Redalyc.Decoding the Song of the Pied Butcherbird: an Initial Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Absolute and Relative Pitch Processing in the Human Brain: Neural and Behavioral Evidence
bioRxiv preprint doi: https://doi.org/10.1101/526541; this version posted March 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Absolute and relative pitch processing in the human brain: Neural and behavioral evidence Simon Leipold a, Christian Brauchli a, Marielle Greber a, Lutz Jäncke a, b, c Author Affiliations a Division Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland b University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland c Department of Special Education, King Abdulaziz University, 21589 Jeddah, Kingdom of Saudi Arabia Corresponding Authors Simon Leipold Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Lutz Jäncke Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Keywords Absolute Pitch, Multivariate Pattern Analysis, Neural Efficiency, Pitch Processing, fMRI Acknowledgements This work was supported by the Swiss National Science Foundation (SNSF), grant no. 320030_163149 to LJ. We thank our research interns Anna Speckert, Chantal Oderbolz, Désirée Yamada, Fabian Demuth, Florence Bernays, Joëlle Albrecht, Kathrin Baur, Laura Keller, Marilena Wilding, Melek Haçan, Nicole Hedinger, Pascal Misala, Petra Meier, Sarah Appenzeller, Tenzin Dotschung, Valerie Hungerbühler, Vanessa Vallesi, -
TUNING JUDGMENTS 1 1 2 3 4 Does Tuning Influence Aesthetic
TUNING JUDGMENTS 1 1 2 3 4 5 Does Tuning Influence Aesthetic Judgments of Music? Investigating the Generalizability 6 of Absolute Intonation Ability 7 8 Stephen C. Van Hedger 1 2 and Huda Khudhair 1 9 10 11 1 Department of Psychology, Huron University College at Western 12 2 Department of Psychology & Brain and Mind Institute, University of Western Ontario 13 14 15 16 17 18 19 20 Author Note 21 Word Count (Main Body): 7,535 22 Number of Tables: 2 23 Number of Figures: 2 24 We have no known conflict of interests to disclose. 25 All materials and data associated with this manuscript can be accessed via Open Science 26 Framework (https://osf.io/zjcvd/) 27 Correspondences should be sent to: 28 Stephen C. Van Hedger, Department of Psychology, Huron University College at Western: 1349 29 Western Road, London, ON, N6G 1H3 Canada [email protected] 30 31 32 TUNING JUDGMENTS 2 1 Abstract 2 Listening to music is an enjoyable activity for most individuals, yet the musical factors that relate 3 to aesthetic experiences are not completely understood. In the present paper, we investigate 4 whether the absolute tuning of music implicitly influences listener evaluations of music, as well 5 as whether listeners can explicitly categorize musical sounds as “in tune” versus “out of tune” 6 based on conventional tuning standards. In Experiment 1, participants rated unfamiliar musical 7 excerpts, which were either tuned conventionally or unconventionally, in terms of liking, interest, 8 and unusualness. In Experiment 2, participants were asked to explicitly judge whether several 9 types of musical sounds (isolated notes, chords, scales, and short excerpts) were “in tune” or 10 “out of tune.” The results suggest that the absolute tuning of music has no influence on listener 11 evaluations of music (Experiment 1), and these null results are likely caused, in part, by an 12 inability for listeners to explicitly differentiate in-tune from out-of-tune musical excerpts 13 (Experiment 2). -
Chapter 5 Bioacoustics Approaches in Biodiversity Inventories
Chapter 5 Bioacoustics approaches in biodiversity inventories by Martin K. Obrist Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland Email: [email protected] Gianni Pavan Centro Interdisciplinare di Bioacustica e Ricerche Ambientali Dipartimento di Biologia Animale, Università di Pavia Via Taramelli 24, 27100 Pavia, Italy Email: [email protected] Jérôme Sueur Muséum national d'Histoire naturelle, Département Systématique et Evolution UMR 7205 CNRS OSEB, 45 rue Buffon, 75005 Paris, France Email: [email protected] Klaus Riede Zoologisches Forschungsmuseum Alexander Koenig Adenauerallee 160, 53113 Bonn, Germany Email: [email protected] Diego Llusia Fonoteca Zoológica, Museo Nacional de Ciencias Naturales (CSIC) José Gutierrez Abascal 2, 28006 Madrid, Spain Email: [email protected] Rafael Márquez Fonoteca Zoológica, Museo Nacional de Ciencias Naturales (CSIC) José Gutierrez Abascal 2, 28006 Madrid, Spain Email: [email protected] 68 Abstract Acoustic emissions of animals serve communicative purposes and most often contain species-specific and individual information exploitable to listeners, rendering bioacoustics predestined for biodiversity monitoring in visually inaccessible habitats. The