And Ytterbium(III)-Based Materials for Optoelectronic and Telecommunication Applications
Total Page:16
File Type:pdf, Size:1020Kb
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281775476 Novel Erbium(III) and Ytterbium(III)-based materials for Optoelectronic and Telecommunication applications Thesis · October 2013 CITATIONS READS 0 646 3 authors: Pablo Martin-Ramos Pedro Chamorro-Posada University of Zaragoza Universidad de Valladolid 284 PUBLICATIONS 1,551 CITATIONS 203 PUBLICATIONS 1,485 CITATIONS SEE PROFILE SEE PROFILE Jesus Martín-Gil Universidad de Valladolid 460 PUBLICATIONS 2,359 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Optoelectronic Materials View project Mineral compounds View project All content following this page was uploaded by Jesus Martín-Gil on 15 September 2015. The user has requested enhancement of the downloaded file. ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN DEPARTAMENTO DE TEORÍA DE LA SEÑAL Y COMUNICACIONES E INGENIERIA TELEMÁTICA TESIS DOCTORAL: NOVEL ERBIUM(III) AND YTTERBIUM(III)-BASED MATERIALS FOR OPTOELECTRONIC AND TELECOMMUNICATION APPLICATIONS Presentada por Pablo Martín Ramos para optar al grado de doctor por la Universidad de Valladolid Dirigida por: Dr. Pedro Chamorro Posada Dr. Jesús Martín Gil One of the ways of stopping science would be only to do experiments in the region where you know the law. But experimenters search most diligently, and with the greatest effort, in exactly those places where it seems most likely that we can prove our theories wrong. In other words, we are trying to prove ourselves wrong as quickly as possible, because only in that way can we find progress. Richard P. Feynman ACKNOWLEDGEMENTS It is a pleasure to thank the many people who have made this Thesis possible. It is difficult to overstate my gratitude to my Ph.D. supervisors, Prof. Pedro Chamorro-Posada and Prof. Jesús Martín-Gil. Throughout these years, they have provided encouragement, sound advice, useful feedback and constructive comments. Without their steady and wise guiding hand, I would have been lost. Besides my advisors, many others have gained my deepest respect and most grateful acknowledgement. This multidisciplinary research Thesis -with components of Chemistry, Physics, Materials Science and Electronics- would not have been feasible without the dedication and willingness of our outstanding collaborators, who have gladly granted me full-access to their research facilities: Prof. Ana María Matos-Beja, Prof. Manuela Ramos-Silva, Prof. José Antonio Paixão, Prof. Ermelinda S. Eusebio, Dr. Pedro S. Pereira da Silva, Joao Pedro Martins and Micael Miranda at the CEMDRX and the Chemistry Department, Universidade de Coimbra (Coimbra, Portugal); Prof. Carmen Coya, Prof. Ángel L. Álvarez and Miguel García at the Organic Optoelectronics group, Universidad Rey Juan Carlos (Madrid, Spain); Prof. Carlos Zaldo at the Photonic Materials group, ICMM–CSIC (Madrid, Spain); Prof. Victor Lavín, Prof. Inocencio R. Martín, Prof. Fernando Lahoz, Prof. Ulises R. Rodríguez and Sergio F. León at the MALTA Consolider Team, Universidad de la Laguna (Canary Islands, Spain); Prof. Laura C.J. Pereira at the Solid State group, Instituto Superior Técnico (Lisboa, Portugal); Dr. Hagen Klauk at the Organic Electronics group, Max Planck Institute for Solid State Research (Stuttgart, Germany); Michael Strecker at the Institute for Large Area Microelectronics, Stuttgart University (Stuttgart, Germany); Prof. Tony Heinz at the Columbia Nanoscale Science and Engineering Center (NSEC) and Prof. Ioannis Kymissis at the Columbia Laboratory for Unconventional Electronics, Columbia University (New York, USA); Prof. Samuel K. Kassegne and Prof. Long C. Lee at the MEMS Research Group and the Photonics Group, respectively, San Diego State University (San Diego, USA); Prof. Humberto Michinel and José A. Nóvoa at the Applied Physics Department, Universidade de Vigo (Orense, Spain); and Dr. Mario Salvalaggio, at Istituto Eni Donegani (Novara, Italy). I apologize in advance to anyone I have overlooked. I owe a great deal to their expertise, their teaching of the advanced techniques involved and their tireless support when I got in a muddle during the actual experiments. They are the ones who have shaped the way I will keep conducting research and approaching problems in the future. I hope this Thesis passes by some of the insights they have taught me. I am also indebted to the financial support received from the Fulbright Foundation (a two- year Fulbright Postgraduate Fellowship for the Columbia University´s Fu Foundation School of Engineering and Applied Science at New York), Caja Madrid Foundation and Caja España Foundation (a one-year Postgraduate scholarship for the San Diego State University at San