Dna Preservation Under Extreme Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Dna Preservation Under Extreme Conditions The Pennsylvania State University The Graduate School Eberly College of Science DNA PRESERVATION UNDER EXTREME CONDITIONS A Dissertation in Biology and Astrobiology by Kristine Korzow Richter © 2014 Kristine Korzow Richter Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2014 The dissertation of Kristine Korzow Richter was reviewed and approved* by the following: Beth Shapiro Associate Professor, Ecology and Evolutionary Biology, UC Santa Cruz Dissertation Co-Adviser Jennifer L. Macalady Associate Professor of Geosciences Dissertation Co-Adviser, Co-Chair of Committee James H. Marden Professor of Biology Co-Chair of Committee Stephen W. Schaeffer Professor of Biology Christopher House Professor of Geosciences, Director PSARC, Director PA Space Grant Consortium Douglas R. Cavener Professor of Biology Head of Department of Biology *Signatures are on file in the Graduate School ii Abstract Over the past thirty years the field of ancient DNA (aDNA) has expanded from looking at short DNA sequences from historic animals in museums to reconstructing entire genomes of extinct organisms. The preservation conditions of DNA in bone are well researched; however, ancient DNA is found in more places than in bone. The research herein discusses several of these other environments: microbial DNA from cells in the deep subsurface, microbial DNA trapped in salt crystals, and DNA transferred to objects during use. In addition, extreme conditions of preservation in bones are briefly addressed. Possible recovery of DNA biomarkers of a 34.5 million year old hydrothermal system indicates that ancient environments may leave traces for millennia in microbial communities. Discovery of Native American DNA preserved in moccasins and cordage for 700 years leads to a potentially large source of information on the genetic composition of ancient populations. Development and analysis of the Depressed Rate Test (DRT) shows the potential for authenticating ancient claims using sequence data only for when isotopic dating is unavailable. Finally, unsuccessful recovery of DNA using tradition methods from bone samples from species living 100,000-200,000 years ago addresses the limitations of traditional methods. However, new methods may allow DNA recovery from these samples. Examining DNA preservation under different conditions helps to inform sampling strategies, analytical techniques, and authentication of DNA data from extreme environments here on Earth and on other planets or moons in the Solar System. iii Table of Contents List of Figures ............................................................................................................................................. vii List of Tables ................................................................................................................................................ x Acknowledgments ....................................................................................................................................... xii Chapter 1: Introduction ................................................................................................................................ 1 DNA as a window to the past .......................................................................................................... 2 Concerns with aDNA research ......................................................................................................... 4 DNA degradation through time .......................................................................................... 4 Co-extracted compounds inhibit reactions .......................................................................... 8 DNA contamination ............................................................................................................ 9 Characterizing DNA under extreme conditions ............................................................................. 13 Determining the authenticity of geologically ancient DNA ............................................. 14 Detecting biomarkers from an ancient hydrothermal system ........................................... 15 Recovering aDNA from touched objects .......................................................................... 18 The limit of recoverable DNA in bones ............................................................................ 19 Ancient DNA and astrobiology implications .................................................................... 20 References ...................................................................................................................................... 23 Chapter 2: A computational test of the authenticity of geologically ancient DNA .................................... 41 Introduction .................................................................................................................................... 42 Materials and Methods ................................................................................................................... 46 Data Sets ........................................................................................................................... 46 Analysis ............................................................................................................................ 50 Results ............................................................................................................................................ 52 Simulated Data .................................................................................................................. 52 Horse Data ........................................................................................................................ 55 Bacterial and Archaeal ‘Test’ Data .................................................................................. 