual values ...................................................................... 9 2.4 Calculation using disaggregated default values ...............................................12 3 Requirements for calculating GHG emissions based on actual values ........ 13 3.1 Requirements for calculating greenhouse gas emissions from the production of raw material (eec) .......................................................................................13 3.2 Requirements for calculating greenhouse gas emissions resulting from land-use change (el) ................................................................................................17 3.3 Requirements for
    [Show full text]
  • Environmental Justice: EU Biofuel Demand and Oil Palm Cultivation in Malaysia
    Lund Conference on Earth System Governance 2012 Environmental justice: EU biofuel demand and oil palm cultivation in Malaysia Erika M. Machacek Conference Paper Lund, Sweden, March 2012 "As a metaphorical image, friction reminds us that heterogeneous and unequal encounters can lead to new arrangements of culture and power" (Tsing, 2005) Table of Contents ABSTRACT ........................................................................................................................................... VIII 1 INTRODUCTION ............................................................................................................................ 1 1.1 PROBLEM DEFINITION ................................................................................................................................. 1 1.2 RESEARCH QUESTIONS ................................................................................................................................ 2 1.3 METHOD ...................................................................................................................................................... 2 1.4 LIMITATION AND SCOPE .............................................................................................................................. 2 1.5 AUDIENCE ................................................................................................................................................... 2 1.6 DISPOSITION ...............................................................................................................................................
    [Show full text]
  • Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
    Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.
    [Show full text]
  • Sustainable Use of Biomass Feedstock – Global and Regional
    SESSION I: Forest Biomass resources for biochar production 1st FOREBIOM Sustainable Use of Biomass Workshop Feedstock Potentials of Biochar to – Global and Regional Aspects– mitigate climate change Florian Kraxner Georg Kindermann, Sylvain Leduc, Stefan Frank, Petr th th Havlík, Eva-Maria Nordström, Hannes Böttcher, Michael 4 -5 April, 2013 Obersteiner and IIASA‘s ESM Team Austrian Academy of Sciences Ecosystems Services and Management (ESM) Program, International Institute for Applied Systems Analysis (IIASA) THE STATUS-QUO GLOBAL PROJECTIONS – POTENTIALS AND SOURCES EXAMPLE: BIOMASS FOR BIOENERGY Post 2012 Carbon Management Global Future Energy Portfolios, 2000 – 2100 Source: modified after Obersteiner et al., 2007 Cumulative biomass production (EJ/grid) for bioenergy between 2000 and 2100 at the energy price supplied by MESSAGE based on the revised IPCC SRES A2r scenario (country investment risk excluded). Source: Rokityanskiy et al. 2006 p ( ) Source: IIASA, G4M (2008) Forest Management Certification (Potentials) Certified area relative to managed forest area by countries Kraxner et al., 2008 Source: compiled from FAO 2005, 2001; CIESIN 2007, ATFS 2008; FSC 2008; PEFC 2008. GLOBIOM Global Biosphere Management Model www.globiom.org Exogenous drivers Demand Population growth, economic growth Wood products Food Bioenergy PROCESS OPTIMIZATIO 50 regions Primary wood Crops Partial equilibriumN model SUPPLY products Max. CSPS PX5 ) 5 7 . 120 0 soto pred W B g 100 l and m pred k / RUMINANT G4M g ( EPIC shem pred s e k 80 kaitho pred a t n
    [Show full text]
  • Bioliquids and Their Use in Power Generation €
    Renewable and Sustainable Energy Reviews 129 (2020) 109930 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: http://www.elsevier.com/locate/rser Bioliquids and their use in power generation – A technology review T. Seljak a, M. Buffi b,c, A. Valera-Medina d, C.T. Chong e, D. Chiaramonti f, T. Katra�snik a,* a University of Ljubljana, Faculty of Mechanical Engineering, A�sker�ceva Cesta 6, 1000, Ljubljana, Slovenia b RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Italy c University of Florence, Industrial Engineering Department, Viale Morgagni 40, 50134, Firenze, Italy d Cardiff University College of Physical Sciences and Engineering, CF234AA, Cardiff, UK e China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China f University of Turin, Department of Energy "Galileo Ferraris", Corso Duca degli Abruzzi 24, 10129, Torino, Italy ARTICLE INFO ABSTRACT Keywords: The first EU Renewable Energy Directive (RED) served as an effective push for world-wide research efforts on Bioliquids biofuels and bioliquids, i.e. liquid fuels for energy purposes other than for transport, including electricity, Micro gas turbine heating, and cooling, which are produced from biomass. In December 2018 the new RED II was published in the Internal combustion engine OfficialJournal of the European Union. Therefore, it is now the right time to provide a comprehensive overview Power generation of achievements and practices that were developed within the current perspective. To comply with this objective, Renewable energy directive Biofuels the present study focuses on a comprehensive and systematic technical evaluation of all key aspects of the different distributed energy generation pathways using bioliquids in reciprocating engines and micro gas tur­ bines that were overseen by these EU actions.
