Depth and Size Perception 7

Total Page:16

File Type:pdf, Size:1020Kb

Depth and Size Perception 7 Depth and Size Perception 7 INTRODUCTION LEARNING OBJECTIVES Our ability to see depth and distance is a skill we take for granted, as is the case 7.1 Explain oculomotor for much of perception. Like other perceptual processes, it is an extremely com- depth cues and plex process both computationally and physiologically. The problem our visual how they work. system starts off with is simple. How do you extract information about a three- dimensional (3D) world from the flat two-dimensional (2D) surface known as the Explain monocular retina (see Figure 7.1)? As we will see, our visual system uses a complex combi- 7.2 distributedepth cues and nation of various cues and clues to infer depth, which often results in vivid per- ceptual experiences, such as when the huge monster lunges out at you from the how they work. movie screen while watching that notoriously bad 3D movie Godzilla (2014). As or Summarize the principle most readers know, an important part of depth perception comes from the fact 7.3 that we have two eyes that see the world from slightly different angles. We know of stereopsis and how that people blind in one eye may not see depth as well as others, but they can still it applies to human judge distances quite well. In the course of this chapter, we discuss how single- depth perception. eyed people perceive depth and explore the reasons why binocular vision (two eyes) enhances our depth perception. 7.4 Describe the Our visual system uses a number of features, post,including a comparison between correspondence what the two eyes see, to determine depth, but other animals’ visual systems problem and how it achieve depth perception in very different ways. What would it be like to see the relates to stereopsis. world through a completely different visual system? We cannot necessarily experi- ence what this would be like, but we can study the mechanisms involved and com- Explain the concept 7.5 pare them with our own visual system. Consider spiders, a class of animals that of size perception and have eight eyes in addition to their famous eight legs. Do eight eyes give spiders the inferential nature a more complex system to see depth, just as some of the four-coned animals we copy, of its determination. spoke of in the last chapter see more colors? Interestingly, there have been a few studies on how spiders see depth, and the system is incredibly different from our Discuss the concept own. We’ll consider one of these studies examining depth perception in spiders. 7.6 Nagata et al. (2012) examined the use of depth information in jumping accuracy of size constancy. in a species ofnot spiders known as Adanson’s jumping spiders (Hasarius adansoni). These spiders have eight eyes; the four frontal eyes are used for hunting (see Explain the concept 7.7 Figure 7.2). As their name suggests, Adanson’s jumping spiders catch their prey by of illusions of size and jumping onto small insects and eating them. In order to be effective at this hunting depth and how they Dostrategy, their jumps must be accurate, which requires good depth perception. If affect perception. they land in front or behind their insect prey, the prey is likely to escape. So good depth perception is necessary if the spider is going to eat and survive. Nagata et al. (2012) were interested in what neural mechanisms the spiders use for depth perception, given the large number of eyes but the small brain in these spiders. They focused on the two largest eyes, known as the principal eyes. They rendered the spiders’ other eyes temporarily blind by dabbing them with black paint, allow- ing them to focus on the principal eyes. They then set out insects for the spiders to catch, allowing them to assess the accuracy of the spiders’ jumps. © John W Banagan/Photographer’s Choice RF/Getty Images Copyright ©2015 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 170 Sensation and Perception Unlike a human eye, which has only one layer of photosensitive cells on the retina, the retinae in the principal eyes of these jumping spiders have four distinct photosensitive lay- ers. Each layer is sensitive to a different range of wavelengths, much as our cones are sensi- tive to different ranges of wavelengths. When FIGURE 7.1 Our visual systems must re-create the 3D an image is in focus on one layer of the spi- world using an essentially flat, 2D retina. der’s retina, it is out of focus on the other lay- This figure shows the equivalence of size of objects at different distances ers. Although you might think this would make from the retina. Everything along this cone projects the same-size image their vision blurry, the spiders actually use the onto a flat retina. The visual system must then determine relative size and extent to which the second image is out of focus relative distance (depth). to determine the distance they are from objects. Nagata et al. (2012) showed that the spider’s eyes focus a sharp image on the first layer of the retina, leaving blurred images on the subsequent layers. The spider then compares the sharpness of the first image to the blurriness of subsequent images to compute an estimate of depth. Thus, these spiders use information from different layers of each retina to compute depth. This fascinating way of determining depth is quite different from how our visual