Full-Text PDF (Final Published Version)

Total Page:16

File Type:pdf, Size:1020Kb

Full-Text PDF (Final Published Version) Bai, B., Meng, J., Janis, C. M., Zhang, Z-Q., & Wang, Y-Q. (2020). Perissodactyl diversities and responses to climate changes as reflected by dental homogeneity during the Cenozoic in Asia. Ecology and Evolution, 10(13), 1-23. [6363]. https://doi.org/10.1002/ece3.6363 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1002/ece3.6363 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://doi.org/10.1002/ece3.6363 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Received: 22 January 2020 | Revised: 20 April 2020 | Accepted: 21 April 2020 DOI: 10.1002/ece3.6363 ORIGINAL RESEARCH Perissodactyl diversities and responses to climate changes as reflected by dental homogeneity during the Cenozoic in Asia Bin Bai1,2 | Jin Meng1,3,4 | Christine M. Janis5,6 | Zhao-Qun Zhang1,2,7 | Yuan-Qing Wang1,2,7 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China 2CAS Center for Excellence in Life and Paleoenvironment, Beijing, China 3Division of Paleontology, American Museum of Natural History, New York, NY, USA 4Earth and Environmental Sciences, Graduate Center, City University of New York, New York, NY, USA 5School of Earth Sciences, University of Bristol, Bristol, UK 6Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA 7College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China Correspondence Bin Bai, Key Laboratory of Vertebrate Abstract Evolution and Human Origins of Chinese Cenozoic mammal evolution and faunal turnover are considered to have been influ- Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, enced and triggered by global climate change. Teeth of large terrestrial ungulates are Chinese Academy of Sciences, Beijing reliable proxies to trace long-term climatic changes due to their morphological and 100044, China. Email: [email protected] physicochemical properties; however, the role of premolar molarization in ungulate evolution and related climatic change has rarely been investigated. Recently, three Funding information China Scholarship Council, Grant/Award patterns of premolar molarization among perissodactyls have been recognized: en- Number: 201204910062; National Natural doprotocrista-derived hypocone (type I); paraconule–protocone separation (type II); Science Foundation of China, Grant/Award Number: 41672014; the Strategic Priority and metaconule-derived pseudohypocone (type III). These three patterns of premo- Research Program of Chinese Academy lar molarization play an important role in perissodactyl diversity coupled with global of Sciences, Grant/Award Number: XDB26000000; Geological Investigation climate change during the Cenozoic in Asia. Those groups with a relatively higher Project of the China Geological Survey, degree of premolar molarization, initiated by the formation of the hypocone, survived Grant/Award Number: DD20190009; the Frick Fund from the Division of into Neogene, whereas those with a lesser degree of molarization, initiated by the Paleontology, American Museum of Natural deformation of existing ridges and cusps, went extinct by the end of the Oligocene. History; Youth Innovation Promotion Association of the Chinese Academy of In addition, the hypothesis of the “Ulan Gochu Decline” is proposed here to designate Sciences, Grant/Award Number: 2017101 the most conspicuous decrease of perissodactyl diversity that occurred in the latest middle Eocene rather than at the Eocene–Oligocene transition in Asia, as convention- ally thought; this event was likely comparable to the contemporaneous post-Uintan decline of the North American land fauna. KEYWORDS Asian perissodactyl diversity, Cenozoic, premolar molarization, Ulan Gochu Decline This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd Ecology and Evolution. 2020;10:6333–6355. www.ecolevol.org | 6333 6334 | BAI ET AL. 1 | INTRODUCTION Fortelius, 1996; Mihlbachler et al., 2011; Secord et al., 2012), but lit- tle attention has been paid to the evolutionary patterns of premolar Living perissodactyls (odd-toed ungulates) represent the rem- molarization in perissodactyls (Butler, 1952; Holbrook, 2015). nants of a major evolutionary sequence and comprise only six gen- Molarization of the premolars generally results in dental ho- era and 17 species with many in danger of extinction (Nowak & mogeneity and increases the grinding area of the dentition; this is Walker, 1999). However, perissodactyls had a rich, diverse fossil re- especially important for hindgut fermenting ungulates such as peris- cord spanning 56 Myr, and have not only long been used as a strong sodactyls as they are highly reliant on oral processing of the food evidence for evolution since Huxley (e.g., horses), but also for infer- before its initial ingestion (Clauss, Nunn, Fritz, & Hummel, 2009; ring climatic and environmental changes, and their coevolution with Fletcher, Janis, & Rayfield, 2010). In contrast, the foregut ferment- such changes (Franzen, 2010; MacFadden, 1992; Mihlbachler, Rivals, ing artiodactyls, ruminants and camelids, are less reliant on oral Solounias, & Semprebon, 2011; Secord et al., 2012; Simpson, 1951). processing: they only have partially molarized premolars, and their The most conspicuous