physics of sound define the corner stones of this communicative framework, which is employed by animal groups from insects to mammals, of which examples of vocalisations are presented. Recording bioacoustic signals allows reproducible identification and documentation of species’ occurrences, but it requires technical prerequisites and behavioural precautions that are summarized. The storing, visualizing and analysing of sound recordings is illustrated and major software tools are shortly outlined. Finally, different approaches to bioacoustic monitoring are described, tips for setting up an acoustic inventory are compiled and a key for procedural advancement and a checklist to successful recording are given. -
Recent Publications in Music 2010
Fontes Artis Musicae, Vol. 57/4 (2010) RECENT PUBLICATIONS IN MUSIC R1 RECENT PUBLICATIONS IN MUSIC 2010 Compiled and edited by Geraldine E. Ostrove On behalf of the Pour le compte de Im Auftrag der International l'Association Internationale Internationalen Vereinigung Association of Music des Bibliothèques, Archives der Musikbibliotheken, Libraries Archives and et Centres de Musikarchive und Documentation Centres Documentation Musicaux Musikdokumentationszentren This list contains citations to literature about music in print and other media, emphasizing reference materials and works of research interest that appeared in 2009. It includes titles of new journals, but no journal articles or excerpts from compilations. Reporters who contribute regularly provide citations mainly or only from the year preceding the year this list is published in Fontes Artis Musicae. However, reporters may also submit retrospective lists cumulating publications from up to the previous five years. In the hope that geographic coverage of this list can be expanded, the compiler welcomes inquiries from bibliographers in countries not presently represented. CONTRIBUTORS Austria: Thomas Leibnitz New Zealand: Marilyn Portman Belgium: Johan Eeckeloo Nigeria: Santie De Jongh China, Hong Kong, Taiwan: Katie Lai Russia: Lyudmila Dedyukina Estonia: Katre Rissalu Senegal: Santie De Jongh Finland: Tuomas Tyyri South Africa: Santie De Jongh Germany: Susanne Hein Spain: José Ignacio Cano, Maria José Greece: Alexandros Charkiolakis González Ribot Hungary: Szepesi Zsuzsanna Tanzania: Santie De Jongh Iceland: Bryndis Vilbergsdóttir Turkey: Paul Alister Whitehead, Senem Ireland: Roy Stanley Acar Italy: Federica Biancheri United Kingdom: Rupert Ridgewell Japan: Sekine Toshiko United States: Karen Little, Liza Vick. The Netherlands: Joost van Gemert With thanks for assistance with translations and transcriptions to Kersti Blumenthal, Irina Kirchik, Everett Larsen and Thompson A. -
Mouse Breeding Colony Management 1. Mouse Reproduction A. General Mouse Information I. the Average Mouse Lives Approximately
Mouse Breeding Colony Management 1. Mouse Reproduction A. General Mouse Information i. The average mouse lives approximately 2.5 years; however, the reproductive life span of mice is significantly shorter at 7-8 months. ii. Most mice reach sexual maturity (males and females) at 4-7 weeks of age. Younger mice generally produce smaller litters and therefore are not typically mated until they reach 6-8 weeks, of age. Mice that have been housed alone or in same-sex pairs will usually not breed successfully if they are older than 6-8 months. iii. The mouse estrous cycle is 4-5 days in length. Mice cycle continuously throughout the year (non-seasonal breeders). Female mice are only receptive to males when they are in estrus. Mating typically occurs at night (lights off). Ovulation occurs 8-12 hours after the onset of estrous. iv. If fertilization occurs, fetuses can be palpated by day 14. v. Gestation in mice is typically 19-21 days (strain dependent). vi. Parturition in mice may last 1-3 hours and frequently occurs at night. Females will go into estrus within 24 hours of parturition and are sexually receptive during this time. vii. Litter size varies among strains, but averages 4-12 pups. Inbred mice tend to have smaller litters than outbred mice. viii. Mice are typically weaned at 21-28 days or at 10g of body weight. The Purdue Animal Care and Use Committee requires that mouse pups be weaned at 21 days unless PACUC approval is given on an approved animal use protocol. See Policy attached. -
The Birds of Pooh Corner Bushland Reserve Species Recorded 2005