system determines depthdistribute (see ISLE 7.1 for a demon- stration of how spiders use this system to determine depth). In our visual system, we use the comparison of images across two eyes given flat retinae. Look around your current environment.or You probably have your book (or e-book) about 12 to 20 inches away from your eyes. Beyond that, you may see a table, a window, and clouds drifting in the sky outside your room. It seems almost trivial that the book is closer to you than the window, and the window is closer to you than the clouds. All of these observations serve to hide a rather interesting feature of depth perception. The retina is essentially flat. Although it is curved ISLE 7.1 Depth Perception and Adanson’s Jumping Spider along the back of the eye,post, it is all one layer and can be flattened out very easily. There is only one layer of receptors (unlike in those pesky spiders). Regardless of the distance an object is from the eye, light is imaged by the same receptors, so at this point in the visual system, there is no information about depth. In other words, which receptors actually serve to transduce the light into action potentials does not depend on how far an object is from the eye. Thus, other sources of infor- mation about distance must be used for 3D perception. This information must be found primarily in the visual copy, scene itself. In addition, for the first time, the role of hav- ing two eyes will become apparent, in terms of both the advantages and the complications that having two eyes cause for us. not The solution that our visual system evolved is to rely on a system of cues and clues for depth perception. This view of how humans see depth is sometimes known as the cue approach to depth perception. This approach focuses Do on the observation that because information on the retina is 2D, we must infer the third dimension from other cues our visual system provides. As we discuss shortly, these cues include monocular cues such as occlusion and relative size, oculomotor cues such as convergence and accommo- © iStockphoto.com/elthar2007 dation, and, most famously, binocular cues from compar- FIGURE 7.2 Adanson’s jumping spiders. ing images from each retina. In this chapter, we consider These spiders have eight eyes but use the multiple layers in the three major factors in depth perception: oculomotor their retinae to determine depth. In this photograph, their four cues, monocular cues (including motion cues), and binoc- frontal eyes, used for hunting, are easily visible. ular cues. We start this survey with the oculomotor cues. Copyright ©2015 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. Chapter 7: Depth and Size Perception 171 It is important to make explicit what we mean by a cue or a clue. In this discussion, we essentially use the terms cue and clue interchangeably. A cue is a factor that aids you in making a nonconscious and automatic decision. Cues tell us about which objects are closer and which are farther away. Thus, the cue approach to depth perception emphasizes that we combine information we can use to infer depth given that we cannot compute it directly. OCULOMOTOR CUES 7.1 Explain oculomotor depth cues and how they work. Rest your index finger on the tip of your nose and look at your finger. Then, without moving your head or the direction of your gaze, adjust your focus so that you are looking at an object farther away, such as the wall of the room in which you are reading. As you adjust your eyes, you can feel the movements involved in your focus. These adjustments that your eyes make as they look from objects near to objects far away or from objects far away to objects closer can serve as cues to depth in and of themselves.
Recommended publications
  • Binocular Disparity - Difference Between Two Retinal Images
    Depth II + Motion I Lecture 13 (Chapters 6+8) Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 depth from focus: tilt shift photography Keith Loutit : tilt shift + time-lapse photography http://vimeo.com/keithloutit/videos 2 Monocular depth cues: Pictorial Non-Pictorial • occlusion • motion parallax relative size • accommodation shadow • • (“depth from focus”) • texture gradient • height in plane • linear perspective 3 • Binocular depth cue: A depth cue that relies on information from both eyes 4 Two Retinas Capture Different images 5 Finger-Sausage Illusion: 6 Pen Test: Hold a pen out at half arm’s length With the other hand, see how rapidly you can place the cap on the pen. First using two eyes, then with one eye closed 7 Binocular depth cues: 1. Vergence angle - angle between the eyes convergence divergence If you know the angles, you can deduce the distance 8 Binocular depth cues: 2. Binocular Disparity - difference between two retinal images Stereopsis - depth perception that results from binocular disparity information (This is what they’re offering in “3D movies”...) 9 10 Retinal images in left & right eyes Figuring out the depth from these two images is a challenging computational problem. (Can you reason it out?) 11 12 Horopter: circle of points that fall at zero disparity (i.e., they land on corresponding parts of the two retinas) A bit of geometric reasoning will convince you that this surface is a circle containing the fixation point and the two eyes 13 14 point with uncrossed disparity point with crossed
    [Show full text]
