A Preliminary Consideration of By-Catch in the Marine Scalefish Fishery of South Australia

Total Page:16

File Type:pdf, Size:1020Kb

A Preliminary Consideration of By-Catch in the Marine Scalefish Fishery of South Australia A preliminary consideration of by-catch in the Marine Scalefish fishery of South Australia AJ Fowler, M Lloyd, and D Schmarr May 2009 SARDI Publication Number F2009/000097-1 SARDI Research Report Series Number 365 A preliminary consideration of by-catch in the Marine Scalefish fishery of South Australia AJ Fowler, M Lloyd, and D Schmarr May 2009 ii This publication may be cited as: Fowler AJ, Lloyd M, Schmarr D (2009). A preliminary consideration of by-catch in the Marine Scalefish fishery of South Australia. South Australian Research and Development Institute (Aquatic Sciences), Adelaide, F2009/000097-1. SARDI Research Report Series No. 365. 79 pp. South Australian Research and Development Institute SARDI Aquatic Sciences PO Box 120 HENLEY BEACH SA 5022 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au Disclaimer The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI Aquatic Sciences internal review process, and has been formally approved for release by the Chief Scientist. Although all reasonable efforts have been made to ensure quality, SARDI Aquatic Sciences does not warrant that the information in this report is free from errors or omissions. SARDI Aquatic Sciences does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. © 2009 SARDI Aquatic Sciences This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the author. Author(s): A.J. Fowler, M.T. Lloyd, D. Schmarr Reviewers: Dr David Currie and Dr Michael Steer Approved by: Dr Tim Ward Signed: Date: 11 June 2009 Distribution : PIRSA Fisheries, SARDI Aquatic Sciences Library Circulation: Public Domain iii TABLE OF CONTENTS TABLE OF CONTENTS....................................................................................................... iv List of Tables............................................................................................................................ v List of figures ........................................................................................................................ viii ACKNOWLEDGEMENTS.................................................................................................... x 1. EXECUTIVE SUMMARY...................................................................................... 1 2. General Introduction ............................................................................................... 3 2.1 Background................................................................................................................. 3 2.2 Aim and objectives ..................................................................................................... 6 2.3 Definitions of terminology.......................................................................................... 6 3. General materials and methods .............................................................................. 8 3.1 Field sampling techniques........................................................................................... 8 3.2 Data Analysis............................................................................................................ 13 4. Results ..................................................................................................................... 16 4.1 Comparison of multi-species catches between gear types ........................................ 16 4.2 Multi-species catches by gear type ........................................................................... 20 4.3 Sizes and condition of discarded fish........................................................................ 46 5. General Discussion................................................................................................. 69 5.1 Species Composition of catches from main gear types............................................. 69 5.2 Conclusions............................................................................................................... 76 6. Reference list .......................................................................................................... 78 iv LIST OF TABLES Table 3.2 Summary of the number of fishing operations successfully scrutinised by observers, divided between gulfs, seasons and gear types....................................................................................................10 Table 3.3 Summary of the procedures undertaken for processing the catches taken using the different gear types, and gear sections (for haul nets). For haul nets the method of processing depended on size and composition of the catch..................................................................................................................11 Table 3.4 Condition categories to which individual or groups of fish were assigned when being discarded.................................................................................................................................................13 Table 4.1 Summary of the contribution of major taxa to the multi-species catches of commercial Marine Scalefish fishers during 122 fishing operations involving handlines, longlines and haul nets...17 Table 4.2 Summary of the species captured by the three gear types considered in this study. The table shows the major taxon, the family name, common name, scientific name and indicates whether the species was captured by the different gear types. Ce = cephalopods; cr = crustaceans; ec = echinoderms; e = elasmobranchs; t = teleosts; HL = handlines; LL = longlines; HN = haul nets; X = species caught by that gear type. ............................................................................................................17 Table 4.3 Number of handline fishing days monitored by scientific observers during the seasons of summer and winter in each of SG and GSV that were targeted at KGW, snapper or divided between both species (K&S).................................................................................................................................20 Table 4.4 Summary of results from the 12 handline fishing operations targeted at KGW in GSV. The results show the species composition, the catch and catch rates by species in numbers, and the division of catch into discard and retention rates. Catch and catch rates are shown by weight for the two primary target species.............................................................................................................................26 Table 4.5 Summary of results from the three handline fishing operations targeted at KGW and snapper, monitored in GSV. The results show the species composition, the catch and catch rates by species in numbers, and the division of catch into discard and retention rates. Catch and catch rates are shown by weight for the target species. ..................................................................................................................27 Table 4.6 Summary of results from the three handline fishing operations targeted at snapper, monitored in GSV. The results show the species composition, the catch and catch rates by species in numbers, and the division of catch into discard and retention rates. Catch and catch rates are shown by weight for the target species. ..................................................................................................................27 Table 4.7 Summary of results from the 14 handline fishing operations targeted at KGW, monitored in SG by fishery observers. The results show the species composition, the catch and catch rates by species in numbers, and the division of catch into discard and retention rates. Catch and catch rates are shown by weight for the target species...................................................................................................28 Table 4.8 Summary of results from the 11 handline fishing operations targeted at KGW and snapper, monitored in SG. The results show the species composition, the catch and catch rates by species in numbers, and the division of catch into discard and retention rates. Catch and catch rates are shown by weight for the target species. ..................................................................................................................29 Table 4.9 Summary of results from the nine handline fishing operations targeted at snapper, monitored in SG. The results show the species composition, the catch and catch rates by species in numbers, and v the division of catch into discard and retention rates. Catch and catch rates are shown by weight for the target species. .........................................................................................................................................30 Table 4.10 Number of fishing events that were monitored by scientific observers that involved the HNS 3.0 and HNF 5.0 nets, during both seasons in each of SG and GSV. ............................................31 Table 4.11 Summary of results from the 12 haul net fishing operations with the HNF 3.0 nets monitored in GSV. The results show the species composition, the catch and catch rates by species in numbers, and the division of catch into discard and retention rates. Catch and catch rates are shown by weight for two target species..................................................................................................................36
Recommended publications
  • Studies on Some Japanese Fishes of The, Family Gempylidae
    Studies on Some Japanese Fishes of the, Family Gempylidae KIYOMATSU M ATSUBARA and TAMOTSU IWAI l THOUGH TH E FISHES of the family Gempyli­ The few species comprising this family live dae have long been of interest to ichth yolo­ in the high seas and are widely distributed in gists and though considerable literature warm regions throughout the world . concerning this family has accumulated; the The measurements of various parts of the group still is far from being satisfactorily body were made in the same way as those understood. made by the senior author in his study on the Since the publication of " Gempylidae of scorpaenoid fishes ofJapan (Matsubara, 1943: Japan" by Dr. Toshij i Kamohara in 1938, 6-7). We have carefully observed the gill some additional facts have come to ligh t, and rakers stained by alizarin red and cleared by several discrepancies have been found to exist potassium hydroxide. between his descriptions and our specimens. Acknowledgments: .We wish to express our The present paper, supplementing Karno­ sincere gratitude to Mr. Vernon E. Brock, hara's, treats seven species of the family, re­ Dr. Carl L. Hubbs, Mr. T. Abe, Dr. T. Karno­ ferred to the genera N eoepinnul«, Bpinnula, hara, and Mr. M. Nakamura, all of whom Mimasea, Gempylus, Rexea, Nealotus, and helped us in various ways. We are also greatly Prometbicbtbys. The specimens thus far ex­ indebted to Messrs. G . Abe and S. Noda for amined were all taken by deep-sea trawlers assistance in 'obtaining material. Expenses for off the Pacific coast of J apan at a depth of investigations of deep-sea fishes were de­ about 100 fathoms, and all are depo sited in frayed from 1943 to 1945 by a research fun d the Department of Fisheries, Facult y of Agri- .
