Pest Control for Cassava and Sweet Potato K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abacca Mosaic Virus
Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana, -
Review of Entomological Research on Sweet Potato in Ethiopia
Discourse Journal of Agriculture and Food Sciences www.resjournals.org/JAFS Vol. 1(5), pp. 83-92, May 2013 Review of Entomological Research on Sweet Potato in Ethiopia Ermias Shonga, Mesele Gemu, Tesfaye Tadesse and Elias Urage Awassa Agricultural Research Centre, Southern Agricultural Research Institute/SARI,P. O. Box 06. Awassa, SNNPR Email : [email protected] Abstract: Sweet potato is one of the most widely grown root crops in SSA, it is particularly important in countries surrounding the Great Lakes in Eastern and Central Africa, in Angola, Madagascar, Malawi and Mozambique in Southern Africa, Nigeria in West Africa and China being the largest producer worldwide. In Africa, it is grown predominantly in small plots by poorer farmers, and hence known as the “poor man’s food.” However it is among well known and established crops in Southern, Eastern and South western parts of Ethiopia. It is produced annually on over 53 thousand hectares of land with total production over 4,240 tons and average productivity of 8.0 tons per hectare. The production and productivity of the crop is extremely low as compared to other African and Asian countries where it gives more than 18t/ha. The lower productivity of sweet potato is mainly due to the existence of common, major, minor and sporadic insect pests. Sweet potato weevil is known as the most pit fall for production and productivity of the crop followed by viral diseases in the country. In addition, sweet potato butter fly is the most devastating pest in major sweet potato growing zones in the country but its occurrence is sporadic based on agro-ecological condition. -
Management of Sweet Potato Weevil, Cylas Formicarius: a World Review
® Fruit, Vegetable and Cereal Science and Biotechnology ©2012 Global Science Books Management of Sweet Potato Weevil, Cylas formicarius: A World Review Rajasekhara Rao Korada1* • Samir Kanti Naskar2 • Archana Mukherjee1 • Cheruvandasseri Arumughan Jayaprakas2 1 Regional Centre of Central Tuber Crops Research Institute, Bhubaneswar - 751 019, India 2 Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram - 695 017, India Corresponding author : * [email protected] ABSTRACT Sweet potato is infested by many insect pests. Sweet potato weevil (SPW) Cylas formicarius (Fab.) is the important insect pest throughout the world, wherever it is grown. The weevil is managed by a package of practices together called integrated pest management (IPM). In India, a few genotypes of sweet potato have shown durable resistance throughout 2006 to 2011. A new screening method of germplasm, volatile-assisted selection (VAS), was developed to identify resistance/susceptibility in sweet potato genotypes based on the volatile chemicals that are released. Transgenic sweet potato was not successful at the field level. Farmers in Asia practice intercropping of sweet potato with ginger, bhendi, taro and yams to reduce the incidence of pests as well as to conserve soil moisture. Entomopathogenic fungi and nematodes are used successfully to control C. formicarius in the West and Latin America. Female sex pheromone (Z)-3-dodecen-1-ol (E)-2-butenoate has changed the pest dynamics in the field and has become an important tool in C. formicarius IPM. It was used to monitor and trap male weevils, thus reducing the reproductive success of female weevils. A number of botanical pesticides are available and their use is limited in developed countries. -
Evaluation of the Performance of Improved Sweet Potato (Ipomoea Batatas L
Vol. 8(1), pp. 48-53, January 2014 DOI: 10.5897/AJEST2013. 1572 African Journal of Environmental Science and ISSN 1996-0786 © 2014 Academic Journals http://www.academicjournals.org/AJEST Technology Full Length Research Paper Evaluation of the performance of improved sweet potato (Ipomoea batatas L. LAM) varieties in Bayelsa State, Nigeria C. Wariboko* and I. A. Ogidi Department of Crop Production Technology, Niger Delta University, Bayelsa State, Nigeria. Accepted 11 December, 2013 This study was conducted using randomized complete block design with three replications each in two locations (Amassoma Wilberforce Island and Yenagoa, Bayelsa State) to evaluate the performance of improved sweet potato varieties (Ex-Igbariam, TIS 8164, 199004-2 and TIS 87/0087 including Kukunduku local) from March to June 