Anatomical Imaging of the Piriform Cortex in Epilepsy T ⁎ James C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thalamohippocampal Atrophy in Focal Epilepsy of Unknown Cause at the Time of Diagnosis
medRxiv preprint doi: https://doi.org/10.1101/2020.07.24.20159368; this version posted July 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . Thalamohippocampal atrophy in focal epilepsy of unknown cause at the time of diagnosis Nicola J. Leek1, Barbara A. K. Kreilkamp1,2, Mollie Neason1, Christophe de Bezenac1, Besa Ziso2, Samia Elkommos3, Kumar Das2, Anthony G. Marson1,2, Simon S. Keller1,2* 1Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK 2The Walton Centre NHS Foundation Trust, Liverpool, UK 3St George’s University Hospitals NHS Foundation Trust, London, UK *Corresponding author Dr Simon Keller Clinical Sciences Centre Aintree University Hospital Lower Lane Liverpool L9 7LJ [email protected] Keywords: Newly diagnosed epilepsy, focal epilepsy, thalamus, hippocampus, treatment outcome NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.07.24.20159368; this version posted July 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . Abstract Background: Patients with chronic focal epilepsy may have atrophy of brain structures important for the generation and maintenance of seizures. -
Early Aging Effect on the Function of the Human Central Olfactory System
Journals of Gerontology: Biological Sciences cite as: J Gerontol A Biol Sci Med Sci, 2017, Vol. 72, No. 8, 1007–1014 doi:10.1093/gerona/glw104 Advance Access publication June 11, 2016 Original Article Early Aging Effect on the Function of the Human Central Downloaded from https://academic.oup.com/biomedgerontology/article/72/8/1007/2629931 by guest on 27 September 2021 Olfactory System Choice Editor’s Jianli Wang,1 Xiaoyu Sun,1 and Qing X. Yang2 1Department of Radiology, Pennsylvania State University College of Medicine, Hershey. 2Departments of Radiology and Neurosurgery, Pennsylvania State University College of Medicine, Hershey. Address correspondence to Jianli Wang, MD, PhD, Department of Radiology, Pennsylvania State University College of Medicine, Hershey, PA 17033. E-mail: [email protected] Received November 23, 2015; Accepted April 27, 2016 Decision Editor: Rafael de Cabo, PhD Abstract During normal aging process, the smell function declines significantly, starting from the sixth decade of age. While it has been shown that activity in the central olfactory system of seniors responding to odor stimulation is significantly less than that of young people, no information of the aging effect on the functions of this system during normal adulthood and early aging has been gathered. In this study, we used functional magnetic resonance imaging to investigate the olfaction-related brain activity in the central olfactory structures of 43 healthy adult volunteers aged from 22 to 64 years. The participants’ smell identification function was negatively correlated with age (r = −.32, p = .037). Significant negative correlation was observed between age and the olfaction-related activities in the bilateral dorsolateral prefrontal cortex, left insular cortex, and left orbitofrontal cortex (p < .001, corrected with cluster size ≥28 voxels). -
Quantitative Analysis of Axon Collaterals of Single Pyramidal Cells
Yang et al. BMC Neurosci (2017) 18:25 DOI 10.1186/s12868-017-0342-7 BMC Neuroscience RESEARCH ARTICLE Open Access Quantitative analysis of axon collaterals of single pyramidal cells of the anterior piriform cortex of the guinea pig Junli Yang1,2*, Gerhard Litscher1,3* , Zhongren Sun1*, Qiang Tang1, Kiyoshi Kishi2, Satoko Oda2, Masaaki Takayanagi2, Zemin Sheng1,4, Yang Liu1, Wenhai Guo1, Ting Zhang1, Lu Wang1,3, Ingrid Gaischek3, Daniela Litscher3, Irmgard Th. Lippe5 and Masaru Kuroda2 Abstract Background: The role of the piriform cortex (PC) in olfactory information processing remains largely unknown. The anterior part of the piriform cortex (APC) has been the focus of cortical-level studies of olfactory coding, and asso- ciative processes have attracted considerable attention as an important part in odor discrimination and olfactory information processing. Associational connections of pyramidal cells in the guinea pig APC were studied by direct visualization of axons stained and quantitatively analyzed by intracellular biocytin injection in vivo. Results: The observations illustrated that axon collaterals of the individual cells were widely and spatially distrib- uted within the PC, and sometimes also showed a long associational projection to the olfactory bulb (OB). The data showed that long associational axons were both rostrally and caudally directed throughout the PC, and the intrinsic associational fibers of pyramidal cells in the APC are omnidirectional connections in the PC. Within the PC, associa- tional axons typically followed rather linear trajectories and irregular bouton distributions. Quantitative data of the axon collaterals of two pyramidal cells in the APC showed that the average length of axonal collaterals was 101 mm, out of which 79 mm (78% of total length) were distributed in the PC. -
