OR396 Reference Transcriptome for a Facultatively Eusocial Bee, Megalopta Genalis Beryl M

Total Page:16

File Type:pdf, Size:1020Kb

OR396 Reference Transcriptome for a Facultatively Eusocial Bee, Megalopta Genalis Beryl M OR396 Reference transcriptome for a facultatively eusocial bee, Megalopta genalis Beryl M. Jones, William T. Wcislo, Gene E. Robinson One remarkable feature of the eusocial insects is their extreme phenotypic plasticity, with reproductive division of labor between morphologically distinct queen and worker castes. This plasticity occurs as a result of environmental influences during development, with the same genotype leading to multiple phenotypes. While much is known regarding the developmental influences underlying queen-worker differentiation in highly eusocial insects, we know little about how reproductive division of labor evolved across the multiple independent origins of eusociality. Here we report a new reference transcriptome for Megalopta genalis, a facultatively eusocial neotropical sweat bee (Halictidae) which displays a wide range of social behaviors within a single population. Phylogenetic studies of bees point to a solitary ancestral lifestyle, suggesting that mechanisms underpinning social behavior in M. genalis may represent some of the ones important in the evolutionary transitions from solitary to social reproduction that occurred in bee lineages. We present life stage- and sex-specific gene expression across 20 adults and 20 pre-adult individuals of M. genalis, using Illumina HiSeq sequencing technology and Trinity for assembly. We describe great variation in gene expression across individuals, and evidence for caste-specific gene expression in the brains and abdomens of adult females despite their behavioral flexibility. The phylogenetic position and facultative sociality of M. genalis makes them ideal for studies of eusocial evolution at the molecular level, and the availability of this reference transcriptome allows for further comparative questions regarding social evolution in bees..
Recommended publications
  • Sensory and Cognitive Adaptations to Social Living in Insect Societies Tom Wenseleersa,1 and Jelle S
    COMMENTARY COMMENTARY Sensory and cognitive adaptations to social living in insect societies Tom Wenseleersa,1 and Jelle S. van Zwedena A key question in evolutionary biology is to explain the solitarily or form small annual colonies, depending upon causes and consequences of the so-called “major their environment (9). And one species, Lasioglossum transitions in evolution,” which resulted in the pro- marginatum, is even known to form large perennial euso- gressive evolution of cells, organisms, and animal so- cial colonies of over 400 workers (9). By comparing data cieties (1–3). Several studies, for example, have now from over 30 Halictine bees with contrasting levels of aimed to determine which suite of adaptive changes sociality, Wittwer et al. (7) now show that, as expected, occurred following the evolution of sociality in insects social sweat bee species invest more in sensorial machin- (4). In this context, a long-standing hypothesis is that ery linked to chemical communication, as measured by the evolution of the spectacular sociality seen in in- the density of their antennal sensillae, compared with sects, such as ants, bees, or wasps, should have gone species that secondarily reverted back to a solitary life- hand in hand with the evolution of more complex style. In fact, the same pattern even held for the socially chemical communication systems, to allow them to polymorphic species L. albipes if different populations coordinate their complex social behavior (5). Indeed, with contrasting levels of sociality were compared (Fig. whereas solitary insects are known to use pheromone 1, Inset). This finding suggests that the increased reliance signals mainly in the context of mate attraction and on chemical communication that comes with a social species-recognition, social insects use chemical sig- lifestyle indeed selects for fast, matching adaptations in nals in a wide variety of contexts: to communicate their sensory systems.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Apidae: Meliponini)
    J Comp Physiol A DOI 10.1007/s00359-016-1118-8 ORIGINAL PAPER Body size limits dim‑light foraging activity in stingless bees (Apidae: Meliponini) Martin Streinzer1,2 · Werner Huber3 · Johannes Spaethe1,4 Received: 23 March 2016 / Revised: 28 July 2016 / Accepted: 29 July 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Stingless bees constitute a species-rich tribe ocelli diameter, ommatidia number, and facet diameter. of tropical and subtropical eusocial Apidae that act as All parameters significantly correlated with body size. important pollinators for flowering plants. Many foraging A disproportionately low light intensity threshold in tasks rely on vision, e.g. spatial orientation and detection the minute Trigonisca pipioli, together with a large eye of food sources and nest entrances. Meliponini workers parameter Peye suggests specific adaptations to circumvent are usually small, which sets limits on eye morphology the optical constraints imposed by the small body size. and thus quality of vision. Limitations are expected both We discuss the implications of body size in bees on forag- on acuity, and thus on the ability to detect objects from ing behavior. a distance, as well as on sensitivity, and thus on the for- aging time window at dusk and dawn. In this study, we Keywords Meliponini · Light intensity threshold · Vision · determined light intensity thresholds for flight under dim Compound eye · Body size light conditions in eight stingless bee species in relation to body size in a Neotropical lowland rainforest. Species varied in body size (0.8–1.7 mm thorax-width), and we Introduction found a strong negative correlation with light intensity thresholds (0.1–79 lx).