55 Discussion ...................................................................................................................................... 56 References ...................................................................................................................................... 60 Chapter 3: Biosignatures of thermophilic microorganisms from a temporary hydrothermal system 34.5 million years ago in the Chesapeake Bay Impact Structure ................................................................ 65 Introduction .................................................................................................................................... 66 Impact craters and biomarkers .......................................................................................... 66 Chesapeake Bay impact structure ..................................................................................... 67 Materials and Methods ................................................................................................................... 70 Coring and contamination control .................................................................................... 70 DNA extraction ................................................................................................................. 70 PCR amplification, library preparation and sequencing ................................................... 72 Data processing and analysis ............................................................................................ 74 Results ............................................................................................................................................ 76 DNA extraction, amplification and library preparation .................................................... 76 Sequencing results and metagenomic composition .......................................................... 77 Taxonomy analysis ........................................................................................................... 78 Genes Indicative of Metabolic Potential ........................................................................... 85 Discussion ...................................................................................................................................... 87 Low biomass samples – difficulties resulting in high fragmentation ............................... 87 Community composition and biomarker identification .................................................... 88 Biomarkers of an ancient hydrothermal system ................................................................ 90 iv Astrobiology and DNA biomarkers .................................................................................. 92 References ...................................................................................................................................... 93 Chapter 4: Identifying human haplotypes from DNA transferred from objects during use ..................... 102 Introduction .................................................................................................................................. 103 DNA transferred to objects ............................................................................................. 103 Political and cultural challenges of working with human remains ................................. 103 Challenges of DNA recovery from transferred objects .................................................. 104 Cave Site ......................................................................................................................... 105 Materials and Methods ................................................................................................................
Recommended publications
  • Horseshoe-Based Bayesian Nonparametric Estimation of Effective Population Size Trajectories
    Received: 13 August 2018 Accepted: 9 July 2019 DOI: 10.1111/biom.13276 BIOMETRIC METHODOLOGY Horseshoe-based Bayesian nonparametric estimation of effective population size trajectories James R. Faulkner1,2 Andrew F. Magee3 Beth Shapiro4,5 Vladimir N. Minin6 1Quantitative Ecology and Resource Abstract Management, University of Washington, Seattle, Washington Phylodynamics is an area of population genetics that uses genetic sequence data to 2Fish Ecology Division, Northwest Fisheries estimate past population dynamics. Modern state-of-the-art Bayesian nonparamet- Science Center, National Marine Fisheries ric methods for recovering population size trajectories of unknown form use either Service, NOAA, Seattle, Washington change-point models or Gaussian process priors. Change-point models suffer from 3Department of Biology, University of Washington, Seattle, Washington computational issues when the number of change-points is unknown and needs to 4Ecology and Evolutionary Biology be estimated. Gaussian process-based methods lack local adaptivity and cannot accu- Department and Genomics Institute, rately recover trajectories that exhibit features such as abrupt changes in trend or vary- University of California Santa Cruz, Santa Cruz, California ing levels of smoothness. We propose a novel, locally adaptive approach to Bayesian 5Howard Hughes Medical Institute, nonparametric phylodynamic inference that has the flexibility to accommodate a University of California Santa Cruz, large class of functional behaviors. Local adaptivity results from modeling the log- Santa Cruz, California transformed effective population size a priori as a horseshoe Markov random field, 6Department of Statistics, University of arecentlyproposedstatisticalmodelthatblendstogetherthebestpropertiesofthe California Irvine, Irvine, California change-point and Gaussian process modeling paradigms. We use simulated data to Correspondence assess model performance, and find that our proposed method results in reduced bias Vladimir N.