On the Scent of Human Olfactory Orbitofrontal Cortex: Meta-Analysis and Comparison to Non-Human Primates
Brain Research Reviews 50 (2005) 287 – 304 www.elsevier.com/locate/brainresrev Review On the scent of human olfactory orbitofrontal cortex: Meta-analysis and comparison to non-human primates Jay A. Gottfrieda,*, David H. Zaldb aDepartment of Neurology and the Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 11-453, Chicago, IL 60611, USA bDepartment of Psychology, Vanderbilt University, Nashville, TN 37240, USA Accepted 25 August 2005 Available online 6 October 2005 Abstract It is widely accepted that the orbitofrontal cortex (OFC) represents the main neocortical target of primary olfactory cortex. In non-human primates, the olfactory neocortex is situated along the basal surface of the caudal frontal lobes, encompassing agranular and dysgranular OFC medially and agranular insula laterally, where this latter structure wraps onto the posterior orbital surface. Direct afferent inputs arrive from most primary olfactory areas, including piriform cortex, amygdala, and entorhinal cortex, in the absence of an obligatory thalamic relay. While such findings are almost exclusively derived from animal data, recent cytoarchitectonic studies indicate a close anatomical correspondence between non-human primate and human OFC. Given this cross-species conservation of structure, it has generally been presumed that the olfactory projection area in human OFC occupies the same posterior portions of OFC as seen in non-human primates. This review questions this assumption by providing a critical survey of the localization of primate and human olfactory neocortex. Based on a meta-analysis of human functional neuroimaging studies, the region of human OFC showing the greatest olfactory responsivity appears substantially rostral and in a different cytoarchitectural area than the orbital olfactory regions as defined in the monkey. -
Neuropathological Studies of Patients with Possible Non-Herpetic Acute Limbic Encephalitis and So-Called Acute Juvenile Female Non-Herpetic Encephalitis
□ ORIGINAL ARTICLE □ Neuropathological Studies of Patients with Possible Non-Herpetic Acute Limbic Encephalitis and So-called Acute Juvenile Female Non-Herpetic Encephalitis Koichi Okamoto 1, Tsuneo Yamazaki 1, Haruhiko Banno 2,GenSobue2, Mari Yoshida 3 and Masamitsu Takatama 4 Abstract Objective This study was to clarify the neuropathological findings of non-herpetic acute limbic encephalitis (NHALE) and so-called acute juvenile female non-herpetic encephalitis (AJFNHE). Methods We examined three rare autopsied cases consisting of probable one NHALE and two AJFNHLE. For comparison, we also studied 10 autopsied cases of hippocampal sclerosis mainly caused by anoxia. Results In NHALE, neuronal loss with gliosis and microglia/macrophage infiltrations were mainly seen in the CA1 areas in the hippocampus. However, there were no apparent anoxic neuronal changes in the remain- ing neurons in the CA1, and astrocyte proliferations and microglia/macrophage infiltrations were also ob- served in the claustrum, while these were mildly present in the basal ganglia. In AJFNHE, pathological find- ings differed from those of NHALE with regard of the absence of limited pathology in the limbic system, microglia/macrophages widely infiltrated the brain including the hippocampal areas and mild lymphocytic in- filtrations were observed in the subarachnoid spaces as well as in the parenchyma. Conclusions The pathomechanism of NHALE and AJFNHE is obscure and autoimmune theory is pro- posed, however we must collect and examine many autopsied cases in order to clarify the pathomechanism. Key words: non-herpetic acute limbic encephalitis, acute juvenile female non-herpetic encephalitis, hip- pocampal sclerosis (DOI: 10.2169/internalmedicine.47.0547) (7, 8, 10, 11). -
The Paramedian Supracerebellar-Transtentorial
J Neurosurg 116:773–791, 2012 The paramedian supracerebellar-transtentorial approach to the entire length of the mediobasal temporal region: an anatomical and clinical study Laboratory investigation UğUR TÜRE, M.D.,1 MEHMET VOLKAN HARPut, M.D.,1 AHMET HILMI KAYA, M.D.,1 PRAVEEN BAIMEDI, M.D.,1 ZEYNEP FIRAT, PH.D.,1 HATICE TÜRE, M.D.,2 AND CANAN AYKut BINGÖL, M.D.3 Departments of 1Neurosurgery, 2Anesthesiology, and 3Neurology, Yeditepe University School of Medicine, İstanbul, Turkey Object. The exploration of lesions in the mediobasal temporal region (MTR) has challenged generations of neurosurgeons to achieve an appropriate approach. To address this challenge, the extensive use of the paramedian supracerebellar-transtentorial (PST) approach to expose the entire length of the MTR, as well as the fusiform gyrus, was investigated. Methods. The authors studied the