The Birds of Pooh Megapodes Ibis & Spoonbills Cockatoos & Corellas (cont'd). Australian Brush-turkey Australian White Ibis Yellow-tailed Black- Corner Bushland Pheasants & Quail Straw-necked Ibis Cockatoo Reserve Brown Quail Eagles, Kites, Goshawks & Parrots, Lorikeets & Rosellas Species recorded Ducks, Geese & Swans Osprey Rainbow Lorikeet Australian Wood Duck Black-shouldered Kite Scaly-breasted Lorikeet 2005 - Nov. 2014 Pacific Black Duck Pacific Baza Little Lorikeet Pigeons & Doves Collared Sparrowhawk Australian King-Parrot Summary: Brown Cuckoo-Dove Whistling Kite Pale-headed Rosella 127 species total - Common Bronzewing Black Kite Cuckoos (a) 118 species recorded by Crested Pigeon Brown Goshawk Australian Koel formal survey 2012-14 Peaceful Dove Grey Goshawk Pheasant Coucal (b) 6 species recorded since Bar-shouldered Dove Wedge-tailed Eagle Channel-billed Cuckoo survey began but not on Rock Dove White-bellied Sea-eagle(Px1) Horsfield's Bronze-Cuckoo formal survey Frogmouths Falcons Shining Bronze-Cuckoo (c) 3 species recorded prior to Tawny Frogmouth Australian Hobby Little Bronze-Cuckoo and not yet since Birdlife Owlet-Nightjars Crakes, Rails & Swamphens Fan-tailed Cuckoo Southern Queensland survey Australian Owlet-nightjar Purple Swamphen Brush Cuckoo began in Sept. 2012. Swifts & Swiftlets Dusky Moorhen Hawk-Owls White-throated Needletail Plovers, Dotterels & Lapwings Powerful Owl (WACC pre- Legend: Cormorants & Shags Masked Lapwing survey) Px1= private once only record -ie Little Black Cormorant Snipe, Sandpipers et al Masked -
Common Birds in Tilligerry Habitat
Common Birds in Tilligerry Habitat Dedicated bird enthusiasts have kindly contributed to this sequence of 106 bird species spotted in the habitat over the last few years Kookaburra Red-browed Finch Black-faced Cuckoo- shrike Magpie-lark Tawny Frogmouth Noisy Miner Spotted Dove [1] Crested Pigeon Australian Raven Olive-backed Oriole Whistling Kite Grey Butcherbird Pied Butcherbird Australian Magpie Noisy Friarbird Galah Long-billed Corella Eastern Rosella Yellow-tailed black Rainbow Lorikeet Scaly-breasted Lorikeet Cockatoo Tawny Frogmouth c Noeline Karlson [1] ( ) Common Birds in Tilligerry Habitat Variegated Fairy- Yellow Faced Superb Fairy-wren White Cheeked Scarlet Honeyeater Blue-faced Honeyeater wren Honeyeater Honeyeater White-throated Brown Gerygone Brown Thornbill Yellow Thornbill Eastern Yellow Robin Silvereye Gerygone White-browed Eastern Spinebill [2] Spotted Pardalote Grey Fantail Little Wattlebird Red Wattlebird Scrubwren Willie Wagtail Eastern Whipbird Welcome Swallow Leaden Flycatcher Golden Whistler Rufous Whistler Eastern Spinebill c Noeline Karlson [2] ( ) Common Sea and shore birds Silver Gull White-necked Heron Little Black Australian White Ibis Masked Lapwing Crested Tern Cormorant Little Pied Cormorant White-bellied Sea-Eagle [3] Pelican White-faced Heron Uncommon Sea and shore birds Caspian Tern Pied Cormorant White-necked Heron Great Egret Little Egret Great Cormorant Striated Heron Intermediate Egret [3] White-bellied Sea-Eagle (c) Noeline Karlson Uncommon Birds in Tilligerry Habitat Grey Goshawk Australian Hobby -
The Musical Influences of Nature: Electronic Composition and Ornithomusicology
University of Huddersfield Repository McGarry, Peter The Musical Influences of Nature: Electronic Composition and Ornithomusicology Original Citation McGarry, Peter (2020) The Musical Influences of Nature: Electronic Composition and Ornithomusicology. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/35489/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Peter McGarry U1261720 The Musical Influences of Nature: 1 Electronic Music and Ornithomusicology University Of Huddersfield The School of Music, Humanities and Media Masters Thesis Peter McGarry The Musical Influences of Nature: Electronic Composition and Ornithomusicology Supervisor: Dr. Geoffery Cox Submitted: 23/12/2020 Peter McGarry U1261720 The Musical Influences of Nature: 2 Electronic Music and Ornithomusicology Abstract Zoomusicology is the study of animal sounds through a musical lens and is leading to a new era of sonic ideas and musical compositions. -
Behavioral Roles of Oxytocin and Vasopressin
Chapter 3 Behavioral Roles of Oxytocin and Vasopressin Benjamin C. Nephew Additional information is available at the end of the chapter http://dx.doi.org/10.5772/50422 1. Introduction Arginine Vasopressin (AVP) and oxytocin (OXT) are peptide hormones found in most mammals that have vital physiological and behavioral actions. The major sites of AVP production are the paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus, although AVP and its receptors are found in numerous brain nuclei and peripheral tissues. AVP’s physiological roles, which are mediated through both peripheral and central mechanisms, include regulating fluid homeostasis and blood pressure. It is also an important component of the endocrine stress response through its actions in the posterior pituitary gland, where it is a secretagogue of ACTH, stimulating the release of corticosteroid stress hormones and