    [Show full text]
  • REEF FISH BIODIVERSITY on KANGAROO ISLAND Oceans of Blue Coast, Estuarine and Marine Monitoring Program
    2006-2007 Kangaroo Island Natural Resources ManagementDate2007 Board Kangaroo Island Natural Resources Management Board REEF FISH BIODIVERSITYKangaroo Island Natural ON Resources KANGAROO Management ISLAND Board SEAGRASS FAUNAL BIODIVERSITYREPORT TITLE ON KI Reef Fish Biodiversity on Kangaroo Island 1 REEF FISH BIODIVERSITY ON KANGAROO ISLAND Oceans of Blue Coast, Estuarine and Marine Monitoring Program A report prepared for the Kangaroo Island Natural Resources Management Board by Daniel Brock Martine Kinloch December 2007 Reef Fish Biodiversity on Kangaroo Island 2 Oceans of Blue The views expressed and the conclusions reached in this report are those of the author and not necessarily those of persons consulted. The Kangaroo Island Natural Resources Management Board shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. Project Officer Contact Details Martine Kinloch Coast and Marine Program Manager Kangaroo Island Natural Resources Management Board PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4312 Fax: (08) 8553 4399 Email: [email protected] Kangaroo Island Natural Resources Management Board Contact Details Jeanette Gellard General Manager PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4340 Fax: (08) 8553 4399 Email: [email protected] © Kangaroo Island Natural Resources Management Board This document may be reproduced in whole or part for the purpose of study or training, subject to the inclusion of an acknowledgment of the source and to its not being used for commercial purposes or sale. Reproduction for purposes other than those given above requires the prior written permission of the Kangaroo Island Natural Resources Management Board.
    [Show full text]
  • Marine Biodiversity of the South East NRM Region
    Marine Environment and Ecology Benthic Ecology Subprogram Marine Biodiversity of the South East NRM Region SARDI Publication No. F2009/000681-1 SARDI Research Report series No. 416 Keith Rowling, Shirley Sorokin, Leonardo Mantilla and David Currie SARDI Aquatic Sciences PO BOX 120 Henley Beach SA 5022 December 2009 Prepared for the Department for Environment and Heritage 1 Information Systems and Database Support Program Marine Biodiversity of the South East NRM Region Keith Rowling, Shirley Sorokin, Leonardo Mantilla and David Currie December 2009 SARDI Publication No. F2009/000681-1 SARDI Research Report Series No. 416 Prepared for the Department for Environment and Heritage 2 This Publication may be cited as: Rowling, K.P., Sorokin, S.J., Mantilla, L. & Currie, D.R.. (2009) Marine Biodiversity of the South East NRM Region. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2009/000681-1. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Chief of Division. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it.
    [Show full text]
  • Catch and Effort Data
    Chapter 11: The Inland Waters River Fishery Information System CHAPTER 11: INLAND WATERS RIVER FISHERY INFORMATION SYSTEM 11.1 Background The Inland Waters River fishery is a multi-species, multi-gear fishery encompassing the South Australian sector of the River Murray and its backwaters (Map 11.1). Historically, the fishery was based on harvesting Murray cod (Maccullochella peelii peelii), golden perch (Macquaria ambigua), and bony bream (Nematalosa erebi). The fishery was restructured in July 2003 to a non-native dominate fishery and the commercial fishing for significant native species is now prohibited. The fishery is now based predominantly on the taking European carp (Cyprinus carpio) and redfin perch (Perca fluviatilis). There are a total of 6 licence holders who operate within the fishery. Prior to the restructure 30 license holders fished the river, each with a designated reach. Up to December 2007 SARDI production tables hold in excess of 270,000 daily records. Data is held from 1984/85 to current and is continually being updated. Refer to Figure 11.3 for an entity relationship diagram of the inland waters system that encompasses the River Fishery. South Australian Aquatic Sciences: Information Systems and Database Support Program SARDI Aquatic Sciences Information Systems Quality Assurance and Data Integrity Report (June 2009) 81 Chapter 11: The Inland Waters River Fishery Information System Map 11.1: The inland waters river fishery – River Murray area designations. South Australian Aquatic Sciences: Information Systems and Database Support Program SARDI Aquatic Sciences Information Systems Quality Assurance and Data Integrity Report (June 2009) 82 Chapter 11: The Inland Waters River Fishery Information System 11.2 Research Logbook Information Each licence holder is required to submit a daily fishing return by the 15th day of each month detailing their fishing activities for the previous month (Figure 11.1).