  • Relationship Between Binocular Disparity and Motion Parallax in Surface Detection
    Perception & Psychophysics 1997,59 (3),370-380 Relationship between binocular disparity and motion parallax in surface detection JESSICATURNERand MYRON L, BRAUNSTEIN University ofCalifornia, Irvine, California and GEORGEJ. ANDERSEN University ofColifornia, Riverside, California The ability to detect surfaces was studied in a multiple-cue condition in which binocular disparity and motion parallax could specify independent depth configurations, On trials on which binocular disparity and motion parallax were presented together, either binocular disparity or motion parallax could indicate a surface in one of two intervals; in the other interval, both sources indicated a vol­ ume of random points. Surface detection when the two sources of information were present and compatible was not betterthan detection in baseline conditions, in which only one source of informa­ tion was present. When binocular disparity and motion specified incompatible depths, observers' ability to detect a surface was severely impaired ifmotion indicated a surface but binocular disparity did not. Performance was not as severely degraded when binocular disparity indicated a surface and motion did not. This dominance of binocular disparity persisted in the presence of foreknowledge about which source of information would be relevant. The ability to detect three-dimensional (3-D) surfaces action ofdepth cues in determining the perceived shape has been studied previously using static stereo displays of objects has been a subject of considerable attention. (e.g., Uttal, 1985), motion parallax displays (Andersen, Biilthoffand Mallot (1988) discussed four ways in which 1996; Andersen & Wuestefeld, 1993), and structure­ depth information from different cues may be combined: from-motion (SFM) displays (Turner, Braunstein, & An­ accumulation, veto, disambiguation, and cooperation.
    [Show full text]
  • 3D Computational Modeling and Perceptual Analysis of Kinetic Depth Effects
    Computational Visual Media DOI 10.1007/s41095-xxx-xxxx-x Vol. x, No. x, month year, xx–xx Research Article 3D Computational Modeling and Perceptual Analysis of Kinetic Depth Effects Meng-Yao Cui1, Shao-Ping Lu1( ), Miao Wang2, Yong-Liang Yang3, Yu-Kun Lai4, and Paul L. Rosin4 c The Author(s) 2020. This article is published with open access at Springerlink.com Abstract Humans have the ability to perceive 3D shapes from 2D projections of rotating 3D objects, which is called Kinetic Depth Effects. This process is based on a variety of visual cues such as lighting and shading effects. However, when such cues are weakened or missing, perception can become faulty, as demonstrated by the famous silhouette illusion example – the Spinning Dancer. Inspired by this, we establish objective and subjective evaluation models of rotated 3D objects by taking their projected 2D images as input. We investigate five different cues: ambient Fig. 1 The Spinning Dancer. Due to the lack of visual cues, it confuses humans luminance, shading, rotation speed, perspective, and color as to whether rotation is clockwise or counterclockwise. Here we show 3 of 34 difference between the objects and background. In the frames from the original animation [21]. Image courtesy of Nobuyuki Kayahara. objective evaluation model, we first apply 3D reconstruction algorithms to obtain an objective reconstruction quality 1 Introduction metric, and then use a quadratic stepwise regression analysis method to determine the weights among depth cues to The human perception mechanism of the 3D world has represent the reconstruction quality. In the subjective long been studied.
    [Show full text]
  • Teacher Guide
    Neuroscience for Kids http://faculty.washington.edu/chudler/neurok.html. Our Sense of Sight: Part 2. Perceiving motion, form, and depth Visual Puzzles Featuring a “Class Experiment” and “Try Your Own Experiment” Teacher Guide WHAT STUDENTS WILL DO · TEST their depth perception using one eye and then two · CALCULATE the class averages for the test perception tests · DISCUSS the functions of depth perception · DEFINE binocular vision · IDENTIFY monocular cues for depth · DESIGN and CONDUCT further experiments on visual perception, for example: · TEST people’s ability to interpret visual illusions · CONSTRUCT and test new visual illusions · DEVISE a “minimum difference test” for visual attention 1 SETTING UP THE LAB Supplies For the Introductory Activity Two pencils or pens for each student For the Class Experiment For each group of four (or other number) students: Measuring tools (cloth tape or meter sticks) Plastic cups, beakers or other sturdy containers Small objects such as clothespins, small legos, paper clips For “Try Your Own Experiment!” Visual illusion figures, found at the end of this Teacher Guide Paper and markers or pens Rulers Other Preparations · For the Class Experiment and Do Your Own Experiment, students can write results on a plain sheet of paper. · Construct a chart on the board where data can be entered for class discussion. · Decide the size of the student groups; three is a convenient number for these experiments—a Subject, a Tester, and a Recorder. Depending on materials available, four or five students can comprise a group. · For “Try Your Own Experiment!,” prepare materials in the Supply list and put them out on an “Explore” table.
