ILUC Research Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scheme Principles for the Production of Biomass, Biofuels and Bioliquids
REDcert Scheme principles for the production of biomass, biofuels and bioliquids Version 05 Scheme principles for the production of biomass, bioliquids and biofuels 1 Introduction.................................................................................................................. 4 2 Scope of application .................................................................................................... 4 3 Definitions .................................................................................................................... 6 4 Requirements for sustainable biomass production .................................................. 9 4.1 Land with high biodiversity value (Article 17 (3) of Directive 2009/28/EC) .............. 9 4.1.1 Primary forest and other wooded land ............................................................ 9 4.1.2 Areas designated by law or by the relevant competent authority for nature protection purposes ......................................................................................................10 4.1.3 Areas designated for the protection of rare, threatened or endangered ecosystems or species .................................................................................................11 4.1.4 Highly biodiverse grassland ...........................................................................11 4.2 Land with high above-ground or underground carbon stock (Article 17 (4) of Directive 2009/28/EC) ..........................................................................................................15 -
Sustainability Criteria for Biofuels Specified Brussels, 13 March 2019 1
European Commission - Fact Sheet Sustainability criteria for biofuels specified Brussels, 13 March 2019 1. What has the Commission adopted today? As foreseen by the recast Renewable Energy Directive adopted by the European Parliament and Council, which has already entered into force, the Commission has adopted today a delegated act setting out the criteria for determining high ILUC-risk feedstock for biofuels (biofuels for which a significant expansion of the production area into land with high-carbon stock is observed) and the criteria for certifying low indirect land-use change (ILUC)–risk biofuels, bioliquids and biomass fuels. An Annex to the act demonstrating the expansion of the production area of different kinds of crops has also been adopted. 2. What are biofuels, bioliquids and biomass fuels? Biofuels are liquid fuels made from biomass and consumed in transport. The most important biofuels today are bioethanol (made from sugar and cereal crops) used to replace petrol, and biodiesel (made mainly from vegetable oils) used to replace diesel. Bioliquids are liquid fuels made from biomass and used to produce electricity, heating or cooling. Biomass fuels are solid or gaseous fuels made from biomass. Therefore, all these fuels are made from biomass. They have different names depending on their physical nature (solid, gaseous or liquid) and their use (in transport or to produce electricity, heating or cooling). 3. What is indirect land use change (ILUC)? ILUC can occur when pasture or agricultural land previously destined for food and feed markets is diverted to biofuel production. In this case, food and feed demand still needs to be satisfied, which may lead to the extension of agriculture land into areas with high carbon stock such as forests, wetlands and peatlands. -
Submission to the Senate Select Committee on Fuel and Energy
29 August 2008 Senator Mathias Cormann Chair, Senate Select Committee on Fuel and Energy PO Box 6100 Parliament House CANBERRA ACT 6100 Dear Senator Cormann RACQ Submission to the Senate Select Committee on Fuel and Energy Thank you for your letter of 8 July 2008 inviting the RACQ to forward a submission to the above inquiry. Rather than address all of the inquiry’s terms of reference in turn, attached are copies of relevant documents setting out the RACQ’s position on a number of policy issues relating to fuel supply and affordability for motorists. I trust that this information is of assistance to the Committee. Yours faithfully Gary Fites General Manager External Relations Enclosures: • Submission to the Garnaut Climate Change Review • Submission to Senate Standing Committee on Economics: FuelWatch • RACQ FuelWatch Position Statement • Proposed Ethanol Mandate For Queensland: RACQ Position Paper • Biofuels: Suitability and Sustainability: RACQ Research Paper 18 April 2008 Garnaut Review Secretariat Level 2, 1 Treasury Place East Melbourne, Victoria 3002 Response to the Garnaut Climate Change Review Emissions Trading Scheme Discussion Paper Issues paper - Forum 5 - Transport, Planning and the Built Environment from Royal Automobile Club of Queensland (RACQ) Submitted by email Reducing Passenger Transport Greenhouse Gas Emissions 1 Introduction This submission addresses the issue of passenger transport emission reductions through the design and coverage of a national emissions trading scheme. The RACQ seeks to maintain the viability of motor vehicle transport on behalf of its 1.2 million members. Notwithstanding this, the Club recognises the adverse effect of vehicle greenhouse gas emissions and believes it is essential to reduce the environmental impact of cars. -