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Tristan Da Cunha Fisheries Detailed Report 2017
    Tristan da Cunha The Tristan da Cunha Archipelago is a group of volcanic islands in the South Atlantic (37o-41 o S; 9o-13o W), which includes the main island of Tristan da Cunha (96 km2), Gough Island (65 km2), Inaccessible Island (14 km2), Nightingale Island (3 km2) and two small islands close to Nightingale. The island group is situated around 1200 nautical miles south of St Helena and 1500 miles WSW of Cape Town, South Africa (Figure TdC-1). The island is part of the British Overseas Territory of Saint Helena, Ascension and Tristan da Cunha, with the Governor based on St Helena. The Administrator is the Governor’s representative on Tristan da Cunha. Figure TdC-1. The South Atlantic Ocean showing the location of the Tristan da Cunha island group. The three northern islands (Tristan, Nightingale and Inaccessible) lie north of the Subtropical Convergence STC), a circumpolar oceanic front located at approximately 42˚S where the sea surface temperature (SST) drops sharply. Gough Island lies in the path of the STC, which moves north of the island during winter months. Average SST at Tristan da Cunha in the austral summer range from 15- 19˚C, and in winter it declines to 13-15˚C. At Gough Island SST is on average 3˚C cooler than at the Tristan group during all months. The tidal range is small, but trade winds and frequent storms means that the marine environment is high energy with frequent physical disturbance. The Tristan da Cunha 200 nautical mile Exclusive Fishing Zone (EFZ; Figure TdC-2) was established in 1983 and covers an area of 754,000 km2.
    [Show full text]
  • The Microbial Quality of Locally Harvested Snoek (Thyrsites Atun) As Influenced by the Current Supply Chain Management
    The microbial quality of locally harvested snoek (Thyrsites atun) as influenced by the current supply chain management by Samantha Arabella Matjila Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof LC Hoffman Co-supervisors: Prof S Kerwath, Dr B O’Neill March 2015 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2015 i Stellenbosch University https://scholar.sun.ac.za Opsomming Met die doel om die effek van die ongereguleerde prosesseringsketting op die kwaliteit van plaaslik gevangde snoek Thyrsites atun te bepaal, is mikrobiese en patogeniese (fekale kontaminasie indikators) teenwoordigheid en insidensie, spier pH en temperatuur tesame met heersende temperatuur geassesseer op verskeie punte van prosessering, van vang tot gebruiker gemeet. Twee duidelik onderskeibare metolodigeë; totale lewensvatbare tellings (TLT) in kolonievormende-eenhede (KVEs/cm2) en polimerase kettingreaksie (PKR) was gebruik om bakteriële kontaminasie en die teenwoordigheid/afwesigheid van vier spesifieke indikator organismes (Escherichia coli, Salmonella enterica, Staphylococcus aureus en Vibrio parahaemolyticus) in vyf verwante eksperimente te bepaal. Die resultate wys dat meeste besmetting ontstaan rondom die stoorplekke aanboord die visskuite. Die aas- en goinglappe waarop die aas in kleiner stukkies gesny is, is geïdentifiseer as addisionele bronne van besmetting met 4.69 en 6.92 log10 KVE/cm², onderskeidelik.