    [Show full text]
  • Interacting with Autostereograms
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336204498 Interacting with Autostereograms Conference Paper · October 2019 DOI: 10.1145/3338286.3340141 CITATIONS READS 0 39 5 authors, including: William Delamare Pourang Irani Kochi University of Technology University of Manitoba 14 PUBLICATIONS 55 CITATIONS 184 PUBLICATIONS 2,641 CITATIONS SEE PROFILE SEE PROFILE Xiangshi Ren Kochi University of Technology 182 PUBLICATIONS 1,280 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Color Perception in Augmented Reality HMDs View project Collaboration Meets Interactive Spaces: A Springer Book View project All content following this page was uploaded by William Delamare on 21 October 2019. The user has requested enhancement of the downloaded file. Interacting with Autostereograms William Delamare∗ Junhyeok Kim Kochi University of Technology University of Waterloo Kochi, Japan Ontario, Canada University of Manitoba University of Manitoba Winnipeg, Canada Winnipeg, Canada [email protected] [email protected] Daichi Harada Pourang Irani Xiangshi Ren Kochi University of Technology University of Manitoba Kochi University of Technology Kochi, Japan Winnipeg, Canada Kochi, Japan [email protected] [email protected] [email protected] Figure 1: Illustrative examples using autostereograms. a) Password input. b) Wearable e-mail notification. c) Private space in collaborative conditions. d) 3D video game. e) Bar gamified special menu. Black elements represent the hidden 3D scene content. ABSTRACT practice. This learning effect transfers across display devices Autostereograms are 2D images that can reveal 3D content (smartphone to desktop screen). when viewed with a specific eye convergence, without using CCS CONCEPTS extra-apparatus.
    [Show full text]
  • Acquired Monocular Vision Rehabilitation Program
    Volume 44, Number 4, 2007 JRRDJRRD Pages 593–598 Journal of Rehabilitation Research & Development Acquired Monocular Vision Rehabilitation program Carolyn Ihrig, OD;1–2* Daniel P. Schaefer, MD, FACS3–4 1Buffalo Department of Veterans Affairs Medical Center, Buffalo, NY; 2Department of Ophthalmology, Division of Low Vision, 3Department of Otolaryngology, and 4Department of Ophthalmology, Division of Oculoplastic, Orbital Plastics and Reconstructive Surgery, Ira G. Ross Eye Institute, University at Buffalo School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY Abstract—Existing programs concerning patients with low to help with the adjustment to the loss of depth percep- vision do not readily meet the needs of the patient with tion, training on safety and social concerns, and support- acquired monocular vision. This article illustrates the develop- ive counseling would have been beneficial [1]. ment, need, and benefits of an Acquired Monocular Vision Currently, low-vision rehabilitation programs are Rehabilitation evaluation and training program. This proposed available for the partially sighted, such as those suffering program will facilitate the organization of vision rehabilitation from macular degeneration, but they do not readily meet with eye care professionals and social caseworkers to help the needs of the patient with acquired monocular vision. patients cope with, as well as accept, and recognize obstacles they will face in transitioning suddenly to monocular vision. The survey just noted inspired the development of the Acquired Monocular Vision Rehabilitation (AMVR) evaluation and training program to guide and teach these specific skills to each patient with acquired monocular Key words: acquired monocular vision, acquired monocular vision.