fauna turnover during the Paleogene in Asia premolar complexity decreases from P4 to P2 (P1 is usually lost). is considered to have occurred during the Eocene–Oligocene transi- However, it is unclear what the role of premolar molarization is in tion, and the Eocene perissodactyl-dominant faunas were abruptly perissodactyl evolution and diversity, how perissodactyl diversity replaced by the Oligocene rodent/lagomorph-dominant fau- and premolar molariform changed through the Cenozoic in Asia, nas (Meng & McKenna, 1998). This major faunal turnover, known as and whether perissodactyl diversity tracked the Cenozoic climatic “Mongolian Remodelling,” is attributed to climatic changes from the changes. Here, we show that three recently proposed patterns of warm, humid Eocene to the cooler and more arid Oligocene (Meng premolar molarization in perissodactyls may have played an import- & McKenna, 1998; Zachos, Pagani, Sloan, Thomas, & Billups, 2001). ant role in their response to climatic and environmental changes However, there is controversy as to whether this faunal turnover during the Cenozoic. Further, based on analysis of perissodactyl either predates (Wasiljeff, Kaakinen, Salminen, & Zhang, 2020), co- diversity with an updated Cenozoic timescale of China in Asia, we incides with (Sun et al., 2014; Zhang, Kravchinsky, & Yue, 2012), or note that the most distinct change occurred during the latest middle postdates (Kraatz & Geisler, 2010) the Eocene–Oligocene boundary. Eocene, rather than at Eocene–Oligocene transition as convention- Perissodactyls have been considered to have originated from ally considered, and is likely comparable to the contemporaneous within the radiation of phenacodont condylarths (Radinsky, 1966; post-Uintan decline of North American land fauna (Prothero, 1994). Thewissen & Domning, 1992) or to be a sister group to Radinskya from the middle Paleocene of China (Holbrook, 2014; McKenna, Chow, Ting, & Luo, 1989), while more recent work has shown cam- 2 | METHODS baytheres from the early Eocene of Indian subcontinent to be more closely related to perissodactyls than either of these previously 2.1 | Premolar molarization considered taxa (Rose et al., 2014). Recent research on ancient proteins suggests that crown perissodactyls are the sister group to Five categories of premolar molarization, initially used for rhinocer- some extinct South American ungulates among more recent mam- oses, were assigned to the P2-4 of perissodactyls: nonmolariform, mals (Welker et al., 2015). Teeth, composed of the hardest verte- premolariform, submolariform, semimolariform, and molariform (Qiu brate tissues, are the best preserved material in perissodactyls as in & Wang, 2007) (Figure 1). In the premolariform morphology, the hy- other mammal fossils, and the most sensitive proxy to environmen- pocone is united with the protoloph, but the metaloph is not com- tal changes (Mihlbachler et al., 2011; Secord et al., 2012). Previous pletely formed (i.e., is separate from the hypocone) (Figure 1a). In studies on the dentition of extinct perissodactyls (and other ungu- the submolariform morphology, the metaloph is completely formed lates) have focused on molar crown height, enamel stable isotopes, (connected to the hypocone) and united with the protoloph on the micro-mesowear, and overall morphology through the Cenozoic lingual side (Figure 1b). In the semimolariform morphology, the pro- (Ackermans, 2020; Evans & Pineda-Munoz,
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Molecular and Functional Evolution of Hemoglobin in Perissodactyl
    Molecular and functional evolution of hemoglobin in perissodactyl mammals (equids, tapirs, and rhinos) by Margaret Clapin A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements for the degree of Master of Science Department of Biological Sciences University of Manitoba Winnipeg, Manitoba Canada © 2019 Abstract: In this thesis, the oxygen binding characteristics of recombinant hemoglobin (Hb) isoforms (HbA [α2β2] and HbA2 [α2δ2]) from the extinct woolly rhinoceros (Coelodonta antiquitatis) are compared with Sumatran rhino (Dicerorhinus sumatrensis) and black rhino (Diceros bicornis) Hb. The major Hb component (HbA) of horses (Equus caballus) was also examined, as its blood O2 affinity has a low thermal sensitivity. This trait is commonly associated with cold-adaptation as it permits O2 to be offloaded at the cool peripheral tissues of regionally endothermic mammals, though the mechanism(s) by which the oxygenation enthalpy is reduced in horse Hb is unknown. It was hypothesized that the woolly rhino Hb isoforms would have similarly low thermal sensitivities to that of horses, either through enhanced effector binding or by altering the energetic transition from the tense to the relaxed state of hemoglobin. To test this hypothesis the hemoglobin coding sequences for each of the above species were determined and their Hb isoforms expressed using E. coli and purified. Oxygen equilibrium curves were then determined in the presence and absence of allosteric effectors at 25 and 37°C. Horse HbA had a low sensitivity to 2,3- diphosphoglycerate (DPG), though its low temperature sensitivity was primarily driven by increased DPG binding at the lower test temperature.
