IAEA TECDOC SERIES Thorium Resources As Co- and By-Products of Rare Earth Deposits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applicability of Siberian Placer Mining Technology to Alaska
MIRL Report No. 89 Applicability- - of Siberian Placer Mining Technology to Alaska Dr. Frank J. Skudrzyk, Project Manager E++W Engineering Consultants 461 1 Dartmouth Fairbanks, Alaska James C,Barker U.S. Bureau of Mines Alaska Field Operations Cenkr Fairbanks. Alaska Daniel E. Walsh School of Mineral Engineering University of Alaska Fairbanks Fairbanks, Alaska Rocky MacDonald American Arctic Company Fairbanks, Alaska Library of Congress Cataloging in Publication Data Library of Congress Catalog Card Number: 9 1-6 1923 ISBN 0-911043-12-8 May, 1991 Published bv Mined Industry Research Laboratory 212 ONeill Building University of Alaska Fairbanks Fairbanks, Alaska 99775-1 180 Alaska Science and Technology Foundation 550 West 7th Avenue Suite 360 Anchorage, Alaska 99501 ABSTRACT The result of Perestroyka and Glasnost has been an awakening of potential for cooperation between East and West. Nowhere has that been better demonstrated than between Alaska and Magadan Province, USSR. This report summarizes a one year effort financed by ASTF, with participation from several technical organizations, to establish contacts with the Siberian placer mining industry. The purpose of the project was to provide initial assessment of the Soviet technology for placer mining in permafrost. A ten day trip to Magadan province by an ASTF team and a similar length visit to Alaska by the Soviet mining group representing the All Union Scientific and Research Institute of Gold and Rare Metals, (VNII-I), Magadan are described. The report also reviews translated data on mining in permafrost and describes surface and underground placer mining technology developed by the Soviets. The report also lists relevant publications on Soviet mining research and state of the art Soviet mining technology and expertise. -
Tailings and Their Component Radionuclides from the Biosphere-Some Earth Science Perspectives
Tailings and Their Component Radionuclides From the Biosphere-Some Earth Science Perspectives Isolation of Uranium Mill Tailings and Their Component Radionuclides From the Biosphere-Some Earth Science Perspectives By Edward Landa GEOLOGICAL SURVEY CIRCULAR 814 A critical review of the literature dealing with uranium mill tailings, with emphasis on the geologic and geochemical processes affecting the long-term containment of radionuclides 1980 United States Department of the Interior CECIL D. ANDRUS, Secretary Geological Survey H. William Menard, Director Library of Congress catalog-card No. 79-600148 Free on application to Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, VA 22202 CONTENTS Page Abstract 1 Introduction ------------------------------------------------------------ 1 Acknowledginents ---------_----------------------------------------------- 2 Quantity and location of the tailings -------------------------------------- 2 Radioactivity in tailings -------------------------------------------------- 4 Sources of potential human radiation exposure from uranium mill tailings ------ 6 Radon emanation ----------------------------------------------------- 6 VVind transport ------------------------------------------------------- 6 Surface water transport and leaching ----------------------------------- 7 External gamma radiation ------------------------------------------- 8 Contamination of terrestrial and aquatic vegetation ---------------------- 8 Seepage ----------------------------------------------------~-------- -
Exploration of Placer Gold Deposits by Geomagnetic Surveys
MTR-2 EXPLORATION OF PLACER GOLD DEPOSITS BY GEOMAGNETIC SURVEYS by Eric Anderson V. P. Exploration Placer Management Group, Ltd. EXPLORATION OF PLACER GOLD DEPOSITS BY GEOMAGNETIC SURVEYS by Eric Anderson V. P. Exploration Placer Management Group, Ltd. Exploration of Placer Gold Deposits by Geomagnetic Surveys Eric Anderson, V.P. Exploration Placer Management Group, Ltd. ABSTRACT Past attempts to explore for placer gold deposits by measuring the anomalous magnetic intensities of the magnetite normally found in the ”black sands” fraction of placer gravels were for the most part unsuccessful. Recent improvements in the sensitivity, reliability and portability of magnetometers have made it possible to cheaply and accurately delineate some types of placer gravels if they occur in a geological environment that is ”magnetically hospitable” and does not mask the signal of the overlaying gravels. The main benefit of this technique is that it can accurately delineate targets and thus dramatically reduce the overall cost of an exploration program in a given area. INTRODUCTION Whether or not this technique will work in a given area depends on three factors: 1. The amount of magnetite associated with the pay gravels. 