    [Show full text]
  • Recovery of 3-D Shape from Binocular Disparity and Structure from Motion
    Perception & Psychophysics /993. 54 (2). /57-J(B Recovery of 3-D shape from binocular disparity and structure from motion JAMES S. TI'ITLE The Ohio State University, Columbus, Ohio and MYRON L. BRAUNSTEIN University of California, Irvine, California Four experiments were conducted to examine the integration of depth information from binocular stereopsis and structure from motion (SFM), using stereograms simulating transparent cylindri­ cal objects. We found that the judged depth increased when either rotational or translational motion was added to a display, but the increase was greater for rotating (SFM) displays. Judged depth decreased as texture element density increased for static and translating stereo displays, but it stayed relatively constant for rotating displays. This result indicates that SFM may facili­ tate stereo processing by helping to resolve the stereo correspondence problem. Overall, the re­ sults from these experiments provide evidence for a cooperative relationship betweel\..SFM and binocular disparity in the recovery of 3-D relationships from 2-D images. These findings indicate that the processing of depth information from SFM and binocular disparity is not strictly modu­ lar, and thus theories of combining visual information that assume strong modularity or indepen­ dence cannot accurately characterize all instances of depth perception from multiple sources. Human observers can perceive the 3-D shape and orien­ tion, both sources of information (along with many others) tation in depth of objects in a natural environment with im­ occur together in the natural environment. Thus, it is im­ pressive accuracy. Prior work demonstrates that informa­ portant to understand what interaction (if any) exists in the tion about shape and orientation can be recovered from visual processing of binocular disparity and SFM.
    [Show full text]
  • Stereopsis and Stereoblindness
    Exp. Brain Res. 10, 380-388 (1970) Stereopsis and Stereoblindness WHITMAN RICHARDS Department of Psychology, Massachusetts Institute of Technology, Cambridge (USA) Received December 20, 1969 Summary. Psychophysical tests reveal three classes of wide-field disparity detectors in man, responding respectively to crossed (near), uncrossed (far), and zero disparities. The probability of lacking one of these classes of detectors is about 30% which means that 2.7% of the population possess no wide-field stereopsis in one hemisphere. This small percentage corresponds to the probability of squint among adults, suggesting that fusional mechanisms might be disrupted when stereopsis is absent in one hemisphere. Key Words: Stereopsis -- Squint -- Depth perception -- Visual perception Stereopsis was discovered in 1838, when Wheatstone invented the stereoscope. By presenting separate images to each eye, a three dimensional impression could be obtained from two pictures that differed only in the relative horizontal disparities of the components of the picture. Because the impression of depth from the two combined disparate images is unique and clearly not present when viewing each picture alone, the disparity cue to distance is presumably processed and interpreted by the visual system (Ogle, 1962). This conjecture by the psychophysicists has received recent support from microelectrode recordings, which show that a sizeable portion of the binocular units in the visual cortex of the cat are sensitive to horizontal disparities (Barlow et al., 1967; Pettigrew et al., 1968a). Thus, as expected, there in fact appears to be a physiological basis for stereopsis that involves the analysis of spatially disparate retinal signals from each eye. Without such an analysing mechanism, man would be unable to detect horizontal binocular disparities and would be "stereoblind".
    [Show full text]
  • Saccadic Eye Movements and Perceptual Judgments Reveal a Shared Visual Representation That Is Increasingly Accurate Over Time ⇑ Wieske Van Zoest A, , Amelia R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 51 (2011) 111–119 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Saccadic eye movements and perceptual judgments reveal a shared visual representation that is increasingly accurate over time ⇑ Wieske van Zoest a, , Amelia R. Hunt b a Cognitive Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands b School of Psychology, University of Aberdeen, Aberdeen AB24 2UB, UK article info abstract Article history: Although there is evidence to suggest visual illusions affect perceptual judgments more than actions, Received 7 July 2010 many studies have failed to detect task-dependant dissociations. In two experiments we attempt to Received in revised form 22 September 2010 resolve the contradiction by exploring the time-course of visual illusion effects on both saccadic eye movements and perceptual judgments, using the Judd illusion. The results showed that, regardless of whether a saccadic response or a perceptual judgement was made, the illusory bias was larger when Keywords: responses were based on less information, that is, when saccadic latencies were short, or display duration Perception and action was brief. The time-course of the effect was similar for both the saccadic responses and perceptual judge- Visual illusions ments, suggesting that both modes may be driven by a shared visual representation. Changes in the Saccadic eye movements Time-course of processing strength of the illusion over time also highlight the importance of controlling for the latency of different response systems when evaluating possible dissociations between them.