    [Show full text]
  • Convergent Selection on Juvenile Hormone Signaling Is Associated with the Evolution of Eusociality in Bees
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439731; this version posted April 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Jones, Rubin, Dudchenko et al., 2021 – preprint version - bioRxiv Convergent selection on juvenile hormone signaling is associated with the evolution of eusociality in bees Beryl M. Jones1,2,*, Benjamin E.R. Rubin1,2,*, Olga Dudchenko3,4,*, Karen M. Kapheim5, Eli S. Wyman1,2, Brian G. St. Hilaire3, Weijie Liu1,2, Lance R. Parsons2, S. RaElle Jackson2, Katharine Goodwin2, Shawn M. Davidson2, Callum J. Kingwell6,7, Andrew E. Webb1,2, Mauricio Fernández Otárola8, Melanie Pham3, Arina D. Omer3, David Weisz3, Joshua Schraiber9,10, Fernando Villanea9,11, William T. Wcislo7, Robert J. Paxton12,13, Brendan G. Hunt14, Erez Lieberman Aiden3,4,15,16,ⱡ, Sarah D. Kocher1,2,ⱡ,§ *These authors contributed equally ⱡThese authors contributed equally §Corresponding Author: [email protected] 1Department of Ecology and Evolutionary Biology, Princeton University, USA 2Lewis-Sigler Institute for Integrative Genomics, Princeton University, USA 3The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA 4Center for Theoretical Biological Physics, Rice University, USA 5Department of Biology, Utah State University, USA 6Department of Neurobiology and Behavior, Cornell University, USA 7Smithsonian Tropical Research Institute, 0843-03092 Panama
    [Show full text]
  • Oct 13 2019 Megalopta
    1 Species and sex differences in eye morphology and visual sensitivity of two nocturnal 2 sweat bee species (Megalopta spp., Hymenoptera: Halictidae) 3 4 5 Running title: Megalopta eye morphology and sensitivity 6 7 Beryl M. Jones1,2‡, Brett M. Seymoure*2,3,4‡, Troy J. Comi5, Ellis R. Loew6 8 9 1. Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, 10 Illinois 61801 11 2. Smithsonian Tropical Research Institute, Panama City, Panama 20521 12 3. Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO, 63130 13 4. Sound and Light Ecology Team, Colorado State University, Fort Collins, CO, 80523 14 5. Department of Chemistry, University of Illinois, Urbana, IL 61801 15 6. Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853 16 17 ‡Authors contributed equally 18 * corresponding author’s information: 19 Postal Address: Brett Seymoure 20 Biology Department, Washington University in St. Louis 21 Campus Box 1137 22 One Brookings Drive 23 St. Louis, MO 63130-4899 24 phone: 269 501 8761 25 email: [email protected] 26 27 28 29 30 31 32 1 Electronic copy available at: https://ssrn.com/abstract=3469351 33 Abstract 34 Visually dependent dim-light foraging has evolved repeatedly across taxa, broadening species 35 ecological niches. As most dim-light foraging species evolved from diurnal ancestors, visual 36 sensitivity must increase immensely to compensate for light levels a billion times dimmer than 37 daylight. Some taxa, e.g. bees, are anatomically constrained by their apposition compound 38 eyes, which function well in daylight but not starlight.