2010. There were significant differences among varieties at both locations and across locations but locations and location x variety interaction were non-significant for sweet potato root yields. Ex-Igbariam and TIS 87/0087 had higher fresh root yields of 7.39 and 4.17 t ha-1, respectively, than others across locations. Regarding trailing characteristic (soil surface cover), too, varieties were significantly different at both locations and across locations but location and location x variety interaction were non-significant with Ex-Igbariam and TIS 87/0087 having best soil surface cover, and consequently, best weed suppressants. There was incidence of diseases but that of insects was low. For fresh root phenotypic characteristics, Ex-Igbariam and 199004-2 had yellow flesh, indicative of the presence of vitamin A precursor. Since Ex-Igbariam, TIS 87/0087 and a few others showed real promise in yield and carotene content, carrying out a multi-locational trial would, hopefully, enable selection of high - yielding varieties for commercial production to improve farmers’ yields and income in the different agro-ecological zones of Bayelsa State. -
Check-List of the Butterflies of the Kakamega Forest Nature Reserve in Western Kenya (Lepidoptera: Hesperioidea, Papilionoidea)
Nachr. entomol. Ver. Apollo, N. F. 25 (4): 161–174 (2004) 161 Check-list of the butterflies of the Kakamega Forest Nature Reserve in western Kenya (Lepidoptera: Hesperioidea, Papilionoidea) Lars Kühne, Steve C. Collins and Wanja Kinuthia1 Lars Kühne, Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstraße 43, D-10115 Berlin, Germany; email: [email protected] Steve C. Collins, African Butterfly Research Institute, P.O. Box 14308, Nairobi, Kenya Dr. Wanja Kinuthia, Department of Invertebrate Zoology, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya Abstract: All species of butterflies recorded from the Kaka- list it was clear that thorough investigation of scientific mega Forest N.R. in western Kenya are listed for the first collections can produce a very sound list of the occur- time. The check-list is based mainly on the collection of ring species in a relatively short time. The information A.B.R.I. (African Butterfly Research Institute, Nairobi). Furthermore records from the collection of the National density is frequently underestimated and collection data Museum of Kenya (Nairobi), the BIOTA-project and from offers a description of species diversity within a local literature were included in this list. In total 491 species or area, in particular with reference to rapid measurement 55 % of approximately 900 Kenyan species could be veri- of biodiversity (Trueman & Cranston 1997, Danks 1998, fied for the area. 31 species were not recorded before from Trojan 2000). Kenyan territory, 9 of them were described as new since the appearance of the book by Larsen (1996). The kind of list being produced here represents an information source for the total species diversity of the Checkliste der Tagfalter des Kakamega-Waldschutzge- Kakamega forest. -
Tropical Insect Chemical Ecology - Edi A
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world. -
EPPO Reporting Service
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 02 PARIS, 2012-02-01 CONTENTS _______________________________________________________________________ Pests & Diseases 2012/023 - First report of Drosophila suzukii in Austria 2012/024 - Situation of Drosophila suzukii in Switzerland in 2011 2012/025 - Traps baited with a mixture of wine and vinegar are more attractive to Drosophila suzukii 2012/026 - Incursion of Ceratitis capitata in Austria 2012/027 - Incursion of Ceratitis capitata in Ile-de-France (FR) 2012/028 - First report of Tuta absoluta in Slovenia 2012/029 - First report of Tuta absoluta in Panama 2012/030 - Situation of Tuta absoluta in France in 2011 2012/031 - First report of Aproceros leucopoda in Slovenia 2012/032 - First report of Phyllocnistis vitegenella in Switzerland 2012/033 - First reports of Aphis illinoisensis in Cyprus, Italy, Libya, Malta, Montenegro and Spain 2012/034 - First reports of Grapevine flavescence dorée phytoplasma and its vector Scaphoideus titanus in Croatia 2012/035 - Maize redness: addition to the EPPO Alert List 2012/036 - First report of Potato spindle tuber viroid in Croatia 2012/037 - Pests newly found or intercepted in the Netherlands 2012/038 - New data on quarantine pests and pests of the EPPO Alert List 2012/039 - First report of Pomacea insularum (island apple snail) in Spain 2012/040 - Recent publications on forestry CONTENTS ____________________________________________________________________________ -