microsurgical aspects of the PST approach in 20 cadaver brains and 5 cadaver heads under the operating microscope. They evaluated the features, advantages, difficulties, and limitations of the PST approach and refined the surgical technique. They then used the PST approach in 15 patients with large intrinsic MTR tumors (6 patients), tumor in the posterior fusiform gyrus with mediobasal temporal epilepsy (MTE) (1 patient), cavernous malformations in the posterior MTR including the fusiform gyrus (2 patients), or intractable MTE with hippocampal sclerosis (6 patients) from December 2007 to May 2010. Patients ranged in age from 11 to 63 years (mean 35.2 years), and in 9 patients (60%) the lesion was located on the left side. Results. In all patients with neuroepithelial tumors or cavernous malformations, the lesions were completely and safely resected. -
Two Fiber Pathways Connecting Amygdala and Prefrontal Cortex in Humans and Monkeys
bioRxiv preprint doi: https://doi.org/10.1101/561811; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Two fiber pathways connecting amygdala and prefrontal cortex in humans and monkeys Davide Folloni1,2*, Jérôme Sallet1,2, Alexandre A. Khrapitchev3, Nicola R. Sibson3, Lennart Verhagen1,2†, Rogier B. Mars2,4† 1Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom 2Wellcome Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom 3Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom 4Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands †Authors contributed equally to the work *To whom correspondence should be addressed: Address: Davide Folloni, Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/561811; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The interactions between amygdala and prefrontal cortex are pivotal to many neural processes involved in learning, decision-making, emotion, and social regulation. -
Control of Epileptic Seizures by the Basal Ganglia: Clinical and Experimental Approaches Feddersen Berend
Control of epileptic seizures by the basal ganglia: clinical and experimental approaches Feddersen Berend To cite this version: Feddersen Berend. Control of epileptic seizures by the basal ganglia: clinical and experimental ap- proaches. Neurons and Cognition [q-bio.NC]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00413972 HAL Id: tel-00413972 https://tel.archives-ouvertes.fr/tel-00413972 Submitted on 7 Sep 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Chimie et Sciences du Vivant UNIVERSITE JOSEPH FOURIER GRENOBLE Thèse Neuroscience - Neurobiologie Berend Feddersen Control of epileptic seizures by the basal ganglia: clinical and experimental approaches Soutenue publiquement le: 10.07.2009 Membres du jury : Franck Semah (Rapporteur 1) Stephane Charpier (Rapporteur 2) Philippe Kahane Soheyl Noachtar Antoine Depaulis (Directeur de thèse) Colin Deransart 1 ACKNOWLEDGEMENTS Many fantastic people were inolved in this thesis, whom I want to thank deeply for all their help and support. I want to thank my supervisors Soheyl Noachtar, Antoine Depaulis and Colin Deransart for all their help and fruitfull discussions in every kind of situation. Sohyel Nochtar teached me in a perfect structured manner clinical epileptology and gave me always all the support I needed, especially for my stay in Grenoble. -
Accepted Manuscript
Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study Sara Kiparizoska, BS1 and Toshikazu Ikuta, Ph.D2 1 School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States 2 Department of Communication Sciences and Disorders, University of Mississippi, University, MS, United States RunningAccepted title: Piriform connectivity in schizophrenia Manuscript Submission Category: Regular Research Article © The Author 2017. Published by Oxford University Press on behalf of CINP. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] Author to correspond: Toshikazu Ikuta 311 George Hall, 352 Rebel Drive, University MS 38672, USA. [email protected] Word count: 2035 words, 4 figures, and 1 table Funding: None Accepted Manuscript 2 Abstract Background: Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. Methods: We examined the functional connectivity of these specific regions associated with olfaction in order to isolate other brain regions that are associated with olfactory processing in schizophrenia. -
Decrements in Volume of Anterior Ventromedial Temporal Lobe and Olfactory Dysfunction in Schizophrenia