    [Show full text]
  • Download Full Article 1.0MB .Pdf File
    Memoirs of the Museum of Victoria 57( I): 143-165 ( 1998) 1 May 1998 https://doi.org/10.24199/j.mmv.1998.57.08 FISHES OF WILSONS PROMONTORY AND CORNER INLET, VICTORIA: COMPOSITION AND BIOGEOGRAPHIC AFFINITIES M. L. TURNER' AND M. D. NORMAN2 'Great Barrier Reef Marine Park Authority, PO Box 1379,Townsville, Qld 4810, Australia ([email protected]) 1Department of Zoology, University of Melbourne, Parkville, Vic. 3052, Australia (corresponding author: [email protected]) Abstract Turner, M.L. and Norman, M.D., 1998. Fishes of Wilsons Promontory and Comer Inlet. Victoria: composition and biogeographic affinities. Memoirs of the Museum of Victoria 57: 143-165. A diving survey of shallow-water marine fishes, primarily benthic reef fishes, was under­ taken around Wilsons Promontory and in Comer Inlet in 1987 and 1988. Shallow subtidal reefs in these regions are dominated by labrids, particularly Bluethroat Wrasse (Notolabrus tet­ ricus) and Saddled Wrasse (Notolabrus fucicola), the odacid Herring Cale (Odax cyanomelas), the serranid Barber Perch (Caesioperca rasor) and two scorpidid species, Sea Sweep (Scorpis aequipinnis) and Silver Sweep (Scorpis lineolata). Distributions and relative abundances (qualitative) are presented for 76 species at 26 sites in the region. The findings of this survey were supplemented with data from other surveys and sources to generate a checklist for fishes in the coastal waters of Wilsons Promontory and Comer Inlet. 23 I fishspecies of 92 families were identified to species level. An additional four species were only identified to higher taxonomic levels. These fishes were recorded from a range of habitat types, from freshwater streams to marine habitats (to 50 m deep).
    [Show full text]
  • The Mechanisms Leading to Ontogenetic Diet Shift in A
    Animal Cells and Systems Vol. 16, No. 4, August 2012, 343Á349 The mechanisms leading to ontogenetic diet shift in a microcanivore, Pterogobius elapoides (Gobiidae) Seung-Ho Choia and Ho Young Sukb* aDepartment of Animal Resources, National Institute of Biological Resources, Incheon 404-708, Korea; bDepartment of Life Sciences, Yeungnam University, Gyeongsan Gyeongsangbuk-do 712-749, Korea (Received 4 December 2011; received in revised form 27 January 2012; accepted 13 February 2012) A variety of fish species undergo an ontogenetic change in prey selectivity, and several potentially interacting factors, including nutrient requirement, microhabitat change, and foraging ability, may account for the occurrence of the shift. Here we examine the foraging ecology and ontogenetic diet shift of a micro-carnivorous goby, Pterogobius elapoides (serpentine goby), dominant component of fish assemblage in shallow rocky areas off the coast in Korea and Japan. Although most other gobies are primarily benthic carnivores, P. elapoides is a semipelagic fish; however, little is known about how those species change their foraging tactics with growth. In our diet analyses, the most common diet was pelagic copepods and benthic amphipods, and diet shift was observed from pelagic to benthic with growth. The ontogenetic diet shift seems to be the result of the preference for energetically more profitable prey in larger-size classes as well as the results of different prey availability due to among-habitat variation in diet. However, differential food preference does not appear to affect individual scope for searching food. Several factors such as predation pressures and interspecific resource partitioning might contribute to the changes in diet observed among size classes, which were included in our ongoing tests.