2. The depth of the gravel deposit. 3. The nature of the underlying bedrock. In our work to date in Western Canada and United States, we have not encountered any pay gravels that did not have measurable concentrations of magnetite in the black sands. It is common to find gravel deposits with high concentrations of magnetite and no gold values whatsoever, but our experience and history have shown that gold values rarely occur without associated magnetic black sands; although the concentrates of magnetite do vary tremendously, In this regard it is important to keep two things in mind: 1. -
NPR81: South Korea's Shifting and Controversial Interest in Spent Fuel
JUNGMIN KANG & H.A. FEIVESON Viewpoint South Korea’s Shifting and Controversial Interest in Spent Fuel Reprocessing JUNGMIN KANG & H.A. FEIVESON1 Dr. Jungmin Kang was a Visiting Research Fellow at the Center for Energy and Environmental Studies (CEES), Princeton University in 1999-2000. He is the author of forthcoming articles in Science & Global Security and Journal of Nuclear Science and Technology. Dr. H.A. Feiveson is a Senior Research Scientist at CEES and a Co- director of Princeton’s research Program on Nuclear Policy Alternatives. He is the Editor of Science and Global Security, editor and co-author of The Nuclear Turning Point: A Blueprint for Deep Cuts and De-alerting of Nuclear Weapons (Brookings Institution, 1999), and co-author of Ending the Threat of Nuclear Attack (Stanford University Center for International Security and Arms Control, 1997). rom the beginning of its nuclear power program could reduce dependence on imported uranium. During in the 1970s, the Republic of Korea (South Ko- the 1990s, the South Korean government remained con- Frea) has been intermittently interested in the cerned about energy security but also began to see re- reprocessing of nuclear-power spent fuel. Such repro- processing as a way to address South Korea’s spent fuel cessing would typically separate the spent fuel into three disposal problem. Throughout this entire period, the constituent components: the unfissioned uranium re- United States consistently and effectively opposed all maining in the spent fuel, the plutonium produced dur- reprocessing initiatives on nonproliferation grounds. We ing reactor operation, and the highly radioactive fission review South Korea’s evolving interest in spent fuel re- products and transuranics other than plutonium. -
EMD Uranium (Nuclear Minerals) Committee
EMD Uranium (Nuclear Minerals) Committee EMD Uranium (Nuclear Minerals) Mid-Year Committee Report Michael D. Campbell, P.G., P.H., Chair December 12, 2011 Vice-Chairs: Robert Odell, P.G., (Vice-Chair: Industry), Consultant, Casper, WY Steven N. Sibray, P.G., (Vice-Chair: University), University of Nebraska, Lincoln, NE Robert W. Gregory, P.G., (Vice-Chair: Government), Wyoming State Geological Survey, Laramie, WY Advisory Committee: Henry M. Wise, P.G., Eagle-SWS, La Porte, TX Bruce Handley, P.G., Environmental & Mining Consultant, Houston, TX James Conca, Ph.D., P.G., Director, Carlsbad Research Center, New Mexico State U., Carlsbad, NM Fares M Howari, Ph.D., University of Texas of the Permian Basin, Odessa, TX Hal Moore, Moore Petroleum Corporation, Norman, OK Douglas C. Peters, P.G., Consultant, Golden, CO Arthur R. Renfro, P.G., Senior Geological Consultant, Cheyenne, WY Karl S. Osvald, P.G., Senior Geologist, U.S. BLM, Casper WY Jerry Spetseris, P.G., Consultant, Austin, TX Committee Activities During the past 6 months, the Uranium Committee continued to monitor the expansion of the nuclear power industry and associated uranium exploration and development in the U.S. and overseas. New power-plant construction has begun and the country is returning to full confidence in nuclear power as the Fukushima incident is placed in perspective. India, Africa and South America have recently emerged as serious exploration targets with numerous projects offering considerable merit in terms of size, grade, and mineability. During the period, the Chairman traveled to Columbus, Ohio to make a presentation to members of the Ohio Geological Society on the status of the uranium and nuclear industry in general (More). -
Gold, Platinum and Diamond Placer Deposits in Alluvial Gravels, Whitecourt, Alberta Special Report 89