    [Show full text]
  • Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects
    insects Review (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects Kayli R. Sieber 1 , Taylor Dorman 1, Nicholas Newell 1 and Hua Yan 1,2,* 1 Department of Biology, University of Florida, Gainesville, FL 32611, USA; kayli.sieber@ufl.edu (K.R.S.); taylor.dorman@ufl.edu (T.D.); nicholas.newell@ufl.edu (N.N.) 2 Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA * Correspondence: hua.yan@ufl.edu; Tel.: +1-352-273-4983 Simple Summary: Social insects, namely ants, bees, and termites, are among the most numerous and successful animals on Earth. This is due to a variety of features: highly cooperative behavior performed by colony members and their specialization on a variety of tasks. Diverse physiological and behavioral specializations are regulated not only by the genetic system, but also by the epige- netic system which alters gene expressions without modifying the genetic code. This review will summarize recent advancements in such studies in eusocial insects. Abstract: Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act Citation: Sieber, K.R.; Dorman, T.; as workers. However, in some species, caste structure is somewhat plastic, and individuals may Newell, N.; Yan, H. (Epi)Genetic switch from one caste or behavioral phenotype to another in response to certain environmental cues.
    [Show full text]
  • Natural History Note Cleaner Mites: Sanitary Mutualism in the Miniature Ecosystem of Neotropical Bee Nests
    vol. 173, no. 6 the american naturalist june 2009 ൴ Natural History Note Cleaner Mites: Sanitary Mutualism in the Miniature Ecosystem of Neotropical Bee Nests Natalia B. Biani,1,* Ulrich G. Mueller,1 and William T. Wcislo2 1. Section of Integrative Biology, University of Texas, Austin, Texas 78712; 2. Smithsonian Tropical Research Institute, Apartado 0843- 03092, Balboa, Republic of Panama Submitted September 16, 2008; Accepted January 28, 2009; Electronically published April 16, 2009 Online enhancement: appendix. has not been rigorously demonstrated (Flechtmann and abstract: Cleaning symbioses represent classic models of mutu- Camargo 1974). Parasitic mites associated with the wasp alism, and some bee mites are thought to perform cleaning services for their hosts in exchange for suitable environments for reproduc- Allodynerus delphinalis act as “bodyguards” and defend tion and dispersal. These mutual benefits, however, have not been juvenile wasps from attacks by a hymenopteran parasitoid rigorously demonstrated. We tested the sanitary role of bee mites by (Okabe and Makino 2008). Another example of mutualism correlating mite loads with fungal contamination in natural nests of is mites associated with burying beetles. These mites re- Megalopta genalis and Megalopta ecuadoria and by experimentally duce the number of fly larvae that compete with the beetles manipulating mite loads in artificial cells with developing brood. for food, and a lower number of flies on the carcasses Field observations revealed significant correlations between the pres- ence of mites and the absence of fungi inside the brood cells, as well increases beetle fitness (Wilson 1983; Wilson and Knol- as between the absence of mites and increased bee mortality.
    [Show full text]
  • Natural Selection and Social Behavior in Panamanian Sweat Bees
    Natural Selection and Social Behavior in Panamanian Sweat Bees by Karen Kapheim, Graduate Student, Ecology and Evolutionary Biology and Center for Tropical Research, Institute of the Environment, UCLA The extreme level of cooperation found among social insects (e.g., ants and bees) has fascinated naturalists, philosophers, and evolutionary biologists for centuries. In these highly organized societies, workers forego reproduction to stay in their natal nests and perform dangerous and costly tasks, such as foraging and brood care, that help others reproduce more effectively. It is difficult to understand how this type of altruistic behavior could have originated through natural selection because the individuals expressing the behavior are not contributing offspring of their own to future generations. Megalopta genalis are wood nesters. They excavate tunnels through the pith of dead stems and vines hanging in the forest, then build brood cells along tunnel walls (photo courtesy of Adam Smith). While the distribution of work and reproduction among honeybees is well characterized, social organization is actually quite variable across bee species. Megalopta genalis is a nocturnal sweat bee from Central America with extremely flexible social behavior. These bees are unique because they can live socially (with some daughters remaining in their natal nest as workers), but have retained the ability to live solitarily (with all offspring dispersing). This makes them especially useful for investigating the selective pressures and molecular and developmental mechanisms responsible for the origins of sociality. Left: Megalopta genalis is a nocturnal member of the sweat bee family (Halictidae) and is common throughout the Republic of Panama. Right: To observe social interactions and track reproductive strategies, I construct two- dimensional versions of natural nests from balsa wood and plexiglass.