    [Show full text]
  • Microbial Community Responses to Modern Environmental
    Originally published as: Genderjahn, S., Alawi, M., Wagner, D., Schüller, I., Wanke, A., Mangelsdorf, K. (2018): Microbial Community Responses to Modern Environmental and Past Climatic Conditions in Omongwa Pan, Western Kalahari: A Paired 16S rRNA Gene Profiling and Lipid Biomarker Approach. - Journal of Geophysical Research, 123, 4, pp. 1333—1351. DOI: http://doi.org/10.1002/2017JG004098 Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Microbial Community Responses to Modern Environmental 10.1002/2017JG004098 and Past Climatic Conditions in Omongwa Pan, Western Key Points: Kalahari: A Paired 16S rRNA Gene Profiling • Kalahari pan structures possess high potential to act as geoarchives for and Lipid Biomarker Approach preserved biomolecules in arid to semiarid regions S. Genderjahn1 , M. Alawi1 , D. Wagner1,2 , I. Schüller3, A. Wanke4, and K. Mangelsdorf1 • Past microbial biomarker suggests changing climatic conditions during 1GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany, 2Institute of Earth and the Late Glacial to Holocene transition 3 in the western Kalahari Environmental Science, University of Potsdam, Potsdam, Germany, Marine Research Department, Senckenberg am Meer, 4 • Based on taxonomic investigations, Wilhelmshaven, Germany, Department of Geology, University of Namibia, Windhoek, Namibia the abundance and diversity of the microbial community in the pan is related to near-surface processes Abstract Due to a lack of well-preserved terrestrial climate archives, paleoclimate studies are sparse in southwestern Africa. Because there are no perennial lacustrine systems in this region, this study relies on a Supporting Information: saline pan as an archive for climate information in the western Kalahari (Namibia). Molecular biological and • Supporting Information S1 biogeochemical analyses were combined to examine the response of indigenous microbial communities to modern and past climate-induced environmental conditions.
    [Show full text]
  • Delft University of Technology Halococcoides Cellulosivorans Gen
    Delft University of Technology Halococcoides cellulosivorans gen. nov., sp. nov., an extremely halophilic cellulose- utilizing haloarchaeon from hypersaline lakes Sorokin, Dimitry Y.; Khijniak, Tatiana V.; Elcheninov, Alexander G.; Toshchakov, Stepan V.; Kostrikina, Nadezhda A.; Bale, Nicole J.; Sinninghe Damsté, Jaap S.; Kublanov, Ilya V. DOI 10.1099/ijsem.0.003312 Publication date 2019 Document Version Accepted author manuscript Published in International Journal of Systematic and Evolutionary Microbiology Citation (APA) Sorokin, D. Y., Khijniak, T. V., Elcheninov, A. G., Toshchakov, S. V., Kostrikina, N. A., Bale, N. J., Sinninghe Damsté, J. S., & Kublanov, I. V. (2019). Halococcoides cellulosivorans gen. nov., sp. nov., an extremely halophilic cellulose-utilizing haloarchaeon from hypersaline lakes. International Journal of Systematic and Evolutionary Microbiology, 69(5), 1327-1335. [003312]. https://doi.org/10.1099/ijsem.0.003312 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. International Journal of Systematic and Evolutionary Microbiology Halococcoides cellulosivorans gen.
    [Show full text]
  • Microbial Diversity of Non-Flooded High Temperature Petroleum Reservoir in South of Iran
    Archive of SID Biological Journal of Microorganism th 8 Year, Vol. 8, No. 32, Winter 2020 Received: November 18, 2018/ Accepted: May 21, 2019. Page: 15-231- 8 Microbial Diversity of Non-flooded High Temperature Petroleum Reservoir in South of Iran Mohsen Pournia Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran, [email protected] Nima Bahador * Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran, [email protected] Meisam Tabatabaei Biofuel Research Team (BRTeam), Karaj, Iran, [email protected] Reza Azarbayjani Molecular bank, Iranian Biological Resource Center, ACECR, Karaj, Iran, [email protected] Ghassem Hosseni Salekdeh Department of Biology, Agricultural Biotechnology Research Institute, Karaj, Iran, [email protected] Abstract Introduction: Although bacteria and archaea are able to grow and adapted to the petrol reservoirs during several years, there are no results from microbial diversity of oilfields with high temperature in Iran. Hence, the present study tried to identify microbial community in non-water flooding Zeilaei (ZZ) oil reservoir. Materials and methods: In this study, for the first time, non-water flooded high temperature Zeilaei oilfield was analyzed for its microbial community based on next generation sequencing of 16S rRNA genes. Results: The results obtained from this study indicated that the most abundant bacterial community belonged to phylum of Firmicutes (Bacilli ) and Thermotoga, while other phyla (Proteobacteria , Actinobacteria and Synergistetes ) were much less abundant. Bacillus subtilis , B. licheniformis , Petrotoga mobilis , P. miotherma, Fervidobacterium pennivorans , and Thermotoga subterranea were observed with high frequency. In addition, the most abundant archaea were Methanothermobacter thermautotrophicus . Discussion and conclusion: Although there are many reports on the microbial community of oil filed reservoirs, this is the first report of large quantities of Bacillus spp.