Diego, California), the German Academic Exchange Service, DAAD (a five-month scholarship for the Max Planck Institute at Stuttgart), Santander Universities (who has funded my several short research stays at Coimbra University through JPI-2013 program), Junta de Castilla y León through project VA300A12-1, the University of Valladolid (FPI 2011 Ph.D. scholarship and Prometeo research award 2010) and the Spanish Ministry of Education (FPU 2010 Ph.D. scholarship). Finally, I wish to thank my family for providing a loving environment for me: to my fiancée, Raquel; to my sister, Clara; to my grandmother, Teo; and to my parents, Carmen and Javier. They bore me, supported me, raised me, taught me, and loved me. To them I dedicate this Thesis. i ABSTRACT This Ph.D. Thesis is a contribution within the bounds of the interdisciplinary area constituted by the interrelation between Materials Engineering and Electrical Engineering, insofar as the main results of the conducted research herein referred are related to the characterization of novel materials and devices with applications in these areas. Key aspects of this work have been the molecular design by semiempirical quantum chemistry methods (Sparkle/PM7), the synthesis, structural elucidation by X-ray diffraction and characterization by DSC, FTIR, Raman, NMR and EPR spectroscopies, UV-Vis-NIR absorption, excitation and photoluminescence of the novel complexes: 44 erbium(III) and ytterbium(III) ternary complexes with an octacoordinated environment which consists of six oxygen atoms from the β-diketonate ligands and two nitrogen atoms from a Lewis base. The main properties of the new complexes, on which their applications are based, are: their emission at crucial wavelengths in the infrared region, their nonlinear optical behavior and their molecular magnet characteristics. With regard to the former, the novel materials -either in solid state, in solution or dispersed in matrices (vitreous and non-vitreous)- efficiently emit at wavelengths that make them suitable for the manufacturing of active (lasers and optical amplifiers) and passive (waveguides) optical architectures. On the other hand, their NLO properties are promising for their use in optical switching, optical limiters and other ultrafast applications. Regarding their single-ion magnetic behavior, they could find use in information storage, quantum computation and spintronics. Of particular engineering interest have been the manufacturing and characterization of solution-processed NIR-OLED devices emitting in the third communication window (1.54 µm), in which the excellent film forming properties and ambipolar behavior of the developed materials have enabled their use as active layers without resorting to host matrices. The designed fabrication procedure, together with arc-erosion nano-patterning technology, paves the way to the manufacturing of large area NIR-OLEDs by cost-effective methods. ii RESUMEN La presente Tesis Doctoral constituye una aportación enmarcada en el área multidisciplinar constituida por la interrelación de la Ingeniería de Materiales con las Ingenierías Electrónica y de Telecomunicación en tanto que las principales contribuciones de la investigación realizada son relativas a la caracterización de nuevos materiales y dispositivos con aplicación en estas áreas. Aspectos fundamentales de este trabajo han sido los de diseño molecular mediante métodos semiempíricos (Sparkle/PM7), síntesis, elucidación estructural por difracción de rayos X y caracterización por DSC, espectroscopías FTIR, Raman, RMN y RPE, absorción óptica UV-Vis- NIR, excitación y fotoluminescencia de los nuevos compuestos: 44 complejos ternarios de erbio(III) e iterbio(III) en un entorno de octacoordinación asegurado por seis oxígenos procedentes de tres ligandos β-dicetonato y dos nitrógenos de una base de Lewis. Las principales propiedades de los nuevos complejos, en las cuales están fundamentadas sus aplicaciones, son: su emisión a longitudes de onda críticas en el infrarrojo, su comportamiento óptico no lineal y su funcionamiento como magnetos moleculares. En relación con la primera de estas propiedades, los nuevos materiales, tanto en estado sólido como en disolución o dispersados en matrices (vítreas y no vítreas), emiten de modo eficiente a longitudes de onda que les hacen útiles para la fabricación de arquitecturas ópticas activas (láseres y amplificadores ópticos) y pasivas (guías de ondas). Por otra parte, sus propiedades en NLO los hacen prometedores para su aplicación en interruptores ópticos, limitadores ópticos y otras aplicaciones ultrarrápidas. En lo que respecta a su comportamiento magnético como imanes mono-moleculares, encuentran aplicación en almacenamiento de información, computación cuántica y espintrónica. De especial interés