ORIGINAL ARTICLE Decrements in Volume of Anterior Ventromedial Temporal Lobe and Olfactory Dysfunction in Schizophrenia Bruce I. Turetsky, MD; Paul J. Moberg, PhD; David R. Roalf, BA; Steven E. Arnold, MD; Raquel E. Gur, MD, PhD Context: Patients with schizophrenia exhibit olfactory ing brain function or olfactory capacity. deficits, but it is unclear whether these represent a spe- cific abnormality. The link between olfactory impair- Main Outcome Measures: Gray matter volumes of ments and regional brain abnormalities has yet to be es- the left and right temporal poles and the perirhinal and tablished. entorhinal cortexes; olfactory threshold detection sen- sitivity and identification test scores; composite indexes Objectives: To determine whether patients with schizo- of verbal and spatial memory ability. phrenia exhibit volumetric deficits in the anterior ven- tromedial temporal lobe, the target for neuronal inputs Results: Patients had reduced volumes, relative to cra- from the olfactory bulb, and whether these are related nial size, in left (P=.003) and right (P=.01) perirhinal to olfactory performance deficits. and left (P=.002) and right (P=.002) entorhinal cor- texes, but not in the temporal pole. Perirhinal, but not Design: A cohort study of patients and healthy control entorhinal, cortical volume decrement was associated with subjects who underwent both 1-mm spoiled-gradient echo decreased olfactory threshold sensitivity. Neither re- magnetic resonance imaging and behavioral tests of ol- gion was associated with impaired memory perfor- faction and memory. mance. Setting: Schizophrenia Research Center at the Univer- Conclusions: Patients with schizophrenia have re- sity of Pennsylvania, Philadelphia. duced cortical volumes in brain regions that receive af- ferents directly from the olfactory bulb. -
AN EXPERIMENTAL INVESTIGATION of the CONNEXIONS of the OLFACTORY TRACTS in the MONKEY by MARGARET MEYER and A
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.12.4.274 on 1 November 1949. Downloaded from J. Neurol. Neurosurg. Psychiat., 1949, 12, 274. AN EXPERIMENTAL INVESTIGATION OF THE CONNEXIONS OF THE OLFACTORY TRACTS IN THE MONKEY BY MARGARET MEYER and A. C. ALLISON From the Department ofAnatomy, University of Oxford The great expansion of the-cerebral cortex which bilateral degeneration of olfactory terminals appar- has taken place in higher primates has brought ently passing through the anterior limb of the about a considerable displacement of structures on anterior commissure. The present study has been the base of the telencephalon, and the precise undertaken to map out the connexions of the comparison of certain areas in this part of the olfactory bulb in the monkey's brain as precisely brain with those in lower mammals has been a as possible with the same silver technique. matter of some difficulty. This is true particularly Material and Methods of the olfactory areas which lie on the orbital aspect guest. Protected by copyright. of the frontal lobe and the adjacent part of the Three macaque monkeys (Macaca mulatta) and two this immature Guinea baboons (Papio papio) were used. temporal lobe. Although part of the brain The operative technique was similar in all cases: under in primates has been subjected to detailed cyto- nembutal anesthesia and with the usual aseptic pre- architectural and myelo-architectural examinations cautions a large right frontal bone flap was reflected; (Rose, 1927b, 1928; Beck, 1934, and others), the the frontal lobe of the hemisphere was carefully retraced, areas directly related to olfaction have never been and the olfactory peduncle, lying on the ventral surface, clearly defined. -
Alterations of Hippocampal Acetylcholinesterase in Human
Alterations of H~ppocampal Acetylcholmesterase in Human Temporal bbe Epilepsy Robert C. Green, MD,X Howard W. Blume, MD, PhD,? Seth B. Kupferschmid, MS," and M-Marsel Mesulam, MD" Hippocampal sclerosis is the most common pathological finding associated with human temporal lobe epilepsy. His- tochemical study with acetylcholinesterase (AChE) staining was used to investigate 7 surgically resected temporal lobes with hippocampal sclerosis from patients with temporal lobe epilepsy. In all 7 specimens, an abnormal but consistent pattern of staining was noted. In the hilum of the dentate gyrus, AChE-rich polymorphic cells were relatively preserved in comparison to the pyramidal neurons. In Ammon's horn, AChE fibers were lost in regions corresponding to the pyramidal cell dropout. AChE fibers were also lost along the inner portion of the molecular layer of the dentate gyrus, yet they were preserved within the outer portions of the molecular layer. These findings provide additional evidence for the relative selectivity of hippocampal pathology in human temporal lobe epilepsy. Green RC, Blume HW, Kupferschmid SB, Mesulam M-M. Alterations of hippocampal acetylcholinesterasein human temporal lobe epilepsy. Ann Neurol 1989;26:347-351 A common form of human epilepsy is partial epilepsy and the resulting reorganization of neural connectivity of temporolimbic origin (TLE). Surgical resection of could contribute to the complex behavioral alterations the anterior temporal lobe is commonly used to treat observed in some patients with TLE Ell]. TLE patients whose seizures are intractable to anticon- The morphological alterations in hippocampal scle- vulsant medication 11-31. The resected tissue some- rosis have been described in great detail.