    [Show full text]
  • Division Or Research Center Department Faculty Description
    Division or Research Center Include in 2019 Department Faculty Description Sust. Research Reason for excluding (Y/N/M) Anderson's current research incorporates computer technologies to engage questions Y about land use and social interventions into the environment. His recent work, Silicon Monuments - in collaboration with the Silicon Valley Toxics Coalition - uses augmented reality software on hand-held devices to create a site-specific, multimedia documentary about toxic Superfund sites in Silicon Valley. Viewers can explore the sites and interact with the documentary, which reveals hidden environmental damage and its health and social costs. Website link: http://arts.ucsc.edu/faculty/eanderson/ Arts Art Elliott W. Anderson A. Laurie Palmer’s work is concerned with material explorations of matter’s active Y nature as it asserts itself on different scales and in different speeds, and with collaborating on strategic actions in the contexts of social and environmental justice. These two directions sometimes run parallel and sometimes converge, taking form as sculpture, installation, writing, and public projects. Collaboration, with other humans and with non-humans, is a central ethic in her practice. Website link: http: //alauriepalmer.net/ Arts Art Laurie Palmer Contemporary art and visual culture, investigating in particular the diverse ways that Y artists and activists have negotiated crises associated with globalization, including the emerging conjunction of post-9/11 political sovereignty and statelessness, the hauntings of the colonial past, and the growing biopolitical conflicts around ecology and climate change. Most recently Demos is the author of Decolonizing Nature: Contemporary Art and the Politics of Ecology (Sternberg Press, 2016), which investigates how concern for ecological crisis has entered the field of contemporary art and visual culture in recent years, and considers art and visual cultural practices globally.
    [Show full text]
  • Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2*
    J. Microbiol. Biotechnol. (2013), 23(12), 1645–1653 http://dx.doi.org/10.4014/jmb.1308.08015 Research Article Minireview jmb Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2* 1Department of Bio-Food Materials, College of Medical and Life Sciences, Silla University, Busan 617-736, Republic of Korea 2Research Center for Extremophiles, Silla University, Busan 617-736, Republic of Korea Received: August 8, 2013 Revised: September 6, 2013 Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular Accepted: September 9, 2013 biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are First published online being isolated and identified from high salt-fermented foods consumed by humans, and it has September 10, 2013 been found that various types of halophilic archaea exist in food products by culture- *Corresponding author independent molecular biological methods. In addition, even if the numbers are not quite Phone: +82-51-999-6308; high, DNAs of various halophilic archaea are being detected in human intestines and much Fax: +82-51-999-5458; interest is given to their possible roles. This review aims to summarize the types and E-mail: [email protected] characteristics of halophilic archaea reported to be present in foods and human intestines and pISSN 1017-7825, eISSN 1738-8872 to discuss their application as well. Copyright© 2013 by The Korean Society for Microbiology Keywords: Halophilic archaea, fermented foods, microbiome, human intestine, Halorubrum and Biotechnology Introduction Depending on the optimal salt concentration needed for the growth of strains, halophilic microorganisms can be Archaea refer to prokaryotes that used to be categorized classified as halotolerant (~0.3 M), halophilic (0.2~2.0 M), as archaeabacteria, a type of bacteria, in the past.
    [Show full text]
  • Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus Dombrowskii and Other Extremely Halophilic Archaebacteria
    ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2007.0234 Special Paper Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria Sergiu Fendrihan,1 Attila Bérces,2 Helmut Lammer,3 Maurizio Musso,4 György Rontó,2 Tatjana K. Polacsek,1 Anita Holzinger,1 Christoph Kolb,3,5 and Helga Stan-Lotter1 Abstract The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibil- ity of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloar- chaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was ex- posed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated Ն 2 D37 (dose of 37 % survival) for Hcc. dombrowskii was 400 kJ/m . However, exposure of cells to UV flux while 2 in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m ); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica.