    [Show full text]
  • New Materials of Chalicotherium Brevirostris (Perissodactyla, Chalicotheriidae)
    Geobios 45 (2012) 369–376 Available online at www.sciencedirect.com Original article New materials of Chalicotherium brevirostris (Perissodactyla, Chalicotheriidae) § from the Tunggur Formation, Inner Mongolia Yan Liu *, Zhaoqun Zhang Laboratory of Evolutionary Systematics of Vertebrate, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142, Xizhimenwai Street, PO Box 643, Beijing 100044, PR China A R T I C L E I N F O A B S T R A C T Article history: Chalicotherium brevirostris was named by Colbert based on a skull lacking mandibles from the late Middle Received 23 March 2011 Miocene Tunggur Formation, Tunggur, Inner Mongolia, China. Here we describe new mandibular Accepted 6 October 2011 materials collected from the same area. In contrast to previous expectations, the new mandibular Available online 14 July 2012 materials show a long snout, long diastema, a three lower incisors and a canine. C. brevirostris shows some sexual dimorphism and intraspecific variation in morphologic characters. The new materials differ Keywords: from previously described C. cf. brevirostris from Cixian County (Hebei Province) and the Tsaidam Basin, Tunggur which may represent a different, new species close to C. brevirostris. The diagnosis of C. brevirostris is Middle Miocene revised. Chalicotheriinae Chalicotherium ß 2012 Elsevier Masson SAS. All rights reserved. 1. Abbreviations progress in understanding the Tunggur geology and paleontology (Qiu et al., 1988). The most important result of this expedition so far is
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Artiodactyla and Perissodactyla (Mammalia) from the Early-Middle Eocene Kuldana Formation of Kohat (Pakistan)
    CO"uTK1BL 11015 FKOLI IHt \lC5tLL1 OF I' ALEO\ IOLOG1 THE UNIVERSITY OF IVICHIGAN VOI 77 Lo 10 p 717-37.1 October 33 1987 ARTIODACTYLA AND PERISSODACTYLA (MAMMALIA) FROM THE EARLY-MIDDLE EOCENE KULDANA FORMATION OF KOHAT (PAKISTAN) BY J. G. M. THEWISSEN. P. D. GINGERICH and D. E. RUSSELL MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Charles B. Beck, Director Jennifer A. Kitchell, Editor This series of contributions from the Museum of Paleontology is a medium for publication of papers based chiefly on collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate issues may also be obtained by request. Correspond- ence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109. VOLS. II-XXVII. Parts of volumes may be obtained if available. Price lists are available upon inquiry. I ARTIODACTI L .-I A\D PERISSODACTYL4 (kl.iihlhlAL1A) FROM THE EARLY-h1IDDLE EOCEUE KCLD..I\4 FORMATIO\ OF KOHAT (PAKISTAY) J. G. M. THEWISSEN. P. D. GINGERICH AND D. E. RUSSELL Ah.strcict.-Chorlakki. yielding approximately 400 specimens (mostly isolated teeth and bone fragments). is one of four major early-to-middle Eocene niammal localities on the Indo-Pakistan subcontinent. On the basis of ung~~latesclescribed in this paper we consider the Chorlakki fauna to be younger than that from Barbora Banda.