    [Show full text]
  • Social and Ecological Contexts of Trophallaxis in Facultatively Social Sweat Bees, Megalopta Genalis and M. Ecuadoria (Hymenoptera, Halictidae)
    Insect. Soc. 53 (2006) 220-225 0020-1812/06/020220-6 I Insectes Sociaux DOI 10.1007/S00040-005-0861-6 © Birkhäuser Verlag, Basel, 2006 Research article Social and ecological contexts of trophallaxis in facultatively social sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera, Halictidae) W. T. Wcislo' and V. H. Gonzalez' ' Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama; Mailing address from the USA: Unit 0948, APOAA 34002-0948 USA; e-mail: [email protected] ^ Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; e-mail: [email protected] Received 25 July 2005; revised 22 November 2005; accepted 23 December 2005. Abstract. Exchange of liquid food among adults (trophallax- inini), trophallaxis is often associated with extended mater- is) is documented for the first time in New World sweat bees nal care: the mother continues to feed her adult young before (Halictinae). Megalopta genalis and M. ecuadoria are faculta- they disperse, or until one of them inherits the nest (see tively social, and in social groups foragers regularly give food Velthuis, 1987; Michener, 1990b; Kukuk, 1994; Hogendoom to the oldest resident female bee, which dominates social in- and Velthuis, 1995; Schwarz et al., 1998). teractions. In turn, the oldest resident sometimes re-distributes Social sweat bees (Halictinae) are an important contrast this food, and shares it with younger foragers. Food is some- to these other taxa because there is no evidence for trophal- times offered freely, but often the dominant bee exhibits esca- laxis between adults and immatures (Michener, 1990a). lating aggressive behavior until she is fed, whereupon she Furthermore, trophallaxis between adults is extremely rare in immediately ceases to be aggressive.
    [Show full text]
  • Four Submarginal Cells on a Forewing of <I>Melitoma Taurea</I> (Say
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2018 Four submarginal cells on a forewing of Melitoma taurea (Say) (Hymenoptera: Apidae), and a summary of known records of atypical and variable numbers of submarginal cells Eugene J. Scarpulla [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Scarpulla, Eugene J., "Four submarginal cells on a forewing of Melitoma taurea (Say) (Hymenoptera: Apidae), and a summary of known records of atypical and variable numbers of submarginal cells" (2018). Insecta Mundi. 1187. http://digitalcommons.unl.edu/insectamundi/1187 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. November 9 2018 INSECTA 0667 1–28 urn:lsid:zoobank.org:pub:CE06E366-7262-430F-BB92- A Journal of World Insect Systematics 54C6CA30DAE1 MUNDI 0667 Four submarginal cells on a forewing of Melitoma taurea (Say) (Hymenoptera: Apidae), and a summary of known records of atypical and variable numbers of submarginal cells Eugene J. Scarpulla 14207 Lakerun Court Bowie, MD 20720-4861 [email protected] Date of issue: November 9, 2018 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Eugene J. Scarpulla Four submarginal cells on a forewing of Melitoma taurea (Say) (Hymenoptera: Apidae), and a summary of known records of atypical and variable numbers of submarginal cells Insecta Mundi 0667: 1–28 ZooBank Registered: urn:lsid:zoobank.org:pub:CE06E366-7262-430F-BB92-54C6CA30DAE1 Published in 2018 by Center for Systematic Entomology, Inc.