Scheme Principles for GHG Calculation
Scheme principles for GHG calculation Version EU 05 Scheme principles for GHG calculation © REDcert GmbH 2021 This document is publicly accessible at: www.redcert.org. Our documents are protected by copyright and may not be modified. Nor may our documents or parts thereof be reproduced or copied without our consent. Document title: „Scheme principles for GHG calculation” Version: EU 05 Datum: 18.06.2021 © REDcert GmbH 2 Scheme principles for GHG calculation Contents 1 Requirements for greenhouse gas saving .................................................... 5 2 Scheme principles for the greenhouse gas calculation ................................. 5 2.1 Methodology for greenhouse gas calculation ................................................... 5 2.2 Calculation using default values ..................................................................... 8 2.3 Calculation using actual values ...................................................................... 9 2.4 Calculation using disaggregated default values ...............................................12 3 Requirements for calculating GHG emissions based on actual values ........ 13 3.1 Requirements for calculating greenhouse gas emissions from the production of raw material (eec) .......................................................................................13 3.2 Requirements for calculating greenhouse gas emissions resulting from land-use change (el) ................................................................................................17 3.3 Requirements for -
Environmental Justice: EU Biofuel Demand and Oil Palm Cultivation in Malaysia
Lund Conference on Earth System Governance 2012 Environmental justice: EU biofuel demand and oil palm cultivation in Malaysia Erika M. Machacek Conference Paper Lund, Sweden, March 2012 "As a metaphorical image, friction reminds us that heterogeneous and unequal encounters can lead to new arrangements of culture and power" (Tsing, 2005) Table of Contents ABSTRACT ........................................................................................................................................... VIII 1 INTRODUCTION ............................................................................................................................ 1 1.1 PROBLEM DEFINITION ................................................................................................................................. 1 1.2 RESEARCH QUESTIONS ................................................................................................................................ 2 1.3 METHOD ...................................................................................................................................................... 2 1.4 LIMITATION AND SCOPE .............................................................................................................................. 2 1.5 AUDIENCE ................................................................................................................................................... 2 1.6 DISPOSITION ............................................................................................................................................... -
Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore. -
Sustainable Use of Biomass Feedstock – Global and Regional