    [Show full text]
  • Ancient Metaproteomics: a Novel Approach for Understanding Disease And
    Ancient metaproteomics: a novel approach for understanding disease and diet in the archaeological record Jessica Hendy PhD University of York Archaeology August, 2015 ii Abstract Proteomics is increasingly being applied to archaeological samples following technological developments in mass spectrometry. This thesis explores how these developments may contribute to the characterisation of disease and diet in the archaeological record. This thesis has a three-fold aim; a) to evaluate the potential of shotgun proteomics as a method for characterising ancient disease, b) to develop the metaproteomic analysis of dental calculus as a tool for understanding both ancient oral health and patterns of individual food consumption and c) to apply these methodological developments to understanding individual lifeways of people enslaved during the 19th century transatlantic slave trade. This thesis demonstrates that ancient metaproteomics can be a powerful tool for identifying microorganisms in the archaeological record, characterising the functional profile of ancient proteomes and accessing individual patterns of food consumption with high taxonomic specificity. In particular, analysis of dental calculus may be an extremely valuable tool for understanding the aetiology of past oral diseases. Results of this study highlight the value of revisiting previous studies with more recent methodological approaches and demonstrate that biomolecular preservation can have a significant impact on the effectiveness of ancient proteins as an archaeological tool for this characterisation. Using the approaches developed in this study we have the opportunity to increase the visibility of past diseases and their aetiology, as well as develop a richer understanding of individual lifeways through the production of molecular life histories. iii iv List of Contents Abstract ...............................................................................................................................
    [Show full text]
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • Hyracodons and Subhyracodons Early Rhinoceros by Ryan C
    The Fossils of the White River Badlands http://whiteriver.weebly.com/hyracodons.html Hyracodons and Subhyracodons Early rhinoceros by Ryan C. The discovery of rhinoceros in the Badlands of the American West was very exciting, most people never suspecting that such primitive forms of rhinoceros existed in North America. Today, living rhinoceroses consist of four genera that contain five species. Two are found in Africa; three others are restricted to Asia. Most are browsing animals but the largest species, the white rhinoceros of Africa, is a grazer. All living species possess "horns" that are composed of keratinized hair which decomposes at death and are not normally preserved in the fossil record. Although most New World rhinoceroses did not have horns, the widely distributed, males of the pig-sized Menoceros of the early Miocene had a lateral pair of horns. In North America, "rhinoceroses" of three similar lineages appeared from Asia during the Middle Eocene. Consisting of hippo-like Amynodontidae, "running rhinos" or Hyracodontidae, and true rhinoceroses, Rhinocerotidae, only true rhinoceroses adapted and diversified enough to survive into the early Pliocene. Amynodontids entered North America during the Bridgerian NALMA. Apparently adapted for a warm humid environment typified by lush forests, most amynodontids physically and ecologically resembled the hippopotamus of Africa. Remaining undiversified, only four genera are recognized and three of them contain but a single species. The massive and best known species is Metamynodon planifrons, a form characterized by having massive teeth with large tusks that give it the appearance of a hippopotamus. Some skeletons were 10 ft in length. Due to their skull structure, some believe this group supported a proboscis similar to that of a modern tapir.
    [Show full text]
  • From the Late–Middle Eocene of Eastern Thrace
    G Model PALEVO-993; No. of Pages 15 ARTICLE IN PRESS C. R. Palevol xxx (2017) xxx–xxx Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) First occurrence of Palaeotheriidae (Perissodactyla) from the late–middle Eocene of eastern Thrace (Greece) Première occurrence de Palaeotheriidae (Perissodactyla) du Miocène moyen–tardif de Thrace orientale (Grèce) a,b,∗ a Grégoire Métais , Sevket Sen a CR2P, Paléobiodiversité et Paléoenvironnements, UMR 7207 (CNRS, MNHN, UPMC), Sorbonne Université, Muséum national d’histoire naturelle, 8, rue Buffon, 75005 Paris, France b Department of Ecology and Evolutionary Biology, University of Kansas, 66045 Lawrence, Kansas, USA a b s t r a c t a r t i c l e i n f o Article history: A detailed assessment of postcranial fossils collected at Balouk Keui (Thrace, Greece) in the Received 11 July 2016 mid-19th Century by the naturalist Auguste Viquesnel enabled us to identify the material Accepted after revision 10 January 2017 as pertaining to Palaeotherium sp., cf. P. magnum, which constitutes the easternmost occur- Available online xxx rence of the genus during the Eocene. We have constrained the geographic and stratigraphic provenance of the fossil by reassessing information about Viquesnel’s itinerary and observa- Handled by Lars vanden Hoek Ostende tions. Although the exact age of the fossil remains uncertain, the occurrence of a palaeothere in the Thrace Basin during the Eocene indicates a wider geographic distribution for the Keywords: genus, which had previously been restricted to western and central Europe. The palaeothere Palaeotherium of Balouk Keui confirms that the palaeogeographic range of this group included the Balkans Thrace during the middle–late Eocene.