    [Show full text]
  • Bioliquids-Chp.Eu in the Bioliquids-CHP Project, Several Different Bioliquids and These Are Summarized in Table 1 (Overleaf)
    Main Project Results 2011 Partner – BTG Summary Bioliquids selection, production This brochure presents an overview of the main and characterisation project achievements and highlights some conclusions and perspectives towards future development. The full title of this collaborative project was : Engine and turbine SELECTION AND PRODUCTION PROPERTIES OF BIOLIQUIDS combustion for combined heat and power production. OF BIOLIQUIDS More information, publications and reports are available For all bioliquids a range of properties were determined at the project website: www.bioliquids-chp.eu In the Bioliquids-CHP project, several different bioliquids and these are summarized in Table 1 (overleaf). Fast were evaluated for use in prime movers. The ‘primary’ pyrolysis oil differs significantly from (rapeseed-derived) bioliquids were biodiesel, pure vegetable oil and fast biodiesel and sunflower oil with respect to acidity (pH), PROJECT OBJECTIVES AND APPROACH pyrolysis oil. The biodiesel (FAME) was produced from tendency to carbon formation (MCRT), water content and rapeseed and purchased in Germany. The vegetable oil density. For use in prime movers relevant properties are for The Bioliquids-CHP project was set up to reduce the used was sunflower oil that was purchased in Italy. The example the heating value, Cetane number and viscosity. technical barriers preventing the use of advanced fast pyrolysis oil was produced in BTG’s pilot plant from The viscosity of liquids can be lowered by preheating bioliquids in prime movers to generate combined heat pinewood. Two batches of fast pyrolysis oil were produced the fuel as illustrated in Figure 2. and power (CHP) in the range of 50-1000 kWe. The and used for the experiments.
    [Show full text]
  • Crediting System for Renewable Fuels
    CREDITING SYSTEM FOR RENEWABLE FUELS IN EU EMISSION STANDARDS FOR ROAD TRANSPORT Report for the German Federal Ministry for Economic Affairs and Energy (BMWi) 20 May 2020 AUTHORS: Dr. David Bothe Michael Zähringer Julian Bauer Dr. Christoph Sieberg Florian Korbmacher CONTACT: Dr. David Bothe Michael Zähringer +49 221 337 13 106 +49 221 337 13 105 +49 176 641 00 11 3 [email protected] [email protected] Frontier Economics Ltd is a member of the Frontier Economics network, which consists of two separate companies based in Europe (Frontier Economics Ltd) and Australia (Frontier Economics Pty Ltd). Both companies are independently owned, and legal commitments entered into by one company do not impose any obligations on the other company in the network. All views expressed in this document are the views of Frontier Economics Ltd. CREDITING SYSTEM FOR RENEWABLE FUELS IN EU EMISSION STANDARDS FOR ROAD TRANSPORT CONTENTS Executive Summary 5 1 Introduction 14 1.1 Background 14 1.2 Scope of the report 17 1.3 Structure of this report 17 2 Context – current road transport sector regulations 19 2.1 EU emission standards for new road vehicles 19 2.2 Renewable Energy Directive II 23 2.3 Different definitions for sustainable transport fuels in EU regulations 24 3 Principles for developing an SAAF-crediting system 26 3.1 Evaluation criteria 26 3.2 Four principles for developing an SAAF-crediting system 27 4 Main building blocks of the proposed SAAF-crediting system 29 4.1 Basic concept 30 4.2 General design features
    [Show full text]
  • Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland
    atmosphere Article Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland Paweł Wi´sniewski* and Mariusz Kistowski Department of Landscape Research and Environmental Management, Faculty of Oceanography and Geography, University of Gdansk, Ba˙zy´nskiego4, 80309 Gda´nsk,Poland; [email protected] * Correspondence: [email protected] Received: 29 February 2020; Accepted: 14 April 2020; Published: 16 April 2020 Abstract: A reduction of greenhouse gas (GHG) emissions as well as an increase in the share of renewable energy are the main objectives of EU energy policy. In Poland, biofuels play an important role in the structure of obtaining energy from renewable sources. In the case of biofuels obtained from agricultural raw materials, one of the significant components of emissions generated in their full life cycle is emissions from the cultivation stage. The aim of the study is to estimate and recognize the structure of GHG emission from biomass production in selected farms in Poland. For this purpose, the methodology that was recommended by the Polish certification system of sustainable biofuels and bioliquids production, as approved by the European Commission, was used. The calculated emission values vary between 41.5 kg CO2eq/t and 147.2 kg CO2eq/t dry matter. The highest average emissions were obtained for wheat (103.6 kg CO2eq/t), followed by maize (100.5 kg CO2eq/t), triticale (95.4 kg CO2eq/t), and rye (72.5 kg CO2eq/t). The greatest impact on the total GHG emissions from biomass production is caused by field emissions of nitrous oxide and emissions from the production and transport of fertilizers and agrochemicals.