SESSION I: Forest Biomass resources for biochar production 1st FOREBIOM Sustainable Use of Biomass Workshop Feedstock Potentials of Biochar to – Global and Regional Aspects– mitigate climate change Florian Kraxner Georg Kindermann, Sylvain Leduc, Stefan Frank, Petr th th Havlík, Eva-Maria Nordström, Hannes Böttcher, Michael 4 -5 April, 2013 Obersteiner and IIASA‘s ESM Team Austrian Academy of Sciences Ecosystems Services and Management (ESM) Program, International Institute for Applied Systems Analysis (IIASA) THE STATUS-QUO GLOBAL PROJECTIONS – POTENTIALS AND SOURCES EXAMPLE: BIOMASS FOR BIOENERGY Post 2012 Carbon Management Global Future Energy Portfolios, 2000 – 2100 Source: modified after Obersteiner et al., 2007 Cumulative biomass production (EJ/grid) for bioenergy between 2000 and 2100 at the energy price supplied by MESSAGE based on the revised IPCC SRES A2r scenario (country investment risk excluded). Source: Rokityanskiy et al. 2006 p ( ) Source: IIASA, G4M (2008) Forest Management Certification (Potentials) Certified area relative to managed forest area by countries Kraxner et al., 2008 Source: compiled from FAO 2005, 2001; CIESIN 2007, ATFS 2008; FSC 2008; PEFC 2008. GLOBIOM Global Biosphere Management Model www.globiom.org Exogenous drivers Demand Population growth, economic growth Wood products Food Bioenergy PROCESS OPTIMIZATIO 50 regions Primary wood Crops Partial equilibriumN model SUPPLY products Max. CSPS PX5 ) 5 7 . 120 0 soto pred W B g 100 l and m pred k / RUMINANT G4M g ( EPIC shem pred s e k 80 kaitho pred a t n -
Chinese Tallow Tree (Triadica Sebifera)
THE WEEDY TRUTH ABOUT BIOFUELS TIM LOW & CAROL BOOTH Invasive Species Council October 2007 Title: The Weedy Truth About Biofuels Authors: Tim Low & Carol Booth Published by the Invasive Species Council, Melbourne October 2007 Updated March 2008 The INVASIVE SPECIES COUNCIL is a non-government organisation that works to protect the Australian environment from invasive pest species. Address: PO Box 166, Fairfield, Vic 3078 Email: [email protected] Website: www.invasives.org.au Further copies of this report can be obtained from the ISC website at www.invasives.org.au Cover photo: Spartina alterniflora, by the US Department of Agriculture CCOONNTTEENNTTSS Introduction ............................................................................................................................ 1 What are biofuels? ................................................................................................................ 2 The Biofuel industry .............................................................................................................. 4 The problems with biofuels ................................................................................................ 6 Social and economic issues ............................................................................................ 6 Greenhouse issues ............................................................................................................ 7 Biodiversity issues ........................................................................................................... -
Bioliquids and Their Use in Power Generation Â
Renewable and Sustainable Energy Reviews 129 (2020) 109930 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: http://www.elsevier.com/locate/rser Bioliquids and their use in power generation – A technology review T. Seljak a, M. Buffi b,c, A. Valera-Medina d, C.T. Chong e, D. Chiaramonti f, T. Katra�snik a,* a University of Ljubljana, Faculty of Mechanical Engineering, A�sker�ceva Cesta 6, 1000, Ljubljana, Slovenia b RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Italy c University of Florence, Industrial Engineering Department, Viale Morgagni 40, 50134, Firenze, Italy d Cardiff University College of Physical Sciences and Engineering, CF234AA, Cardiff, UK e China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China f University of Turin, Department of Energy "Galileo Ferraris", Corso Duca degli Abruzzi 24, 10129, Torino, Italy ARTICLE INFO ABSTRACT Keywords: The first EU Renewable Energy Directive (RED) served as an effective push for world-wide research efforts on Bioliquids biofuels and bioliquids, i.e. liquid fuels for energy purposes other than for transport, including electricity, Micro gas turbine heating, and cooling, which are produced from biomass. In December 2018 the new RED II was published in the Internal combustion engine OfficialJournal of the European Union. Therefore, it is now the right time to provide a comprehensive overview Power generation of achievements and practices that were developed within the current perspective. To comply with this objective, Renewable energy directive Biofuels the present study focuses on a comprehensive and systematic technical evaluation of all key aspects of the different distributed energy generation pathways using bioliquids in reciprocating engines and micro gas tur bines that were overseen by these EU actions. -
Bioliquids-Chp.Eu in the Bioliquids-CHP Project, Several Different Bioliquids and These Are Summarized in Table 1 (Overleaf)