    [Show full text]
  • Effects of Salting and Drying on Quality Attributes of Snoek (Thyrsites Atun)
    Effects of salting and drying on quality attributes of snoek (Thyrsites atun) by Tanimowo Esther Omolara Thesis presented in partial fulfilment of the requirements for the Degree Master of Food Science at Stellenbosch University Supervisor: Prof. Louw Hoffman Co-supervisor: Prof. Umezuruike Linus Opara, Dr. Bernadette O’Neill March, 2015 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own original work, that I am the single author thereof (except to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March, 2015 Copyright © 2015 Stellenbosch University of Stellenbosch All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Abstract Snoek (Thyrsites atun) is an important commercial fish species in South Africa, particularly in the Western Cape province. Snoek is mainly sold as fresh fish with excess fish being processed into dried salted fish. Although fishing is regulated by the various government agencies, the processing chain of snoek is largely unmonitored and unstandardized which has resulted in variable snoek quality becoming available to the consumer. Therefore, the aim of this study was to assess the quality (proximate, biochemical composition and microbiological safety) of salted and dried snoek products both experimentally and through market sampling. This was achieved by investigating two lines of research: 1) Establishing the quality of locally sold salted and dried snoek from informal vendors and 2) Investigating the effects of different levels of salting (%) and drying (relative humidity and temperature) conditions on snoek meat quality.
    [Show full text]
  • Fao Species Catalogue
    FAO Fisheries Synopsis No. 125, Volume 15 ISSN 0014-5602 FIR/S1 25 Vol. 15 FAO SPECIES CATALOGUE VOL. 15. SNAKE MACKERELS AND CUTLASSFISHES OF THE WORLD (FAMILIES GEMPYLIDAE AND TRICHIURIDAE) AN ANNOTATED AND ILLUSTRATED CATALOGUE OF THE SNAKE MACKERELS, SNOEKS, ESCOLARS, GEMFISHES, SACKFISHES, DOMINE, OILFISH, CUTLASSFISHES, SCABBARDFISHES, HAIRTAILS AND FROSTFISHES KNOWN TO DATE 12®lÄSÄötfSE, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAO Fisheries Synopsis No. 125, Volume 15 FIR/S125 Vol. 15 FAO SPECIES CATALOGUE VOL. 15. SNAKE MACKERELS AND CUTLASSFISHES OF THE WORLD (Families Gempylidae and Trichiuridae) An Annotated and Illustrated Catalogue of the Snake Mackerels, Snoeks, Escolars, Gemfishes, Sackfishes, Domine, Oilfish, Cutlassfishes, Scabbardfishes, Hairtails, and Frostfishes Known to Date by I. Nakamura Fisheries Research Station Kyoto University Maizuru, Kyoto, 625, Japan and N. V. Parin P.P. Shirshov Institute of Oceanology Academy of Sciences Krasikova 23 Moscow 117218, Russian Federation FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1993 The designations employed and the presenta­ tion of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M -40 ISBN 92-5-103124-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy.
    [Show full text]
  • Ryan KL, Wise BS, Hall NG, Pollock KH, Sulin EH, Gaughan DJ (2013)
    Fisheries Research Report No. 249, 2013 An integrated system to survey boat-based recreational fishing in Western Australia 2011/12 K.L. Ryan, B.S. Wise, N.G. Hall, K.H. Pollock, E.H. Sulin and D.J. Gaughan Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Ryan KL, Wise BS, Hall NG, Pollock KH, Sulin EH, Gaughan DJ (2013). An integrated system to survey boat- based recreational fishing in Western Australia 2011/12. Fisheries Research Report No. 249, Department of Fisheries, Western Australia. 168pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au ABN: 55 689 794 771 A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au © Department of Fisheries, Western Australia. September 2013. ISSN: 1035 - 4549 ISBN: 978-1-921845-71-3 ii Fisheries Research Report [Western Australia] No. 249, 2013 Contents 1.0 Introduction .................................................................................................................. 3 1.1 Importance of recreational fishing in WA .............................................................. 3 1.2 Need for recreational fishing information .............................................................. 3 1.3 Recreational fishing surveys in Australia ............................................................... 4 1.4 Recreational fishing surveys
    [Show full text]