Special Report 89 Gold, Platinum and Diamond Placer Deposits in Alluvial Gravels, Whitecourt, Alberta Special Report 89 Gold, Platinum and Diamond Placer Deposits in Alluvial Gravels, Whitecourt, Alberta G.G. Mudaliar1, J.P. Richards1 and D.R Eccles2 1 Department of Earth & Atmospheric Sciences, University of Alberta 2 Alberta Geological Survey May 2007 ©Her Majesty the Queen in Right of Alberta, 2007 ISBN 0-7785-3851-6 The Alberta Geological Survey and its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness, or reliability of this publication. Any digital data and software supplied with this publication are subject to the licence conditions (specified in 'Licence Agreement for Digital Products'"). The data are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation, and/or any use of proprietary data formats in this release does not constitute endorsement by the Alberta Geological Survey of any manufacturer's product. This product is an EUB/AGS Special Report; the information is provided as received from the author and has had minimal editing for conformity to EUB/AGS standards. When using information from this publication in other publications or presentations, due acknowledgment should be given to the Alberta Geological Survey/Alberta Energy and Utilities Board. The following reference format is recommended: Mudaliar, G.G., Richards, J.P. and Eccles, D.R. (2007): Gold, platinum and diamond placer deposits in alluvial gravels, Whitecourt, Alberta; Alberta Energy and Utilities Board, EUB/AGS, SPE 089, 24 p. -
Colloform High-Purity Platinum from the Placer Deposit
Colloform high-purity platinum from the placer deposit of Koura River (Gornaya Shoriya, Russia) Nesterenko G.V.1, Zhmodik S.M.1,2, Airiyants E.V.1, Belyanin D.K.1,2, Kolpakov V.V.1, Bogush A.A.1,3,* 1V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia 2Novosibirsk State University, Novosibirsk 630090, Russia 3Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK *Corresponding author: A.A. Bogush, E-mail: [email protected] Abstract A microinclusion of colloform high-purity platinum in a grain of platinum-group minerals (PGM) from the alluvial gold-bearing placer deposit in the south of Western Siberia (Russia) was detected and characterized for the first time. It is different in composition, texture, and conditions of formation from high-purity platinum of other regions described in the literature. The main characteristics of investigated high-purity platinum are colloform-layered texture, admixture of Fe (0.37-0.78 wt.%), and paragenesis of Cu-rich isoferroplatinum, hongshiite, and rhodarsenide. The PGM grain with high-purity platinum is multiphase and heterogeneous in texture. It is a product of intensive metasomatic transformation of Cu-rich isoferroplatinum (Pt3(Fe0.6Cu0.4)). The transformation was carried out in two stages: 1 - copper stage including three substages (Cu-rich isoferroplatinum, copper platinum and hongshiite); and 2 - arsenic (rhodarsenide). The formation of high-purity platinum was separated in time from the formation of isoferroplatinum and was carried out by precipitation from postmagmatic solutions. Keywords: platinum-group elements (PGE), platinum-group minerals (PGM), high-purity platinum, Cu-rich isoferroplatinum, hongshiite, alluvial placer, Gornaya Shoriya Introduction High-purity platinum was discovered in the gold-bearing placer deposit of Koura River situated in Gornaya Shoriya (south-western Siberia, Russia, Fig. -
Mineralogy of Platinum-Group Elements and Gold in the Ophiolite-Related Placer of the River Bolshoy Khailyk, Western Sayans, Russia
minerals Article Mineralogy of Platinum-Group Elements and Gold in the Ophiolite-Related Placer of the River Bolshoy Khailyk, Western Sayans, Russia Andrei Y. Barkov 1,*, Gennadiy I. Shvedov 2, Sergey A. Silyanov 2 and Robert F. Martin 3 1 Research Laboratory of Industrial and Ore Mineralogy, Cherepovets State University, 5 Lunacharsky Avenue, 162600 Cherepovets, Russia 2 Institute of Mining, Geology and Geotechnology, Siberian Federal University, 95 Avenue Prospekt im. gazety “Krasnoyarskiy Rabochiy”, 660025 Krasnoyarsk, Russia; [email protected] (G.I.S.); [email protected] (S.A.S.) 3 Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC H3A 0E8, Canada; [email protected] * Correspondence: [email protected]; Tel.: +7-8202-51-78-27 Received: 21 May 2018; Accepted: 5 June 2018; Published: 12 June 2018 Abstract: We describe assemblages of platinum-group minerals (PGM) and associated PGE–Au phases found in alluvium along the River Bolshoy Khailyk, in the western Sayans, Russia. The river drains the Aktovrakskiy ophiolitic complex, part of the Kurtushibinskiy belt, as does the Zolotaya River ~15 km away, the site of other placer deposits. Three groups of alloy minerals are described: (1) Os–Ir–Ru compositions, which predominate, (2) Pt–Fe compositions of a Pt3Fe stoichiometry, and (3) Pt–Au–Cu alloys, which likely crystallized in the sequence from Au–(Cu)-bearing platinum, Pt(Au,Cu), Pt(Cu,Au), and PtAuCu2, to PtAu4Cu5. The general trends of crystallization of PGM appear to be: [Os–Ir–Ru alloys] ! Pt3Fe-type alloy (with inclusions of Ru-dominant alloy formed by exsolution or via replacement of the host Pt–Fe phase) ! Pt–Au–Cu alloys. -