    [Show full text]
  • Origin of an Assemblage Massively Dominated by Carnivorans from the Miocene of Spain
    Origin of an Assemblage Massively Dominated by Carnivorans from the Miocene of Spain M. Soledad Domingo1*, M. Teresa Alberdi2, Beatriz Azanza3, Pablo G. Silva4, Jorge Morales2 1 Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, United States of America, 2 Departamento de Paleobiologı´a, Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Cientı´ficas, Madrid, Spain, 3 Departamento de Ciencias de la Tierra, Facultad Ciencias, Instituto Universitario de Investigacio´n en Ciencias Ambientales de Arago´n, Universidad de Zaragoza, Zaragoza, Spain, 4 Departamento de Geologı´a, Universidad de Salamanca, Escuela Polite´cnica Superior de A´ vila, A´ vila, Spain Abstract Carnivoran-dominated fossil sites provide precious insights into the diversity and ecology of species rarely recovered in the fossil record. The lower level assemblage of Batallones-1 fossil site (Late Miocene; Madrid Basin, Spain) has yielded one of the most abundant and diversified carnivoran assemblage ever known from the Cenozoic record of mammals. A comprehensive taphonomic study is carried out here in order to constrain the concentration mode of this remarkable assemblage. Another distinctive feature of Batallones-1 is that the accumulation of carnivoran remains took place in the context of a geomorphological landform (cavity formation through a piping process) practically unknown in the generation of fossil sites. Two characteristics of the assemblage highly restrict the probable causes for the accumulation of the remains: (1) the overwhelming number of carnivorans individuals; and (2) the mortality profiles estimated for the four most abundant taxa do not correspond to the classic mortality types but rather were the consequence of the behavior of the taxa.
    [Show full text]
  • Perissodactyla: Tapirus) Hints at Subtle Variations in Locomotor Ecology
    JOURNAL OF MORPHOLOGY 277:1469–1485 (2016) A Three-Dimensional Morphometric Analysis of Upper Forelimb Morphology in the Enigmatic Tapir (Perissodactyla: Tapirus) Hints at Subtle Variations in Locomotor Ecology Jamie A. MacLaren1* and Sandra Nauwelaerts1,2 1Department of Biology, Universiteit Antwerpen, Building D, Campus Drie Eiken, Universiteitsplein, Wilrijk, Antwerp 2610, Belgium 2Centre for Research and Conservation, Koninklijke Maatschappij Voor Dierkunde (KMDA), Koningin Astridplein 26, Antwerp 2018, Belgium ABSTRACT Forelimb morphology is an indicator for order Perissodactyla (odd-toed ungulates). Modern terrestrial locomotor ecology. The limb morphology of the tapirs are widely accepted to belong to a single enigmatic tapir (Perissodactyla: Tapirus) has often been genus (Tapirus), containing four extant species compared to that of basal perissodactyls, despite the lack (Hulbert, 1973; Ruiz-Garcıa et al., 1985) and sev- of quantitative studies comparing forelimb variation in eral regional subspecies (Padilla and Dowler, 1965; modern tapirs. Here, we present a quantitative assess- ment of tapir upper forelimb osteology using three- Wilson and Reeder, 2005): the Baird’s tapir (T. dimensional geometric morphometrics to test whether bairdii), lowland tapir (T. terrestris), mountain the four modern tapir species are monomorphic in their tapir (T. pinchaque), and the Malayan tapir (T. forelimb skeleton. The shape of the upper forelimb bones indicus). Extant tapirs primarily inhabit tropical across four species (T. indicus; T. bairdii; T. terrestris; T. rainforest, with some populations also occupying pinchaque) was investigated. Bones were laser scanned wet grassland and chaparral biomes (Padilla and to capture surface morphology and 3D landmark analysis Dowler, 1965; Padilla et al., 1996). was used to quantify shape.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]