    [Show full text]
  • Tratamiento Biológico Aerobio Para Aguas Residuales Con Elevada Conductividad Y Concentración De Fenoles
    PROGRAMA DE DOCTORADO EN INGENIERÍA Y PRODUCCIÓN INDUSTRIAL Tratamiento biológico aerobio para aguas residuales con elevada conductividad y concentración de fenoles TESIS DOCTORAL Presentada por: Eva Ferrer Polonio Dirigida por: Dr. José Antonio Mendoza Roca Dra. Alicia Iborra Clar Valencia Mayo 2017 AGRADECIMIENTOS La sabiduría popular, a la cual recurro muchas veces, dice: “Es de bien nacido ser agradecido”… pues sigamos su consejo, aquí van los míos. En primer lugar quiero agradecer a mis directores la confianza depositada en mí y a Depuración de Aguas del Mediterráneo, especialmente a Laura Pastor y Silvia Doñate, la dedicación e ilusión puestas en el proyecto. Durante el desarrollo de esta Tesis Doctoral he tenido la inmensa suerte de contar con un grupo de personas de las que he aprendido muchísimo y que de forma desinteresada han colaborado en este trabajo, enriqueciéndolo enormemente. Gracias al Dr. Jaime Primo Millo, del Instituto Agroforestal Mediterráneo de la Universitat Politècnica de València, por el asesoramiento recibido y por permitirme utilizar los equipos de cromatografía de sus instalaciones. También quiero dar un agradecimiento especial a una de las personas de su equipo de investigación, ya que sin su ayuda, tiempo y enseñanzas en los primeros análisis realizados con esta técnica, no me hubiera sido posible llevar a cabo esta tarea con tanta facilidad…gracias Dra. Nuria Cabedo Escrig. Otra de las personas con las que he tenido la suerte de colaborar ha sido la Dra. Blanca Pérez Úz, del Departamento de Microbiología III de la Facultad de Ciencias Biológicas de la Universidad Complutense de Madrid. Blanca, aunque no nos conocemos personalmente, tu profesionalidad y dedicación han permitido superar las barreras de la distancia…gracias.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
    Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • SFU Thesis Template Files
    Reconstructing Northern Fur Seal Population Diversity through Ancient and Modern DNA Data by Cara Leanne Halseth B.Sc., University of Northern British Columbia, 2011 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the Department of Archaeology Faculty of Environment © Cara Leanne Halseth 2015 SIMON FRASER UNIVERSITY Summer 2015 Approval Name: Cara Leanne Halseth Degree: Master of Arts Title: Reconstructing Northern Fur Seal Population Diversity through Ancient and Modern DNA Data Examining Committee: Chair: Catherine D‟Andrea Professor Dongya Yang Senior Supervisor Professor Deborah C. Merrett Supervisor Adjunct Professor Iain McKechnie External Examiner SSHRC Postdoctoral Fellowship Dept of Anthropology University of Oregon Date Defended/Approved: July 2, 2015 ii Abstract Archaeological and historic evidence suggests that northern fur seal (Callorhinus ursinus) has undergone several population and distribution changes (including commercial sealing) potentially resulting in a loss of genetic diversity and population structure. This study analyzes 36 unpublished mtDNA sequences from archaeological sites 1900-150 BP along the Pacific Northwest Coast from Moss et al. (2006) as well as published data (primarily Pinsky et al. [2010]) to investigate this species‟ genetic diversity and population genetics in the past. The D-loop data shows high nucleotide and haplotype diversity, with continuity of two separate subdivisions (haplogroups) through time. Nucleotide mismatch analysis suggests population expansion in both ancient and modern data. AMOVA analysis (FST and ΦST) reveals some „structure‟ detectable between several archaeological sites. While the data reviewed here did not reveal dramatic patterning, the AMOVA analysis does identify several significant FST values, indicating some level of ancient population „structure‟, which deserves future study.
    [Show full text]