    [Show full text]
  • Assessing the Sustainability Implications of Alternative Aviation Fuels
    WORKING PAPER 2021-11 © 2021 INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION MARCH 2021 Fueling flight: Assessing the sustainability implications of alternative aviation fuels Authors: Nikita Pavlenko, Stephanie Searle Keywords: Aviation, biofuels, low-carbon fuels Aviation faces large technical barriers to making a transition to hydrogen or electricity- powered airframes, so the industry will probably have to rely on liquid fuels through 2050. That is particularly true for the medium- and long-haul flights that generate two- thirds of aviation emissions. If the industry is to meet its long-term climate goal of cutting greenhouse gas (GHG) emissions 50% by 2050 without curbing traffic growth or using out-of-sector carbon offsets, sustainable aviation fuels (SAFs) will need to play a key role. SAFs can be used to generate in-sector GHG reductions when they supplant conventional petroleum jet fuel. In 2018, less than 0.01% of aviation fuel came from alternative sources (Hupe, 2019; Graver, Zhang, & Rutherford, 2019). While reducing petroleum consumption in aviation is an important objective for decarbonization, the specific types of alternative fuels used to displace petroleum will determine the net climate impact of any alternative fuels policy. A fuel’s feedstock and its conversion process—together called the fuel pathway—determine the fuel’s life-cycle GHG emissions. The European Union’s recently announced Green New Deal framework calls for a clear regulatory roadmap for the decarbonization of aviation, to be achieved using a combination of new technology, SAFs, modal shift, and improved efficiency (European Parliament, 2020). As part of this effort, the European Commission announced the ReFuelEU initiative to deploy SAFs to decarbonize EU aviation (European Commission, n.d.).
    [Show full text]
  • ― Btg Bioliquids Company Presentation ―
    ― BTG BIOLIQUIDS COMPANY PRESENTATION ― Gerhard Muggen, BTG Bioliquids B.V. 1 May 25th 2020, ETIP Bioenergy WG 2 Conversion Webinar ― AGENDA ― Company Technology FPBO applications 2 ― COMPANY INTRODUCTION ― As a technology provider and product leader we are committed to the commercial deployment of our fast pyrolysis technology. Explicitly made from biomass residues which is known as second generation (2G) or advanced bio fuel which means that it does not compete with the food chain. 3 ― COMPANY MILESTONES ― 1987 - BTG starts as a spin-off from University of Twente 2005 - fast pyrolysis plant project in Malaysia 2007 - BTG established BTG-Bioliquids 2015 - start up of Empyro in the Netherlands 2016 - cooperation agreement with TechnipFMC - starting BTG-Bioliquids webshop 2019 - Empyro sold to Twence, the Netherlands - Green Fuel Nordic Oy, Finland - Pyrocell, Sweden ― COOPERATION WITH TECHNIP-FMC ― A World Leader in the Energy Industry • Global footprint with ~45,000 people in 45 Countries • Global expertise in Engineering, Procurement and Construction (EPC) • Technology leader in Hydrogen, Ethylene, Refining & Petrochemical • Advancing innovative, green solutions to meet the world’s energy challenges Technip’s mission is to deliver safe, sustainable, quality and successful projects 5 ― FIRST COMMERCIAL FPBO PLANT IN THE WORLD AT TWENCE/EMPYRO IN THE NETHERLANDS, IN 24/7 OPERATION SINCE 2015. ― 6 ― EMPYRO ENERGY BALANCE (MW) OVERALL EFFICIENCY 85% ― Oil : 14.4 In : 25.9 Biomass : 24 Hot condensate : 1.6 Electricity : 0.3 Steam : 8 Losses : 2.9 Electricity : 0.3 7 ― EMPYRO AND MORE ― Green Fuel Nordic, Lieksa Finland Pyrocell Setra, Gävle Empyro Twence, Hengelo Sweden The Netherlands 8 ― GREEN FUEL NORDIC PROJECT (FINLAND) ― Plant (start-up 2020) Capacity 120 tonnes/day Feedstock Saw dust Output per year Oil 20 million litres Electricity 2,200 MWh Steam 80,000 tonnes CO2- eq.
    [Show full text]