    [Show full text]
  • Leandro Mattos Santos
    LEANDRO MATTOS SANTOS ANÁLISE CLADÍSTICA DAS ABELHAS DO GÊNERO MEGALOPTA SMITH, 1853 (APIDAE: HALICTINAE, AUGOCHLORINI) E REVISÃO TAXONÔMICA DAS ESPÉCIES BRASILEIRAS Tese apresentada à Coordenação do Curso de Pós-Graduação em Ciências Biológicas, Área de concentração em Entomologia, da Universidade Federal do Paraná, como requisito parcial para a obtenção do Título de Mestre em Ciências Biológicas. Orientador: Dr. Gabriel Augusto Rodrigues de Melo. CURITIBA 2010 "Pode-se viver no mundo uma vida magnífica quando se sabe trabalhar e amar. Trabalhar pelo que se ama e amar aquilo em que se trabalha". Leo Nikolayevich Tolstoi “Vivendo, se aprende; mas o que se aprende, mais, é só a fazer outras maiores perguntas”. João Guimarães Rosa Dedicado a João Maria Franco de Camargo 1941 - 2009 iv AGRADECIMENTOS Gostaria de agradecer ao Professor Dr. Gabriel Augusto Rodrigues de Melo pela orientação e pela oportunidade concedida. Aos professores do curso de pós-graduação em Entomologia da Universidade Federal do Paraná. Aos funcionários da Universidade Federal do Paraná, especialmente aqueles do Departamento de Zoologia e do Setor de Ciências Biológicas. Ao secretário do curso, Jorge Luís Silveira dos Santos; A Luís Roberto Ribeiro Faria Júnior e Elaine Della Giustina Soares, pelo suporte nos primeiros meses em Curitiba; Ao Professor Dr. Márcio Roberto Pie, responsável por mim durante a Prática à Docência; À Professora Dra. Luciane Marinoni pelo empréstimo da lupa no período final da dissertação; A Amanda Ciprandi, Andrezza Palladini, Antônio Camilo José Aguiar, Daniella Parizzotto, Fernando Leivas, Mário Luís Pessoa Guedes e Paschoal Grossi pelo exemplares coletados durante a dissertação. A Claudionor Elias, Catarina da Silva Motta, Francisco Felipe Xavier Filho, José Albertino Rafael, Márcio Luiz Oliveira, Mirna Casagrande, Olaf Mielke, Victor Becker, dentre outros não citados, pelos exemplares coletados ao longo de anos, que permitiram este estudo.
    [Show full text]
  • Woodward Et Al. 2011. Genes Involved in Convergent Evolution of Eusociality in Bees
    Genes involved in convergent evolution of eusociality in bees S. Hollis Woodarda,1, Brielle J. Fischmana,1, Aarti Venkatb, Matt E. Hudsonb, Kranthi Varalab, Sydney A. Cameronc, Andrew G. Clarkd, and Gene E. Robinsona,c,e,f,2 aProgram in Ecology, Evolution, and Conservation Biology, Departments of bCrop Sciences and cEntomology, eInstitute for Genomic Biology, and fNeuroscience Program, University of Illinois, Urbana, IL 61801; and dDepartment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Contributed by Gene E. Robinson, March 12, 2011 (sent for review February 17, 2011) Eusociality has arisen independently at least 11 times in insects. different social lifestyles among relatively closely related species. Despite this convergence, there are striking differences among Furthermore, the extensive knowledge of bee natural history (8, eusocial lifestyles, ranging from species living in small colonies 13, 14) provides a valuable framework for developing hypotheses with overt conflict over reproduction to species in which colonies about the adaptive significance of genetic changes detected in contain hundreds of thousands of highly specialized sterile work- eusocial bee lineages. ers produced by one or a few queens. Although the evolution of To study patterns of molecular evolution associated with eusociality has been intensively studied, the genetic changes eusociality in bees, we generated ~1 Gbp of expressed sequence involved in the evolution of eusociality are relatively unknown. tags (ESTs) from a set of nine bee species (Table S1). This set of We examined patterns of molecular evolution across three in- species reflects the remarkable social diversity in bees by in- dependent origins of eusociality by sequencing transcriptomes of cluding eusocial and non-eusocial species; three origins of euso- nine socially diverse bee species and combining these data with ciality (9, 10); and two different forms of eusocial lifestyle, “highly genome sequence from the honey bee Apis mellifera to generate eusocial” and “primitively eusocial” (ref.
    [Show full text]