Sweetpotato Major Pests.P65
Sweetpotato:Sweetpotato:Sweetpotato: MajorMajorMajor PPPests,ests,ests, Diseases,Diseases, andand NutritionalNutritional DisordersDisordersDisorders T. Ames, N.E.J.M. Smit, A.R. Braun, J.N. O’Sullivan, and L.G. Skoglund ISBN 92-9060-187-6 Sweetpotato: Major Pests, Diseases, and Nutritional Disorders T. Ames, N.E.J.M. Smit, A.R. Braun, J.N. O’Sullivan, and L.G. Skoglund International Potato Center (CIP) C O N T E N T S The International Potato Center (CIP) is a scientific, nonprofit institution dedicated to the increased and more sustainable use of potato, Page sweetpotato, and other roots and tubers in the Foreword vii developing world, and to the improved management of agricultural resources in the Acknowledgments viii Andes and other mountain areas. CIP is part of the global agricultural research network known as the Consultative Group on Introduction 1 International Agricultural Research (CGIAR). CGIAR Insect Pests of Sweetpotato and Their Management 3 International Potato Center Apartado 1558 Storage Root Feeders 4 Lima 12, Peru Sweetpotato Weevils (Cylas spp.) 4 West Indian Sweetpotato Weevil (Euscepes ISBN 92-9060-187-6 postfasciatus)10 Press run: 1000 Rough Sweetpotato Weevil (Blosyrus sp.) 12 Printed in Lima, Peru August, 1997 Clearwing Moth (Synanthedon spp.) 14 Peloropus Weevil (Peloropus batatae)14 Cover: Photo of chlorotic spots with and without purple margins induced White Grubs 15 by SPFMV (taken by S. Fuentes). Stemborers and Feeders 16 T. Ames, N.E.J.M. Smit, A.R. Braun, J.N. O’Sullivan, and L.G. Skoglund. Clearwing Moth (Synanthedon spp.) 16 1996. Sweetpotato: Major Pests, Diseases, and Nutritional Disorders. -
Insect Morphology and Systematics (Ento-131) - Notes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276175248 Insect Morphology and Systematics (Ento-131) - Notes Book · April 2010 CITATIONS READS 0 14,110 1 author: Cherukuri Sreenivasa Rao National Institute of Plant Health Management (NIPHM), Hyderabad, India 36 PUBLICATIONS 22 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Agricultural College, Jagtial View project ICAR-All India Network Project on Pesticide Residues View project All content following this page was uploaded by Cherukuri Sreenivasa Rao on 12 May 2015. The user has requested enhancement of the downloaded file. Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL EntoEnto----131131131131 Insect Morphology & Systematics Prepared by Dr. Cherukuri Sreenivasa Rao M.Sc.(Ag.), Ph.D.(IARI) Associate Professor & Head Department of Entomology Agricultural College Jagtial-505529 Karminagar District 1 Page 2010 Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL ENTO 131 INSECT MORPHOLOGY AND SYSTEMATICS Total Number of Theory Classes : 32 (32 Hours) Total Number of Practical Classes : 16 (40 Hours) Plan of course outline: Course Number : ENTO-131 Course Title : Insect Morphology and Systematics Credit Hours : 3(2+1) (Theory+Practicals) Course In-Charge : Dr. Cherukuri Sreenivasa Rao Associate Professor & Head Department of Entomology Agricultural College, JAGTIAL-505529 Karimanagar District, Andhra Pradesh Academic level of learners at entry : 10+2 Standard (Intermediate Level) Academic Calendar in which course offered : I Year B.Sc.(Ag.), I Semester Course Objectives: Theory: By the end of the course, the students will be able to understand the morphology of the insects, and taxonomic characters of important insects. -
Age-Related Sperm Production, Transfer, and Storage in The
Age-related sperm production, transfer, and storage in the sweet potato weevil, cylas formicarius (fabricius) (coleoptera: Curculionidae) Authors: Satoshi Hiroyoshi, Tsuguo Kohama, and Gadi V. P. Reddy The final publication is available at Springer via http://dx.doi.org/10.1007/s10905-016-9590-0. Hiroyoshi, Satoshi, Tsuguo Kohama, and Gadi V P Reddy. "Age-related sperm production, transfer, and storage in the sweet potato weevil, cylas formicarius (fabricius) (coleoptera: Curculionidae)." Journal of Insect Behavior (November 2016). DOI:https://dx.doi.org/10.1007/ s10905-016-9590-0. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Age-Related Sperm Production, Transfer, and Storage in the Sweet Potato Weevil, Cylas formicarius (Fabricius) (Coleoptera: Curculionidae) Satoshi Hiroyoshi1,2 & Tsuguo Kohama 1,3 & Gadi V. P. Reddy4 1 Okinawa Prefectural Fruit-fly Eradication Program Office, 123 Maji, Naha, Okinawa 902-0072, Japan 2 7-12-203 Kotobukiso, Nishikawacho, Itoman, Okinawa 901-0304, Japan 3 Okinawa Prefectural Agricultural Research Center, 820 Makabe, Itoman, Okinawa 901-0336, Japan 4 Western Triangle Ag Research Center, Montana State University, 9546 Old Shelby Rd., P. O. Box 656, Conrad, MT 59425, USA Abstract The relationship between sperm production, insemination rate, and sperm transfer were studied in the sweet potato weevil, Cylas formicarius. Older adult males retained more sperm in the testes-seminal vesicle complex (TSC) and thus more was ejaculated into females at first mating. Number of matings per day for males was relatively constant across different ages, and frequent mating resulted in a reduced amount of sperm transferred to females, especially in young males. -
Morphology of Male and Female Genitalia Across Acraea (Nymphalidae) Butterfly Species with and Without a Mating Plug
Morphology of male and female genitalia across Acraea (Nymphalidae) butterfly species with and without a mating plug Shannon L. Summers, Akito Y. Kawahara, & Ana P. S. Carvalho University of Florida Faculty Mentor, Akito Kawahara, Florida Museum of Natural History Abstract Male mating plugs have been used in many species to prevent female re-mating and sperm competition. One of the most extreme examples of a mating plug is the sphragis, which is a large, complex and externalized plug found only in butterflies. This structure is found in many species in the genus Acraea (Nymphalidae) and provides an opportunity for investigation of the effects of the sphragis on the morphology of the genitalia. This study aims to understand morphological interspecific variation in the genitalia of Acraea butterflies. Using museum collection specimens, abdomen dissections were conducted on 19 species of Acraea: 9 sphragis-bearing and 10 non-sphragis-bearing species. Genitalia were photographed and then measured using ImageJ software. Some distinguishing morphological features in the females were found. The most obvious difference is the larger and more externalized copulatory opening in sphragis-bearing species, with varying degrees of external projections. Females of the sphragis-bearing species also tend to have a shorter ductus (the structure that connects the copulatory opening with the sperm storage organ) than those without the sphragis. These differences may be due to a sexually antagonistic coevolution between the males and females, where the females evolve larger copulatory openings that are more difficult to plug, while males attempt to prevent re-mating with larger plugs (sphragis). Keywords: Lepidoptera, mate conflict, mating plug, sexual coevolution Introduction Sexual conflict occurs when there are different selection pressures on males and females. -
Acerata Classé Aujourd'hui Par J
Données du site de Dominique Bernaud www.acraea.com acerata Classé aujourd'hui par J. Pierre et D. Bernaud dans le sous- I Actinote genre : Et dans le clade : I5b nommé : acerata Descriptions subordonnées: sous-espèces, formes, aberrations et synonymes acerata 1874 Acraea acerata Hewitson Espèce ruandae 1911 Acraea vinidia ab. ruandae Grünberg Aberration burigensis 1913 Acraea acerata vinidia ab. burigensis Strand Aberration alluaudi 1927 Acraea acerata tenella f. indiv. alluaudi Le Cerf Aberration pullula 1911 Acraea pullula Grünberg Synonyme vinidia 1874 Acraea vinidia Hewitson Synonyme abbottii 1892 Acraea abbottii Holland Synonyme tenella 1891 Acraea (Telchinia) tenella Rogenhofer Synonyme diavina 1904 Acraea vinidia subsp. diavina Suffert Synonyme brahmsi 1904 Acraea brahmsi Suffert Synonyme hoursti 1927 Acraea acerata ssp. hoursti Le Cerf Synonyme Acraea (Actinote) acerata Hewitson, 1874 Acraea acerata, Ann. Mag. Nat. Hist. (4), 13: 381 Ann. Mag. Nat. Hist. (4), 13: 381 Localité type : Ghana: Between Mansu and the river Prah. Classification actuelle : espèce : acerata (Sous-espèce : acerata) du clade : I5b Heron est un des premiers auteurs (1909) à rattacher vinidia à acerata en considèrant qu'il s'agit d'une simple forme. Eltringham (1912) classe cette espèce dans son groupe XIV. Citations dans la littérature et localités relevées : - Hewitson, 1875 : Exot. Butt. 5: 27, t. 7, f. 44 (1875). Titre : Exotic Butterflies, 1855-1874. Cité comme Acraea acerata. Cette source délivre la répartition suivante : West Africa - Plötz, 1880 : Ent. Zeit.: 189 (1880). Titre : Verzeichniss der von Professor Dr. R. Buchholz in Westafrica gesammelten Schmetterlinge. Cité comme Acraea acerata. Cette source délivre la répartition suivante : Aburi - Sharpe, 1894 : Proc.