catecholamines from the adrenal glands. The three receptor subtypes for AVP are V1a, V1b, and V2. V2 receptors mediate the fluid regulating actions of AVP in the periphery, where the behavioral and central endocrine functions of AVP are mediated by the V1a and V1b receptors in the brain. These receptors are also involved in the central control of cardiovascular activity. Oxytocin’s major physiological roles are to facilitate uterine contractions during birth through a positive feedback mechanism during the second and third stages of labor, and to mediate milk letdown. In lactating mammalian mothers, OXT initiates milk letdown in the mammary glands, and the release of OXT is stimulated by suckling. OXT has one known receptor which has several alleles. The focus of the present chapter will be on the social behavior functions of both AVP and OXT. -
A Definition of Song from Human Music Universals Observed in Primate Calls
bioRxiv preprint doi: https://doi.org/10.1101/649459; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. A definition of song from human music universals observed in primate calls David Schruth1*, Christopher N. Templeton2, Darryl J. Holman1 1 Department of Anthropology, University of Washington 2 Department of Biology, Pacific University *Corresponding author, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/649459; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Abstract Musical behavior is likely as old as our species with song originating as early as 60 million years ago in the primate order. Early singing likely evolved into the music of modern humans via multiple selective events, but efforts to disentangle these influences have been stifled by challenges to precisely define this behavior in a broadly applicable way. Detailed here is a method to quantify the elaborateness of acoustic displays using published spectrograms (n=832 calls) culled from the literature on primate vocalizations. Each spectrogram was scored by five trained analysts via visual assessments along six musically relevant acoustic parameters: tone, interval, transposition, repetition, rhythm, and syllabic variation. -
Psychoacoustics Perception of Normal and Impaired Hearing with Audiology Applications Editor-In-Chief for Audiology Brad A
PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Editor-in-Chief for Audiology Brad A. Stach, PhD PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Jennifer J. Lentz, PhD 5521 Ruffin Road San Diego, CA 92123 e-mail: [email protected] Website: http://www.pluralpublishing.com Copyright © 2020 by Plural Publishing, Inc. Typeset in 11/13 Adobe Garamond by Flanagan’s Publishing Services, Inc. Printed in the United States of America by McNaughton & Gunn, Inc. All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher. For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: [email protected] Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity. Library of Congress Cataloging-in-Publication Data Names: Lentz, Jennifer J., author. Title: Psychoacoustics : perception of normal and impaired hearing with audiology applications / Jennifer J. Lentz. Description: San Diego, CA : Plural Publishing, -
Absolute Pitch (AP)
Absolute Pitch (AP) • A.k.a. ‘perfect pitch’ • The ability to name or produce a tone without a reference tone • Very rare: 1 in 10,000 Vs. Relative pitch (RP) • Most people use relative pitch: • Recognizing tones relative to other tones • Remember and produce intervals abstracted from specific pitch, or given a reference pitch AP: how it works • Thought to be a labeling process: – AP possessors associate names/ meaning with pitches or pitch classes – Retain this association over time • AP is not ‘perfect’; i.e., auditory perception/ pitch discrimination not more accurate than RP Imaging evidence • When making judgments using AP: • possessors compared to non- possessors show more activation in frontal naming/labeling areas • Anatomically, AP possessors show greater planum temporale asymmetry – Apparently due to reduced RH PT size AP ‘flavors’ • AP not purely ‘have’ or ‘have-not; ability level varies along continuum • Some possessors make more accurate judgments with certain instruments – e.g. piano vs. pure sine wave tones – Sometimes called ‘absolute piano’ AP ‘flavors’ cont’d • Other possessors may perform more accurately with white-key notes than black-key notes – E.g. C,D,E vs. C#, D# • May be due to early learning influence – Early musical training on keyboard usually starts with white-key notes only • So, is AP learned? Learnable? Nature vs. Nurture, of course • The debate continues: – Some researchers ascribe genetic origins to AP, suspecting that early musical training is neither sufficient nor necessary – Others find most possessors