    [Show full text]
  • Visual Secret Sharing Scheme with Autostereogram*
    Visual Secret Sharing Scheme with Autostereogram* Feng Yi, Daoshun Wang** and Yiqi Dai Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China Abstract. Visual secret sharing scheme (VSSS) is a secret sharing method which decodes the secret by using the contrast ability of the human visual system. Autostereogram is a single two dimensional (2D) image which becomes a virtual three dimensional (3D) image when viewed with proper eye convergence or divergence. Combing the two technologies via human vision, this paper presents a new visual secret sharing scheme called (k, n)-VSSS with autostereogram. In the scheme, each of the shares is an autostereogram. Stacking any k shares, the secret image is recovered visually without any equipment, but no secret information is obtained with less than k shares. Keywords: visual secret sharing scheme; visual cryptography; autostereogram 1. Introduction In 1979, Blakely and Shamir[1-2] independently invented a secret sharing scheme to construct robust key management scheme. A secret sharing scheme is a method of sharing a secret among a group of participants. In 1994, Naor and Shamir[3] firstly introduced visual secret sharing * Supported by National Natural Science Foundation of China (No. 90304014) ** E-mail address: [email protected] (D.S.Wang) 1 scheme in Eurocrypt’94’’ and constructed (k, n)-threshold visual secret sharing scheme which conceals the original data in n images called shares. The original data can be recovered from the overlap of any at least k shares through the human vision without any knowledge of cryptography or cryptographic computations. With the development of the field, Droste[4] provided a new (k, n)-VSSS algorithm and introduced a model to construct the (n, n)-combinational threshold scheme.
    [Show full text]
  • Stereoscopic Therapy: Fun Or Remedy?
    STEREOSCOPIC THERAPY: FUN OR REMEDY? SARA RAPOSO Abstract (INDEPENDENT SCHOLAR , PORTUGAL ) Once the material of playful gatherings, stereoscop­ ic photographs of cities, the moon, landscapes and fashion scenes are now cherished collectors’ items that keep on inspiring new generations of enthusiasts. Nevertheless, for a stereoblind observer, a stereoscopic photograph will merely be two similar images placed side by side. The perspective created by stereoscop­ ic fusion can only be experienced by those who have binocular vision, or stereopsis. There are several caus­ es of a lack of stereopsis. They include eye disorders such as strabismus with double vision. Interestingly, stereoscopy can be used as a therapy for that con­ dition. This paper approaches this kind of therapy through the exploration of North American collections of stereoscopic charts that were used for diagnosis and training purposes until recently. Keywords. binocular vision; strabismus; amblyopia; ste- reoscopic therapy; optometry. 48 1. Binocular vision and stone (1802­1875), which “seem to have access to the visual system at the same stereopsis escaped the attention of every philos­ time and form a unitary visual impres­ opher and artist” allowed the invention sion. According to the suppression the­ Vision and the process of forming im­ of a “simple instrument” (Wheatstone, ory, both similar and dissimilar images ages, is an issue that has challenged 1838): the stereoscope. Using pictures from the two eyes engage in alternat­ the most curious minds from the time of as a tool for his study (Figure 1) and in­ ing suppression at a low level of visual Aristotle and Euclid to the present day.
    [Show full text]
  • Relative Importance of Binocular Disparity and Motion Parallax for Depth Estimation: a Computer Vision Approach
    remote sensing Article Relative Importance of Binocular Disparity and Motion Parallax for Depth Estimation: A Computer Vision Approach Mostafa Mansour 1,2 , Pavel Davidson 1,* , Oleg Stepanov 2 and Robert Piché 1 1 Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland 2 Department of Information and Navigation Systems, ITMO University, 197101 St. Petersburg, Russia * Correspondence: pavel.davidson@tuni.fi Received: 4 July 2019; Accepted: 20 August 2019; Published: 23 August 2019 Abstract: Binocular disparity and motion parallax are the most important cues for depth estimation in human and computer vision. Here, we present an experimental study to evaluate the accuracy of these two cues in depth estimation to stationary objects in a static environment. Depth estimation via binocular disparity is most commonly implemented using stereo vision, which uses images from two or more cameras to triangulate and estimate distances. We use a commercial stereo camera mounted on a wheeled robot to create a depth map of the environment. The sequence of images obtained by one of these two cameras as well as the camera motion parameters serve as the input to our motion parallax-based depth estimation algorithm. The measured camera motion parameters include translational and angular velocities. Reference distance to the tracked features is provided by a LiDAR. Overall, our results show that at short distances stereo vision is more accurate, but at large distances the combination of parallax and camera motion provide better depth estimation. Therefore, by combining the two cues, one obtains depth estimation with greater range than is possible using either cue individually.
    [Show full text]