Main Project Results 2011 Partner – BTG Summary Bioliquids selection, production This brochure presents an overview of the main and characterisation project achievements and highlights some conclusions and perspectives towards future development. The full title of this collaborative project was : Engine and turbine SELECTION AND PRODUCTION PROPERTIES OF BIOLIQUIDS combustion for combined heat and power production. OF BIOLIQUIDS More information, publications and reports are available For all bioliquids a range of properties were determined at the project website: www.bioliquids-chp.eu In the Bioliquids-CHP project, several different bioliquids and these are summarized in Table 1 (overleaf). Fast were evaluated for use in prime movers. The ‘primary’ pyrolysis oil differs significantly from (rapeseed-derived) bioliquids were biodiesel, pure vegetable oil and fast biodiesel and sunflower oil with respect to acidity (pH), PROJECT OBJECTIVES AND APPROACH pyrolysis oil. The biodiesel (FAME) was produced from tendency to carbon formation (MCRT), water content and rapeseed and purchased in Germany. The vegetable oil density. For use in prime movers relevant properties are for The Bioliquids-CHP project was set up to reduce the used was sunflower oil that was purchased in Italy. The example the heating value, Cetane number and viscosity. technical barriers preventing the use of advanced fast pyrolysis oil was produced in BTG’s pilot plant from The viscosity of liquids can be lowered by preheating bioliquids in prime movers to generate combined heat pinewood. Two batches of fast pyrolysis oil were produced the fuel as illustrated in Figure 2. and power (CHP) in the range of 50-1000 kWe. The and used for the experiments. -
Crediting System for Renewable Fuels
CREDITING SYSTEM FOR RENEWABLE FUELS IN EU EMISSION STANDARDS FOR ROAD TRANSPORT Report for the German Federal Ministry for Economic Affairs and Energy (BMWi) 20 May 2020 AUTHORS: Dr. David Bothe Michael Zähringer Julian Bauer Dr. Christoph Sieberg Florian Korbmacher CONTACT: Dr. David Bothe Michael Zähringer +49 221 337 13 106 +49 221 337 13 105 +49 176 641 00 11 3 [email protected] [email protected] Frontier Economics Ltd is a member of the Frontier Economics network, which consists of two separate companies based in Europe (Frontier Economics Ltd) and Australia (Frontier Economics Pty Ltd). Both companies are independently owned, and legal commitments entered into by one company do not impose any obligations on the other company in the network. All views expressed in this document are the views of Frontier Economics Ltd. CREDITING SYSTEM FOR RENEWABLE FUELS IN EU EMISSION STANDARDS FOR ROAD TRANSPORT CONTENTS Executive Summary 5 1 Introduction 14 1.1 Background 14 1.2 Scope of the report 17 1.3 Structure of this report 17 2 Context – current road transport sector regulations 19 2.1 EU emission standards for new road vehicles 19 2.2 Renewable Energy Directive II 23 2.3 Different definitions for sustainable transport fuels in EU regulations 24 3 Principles for developing an SAAF-crediting system 26 3.1 Evaluation criteria 26 3.2 Four principles for developing an SAAF-crediting system 27 4 Main building blocks of the proposed SAAF-crediting system 29 4.1 Basic concept 30 4.2 General design features -
Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland
atmosphere Article Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland Paweł Wi´sniewski* and Mariusz Kistowski Department of Landscape Research and Environmental Management, Faculty of Oceanography and Geography, University of Gdansk, Ba˙zy´nskiego4, 80309 Gda´nsk,Poland; [email protected] * Correspondence: [email protected] Received: 29 February 2020; Accepted: 14 April 2020; Published: 16 April 2020 Abstract: A reduction of greenhouse gas (GHG) emissions as well as an increase in the share of renewable energy are the main objectives of EU energy policy. In Poland, biofuels play an important role in the structure of obtaining energy from renewable sources. In the case of biofuels obtained from agricultural raw materials, one of the significant components of emissions generated in their full life cycle is emissions from the cultivation stage. The aim of the study is to estimate and recognize the structure of GHG emission from biomass production in selected farms in Poland. For this purpose, the methodology that was recommended by the Polish certification system of sustainable biofuels and bioliquids production, as approved by the European Commission, was used. The calculated emission values vary between 41.5 kg CO2eq/t and 147.2 kg CO2eq/t dry matter. The highest average emissions were obtained for wheat (103.6 kg CO2eq/t), followed by maize (100.5 kg CO2eq/t), triticale (95.4 kg CO2eq/t), and rye (72.5 kg CO2eq/t). The greatest impact on the total GHG emissions from biomass production is caused by field emissions of nitrous oxide and emissions from the production and transport of fertilizers and agrochemicals.