The Placer Gold Mining Game
The Placer Gold Mining Game Game designed by Rob Chapman, School of Earth and Environment, University of Leeds. Software designed by Matt Bindoff, Bindoff Media Top: Preparing to mine gold-bearing gravel in Sulphur Creek, Klondike District Yukon Canada. Below: a portable sluice retains the gold in the riffles Overview Welcome to this interactive computer game in which you get to make the decisions made by real placer miners. When you play the game there are instructions which provide you with various options and tell you what you can and cannot do. To give yourself the best chance at the game you have to understand something about placer gold: how it occurs, how you find out if there is any there at all and how you can recover it. The object of the game, (of course) is to make as much profit as you can. You gain cash by selling the gold that you recover, but everything that you do to find, mine and separate the gold from the gravel cost you either time, money, or both. As far as possible we have made the game faithful to the real activity, so that you can make the same decisions and be faced with the same challenges that real placer miners encounter. However any real placer miners who have a go will quickly realize that we have had to make some simplifications to make the game workable in an educational context, (such as large claim sizes and a very understanding bank manager!) The key elements of the game can be summarized as follows: 1. -
Significant Metalliferous Lode Deposits and Placer Districts of Alaska
Significant Metalliferous Lode Deposits and Placer Districts of Alaska By WARREN J. NOKLEBERG, THOMAS K. BUNDTZEN, HENRY C. BERG, DAVID A. BREW, DONALD GRYBECK, MARK S. ROBINSON, THOMAS E. SMITH, and WARREN YEEND U.S. GEOLOGICAL SURVEY BULLETIN 1786 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1987 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-PublicationData Significant metalliferous lode deposits and placer districts of Alaska. U.S. Geological Survey Bulletin 1786 Bibliography Supt. of Docs. No.: 1 19.3:1786 1. Placer deposits-Alaska. 2. Ore deposits-Alaska. I. Nokleberg, Warren J. II. Series. QE75.B9 No. 1786 557.3 s 87-600165 [TN24.A4] [553'.13'09798] COVER Mill buildings at Kennecott, Alaska. The Kennecott district Cu-Ag mines in the Wrangell Mountains were some of the principal sources of copper in North America from 1913 to 1938. See deposit description for Kennecott district (number 30 for southern Alaska). Copyrighted drawing used by permission of Gail Niebrugge, artist, Glennallen, Alaska. PREFACE This report is a compilation of the signifi- geology. The unpublished data were contributed cant metalliferous lode deposits and placer by mineral deposit and regional geologists in districts of Alaska, and is a comprehensive data private industry, universities, the U.S. Geo- base for a companion article on the metallogene- logical Survey, the Alaska Division of Geologi- sis and major mineral deposits of Alaska that cal and Geophysical Surveys, the U.S. -
John Wells' Classic Work on Evaluating Precious Metal Placer Deposits
u.s. Department of the Interior Bureau of Land Management Phoenix Training Center Technical Bulletin 4 196£ Reprinted with Errata 1985 Placer Examination Principles and Practice by John H. Wells ---- -- ---- - placer • • exallilnatlon PRINCIPLES AND PRACTICE by John H. Wells Mining Engineer Bureau of Land Management ACKNOWLEDGEMENTS The author is indebted Lo the Bureau of 'Land Mangement for making· the publication of this book possible. A book of this type would not be complete without the illustrated description of placer drilling and related data contained in Appendix D. These were provided by Mr. Cy Ostrom of C. Kirk Hillman Company, whose generosity is appreciated. CONTENTS Page PREFACE .......................... VII PART 1 - REVIEW OF PLACER THEORY AND GEOLOGY 1. Placers Defined .. ... 3 2. Study of Placers - General 3 3. Sources of Valuable Mineral 4 a) Lodes or mineralized zones 4 b) Erosion of pre-existing placer deposits 4 c) Low-grade auriferous conglomerates or glacial debris 4 d) Magmatic segregations and associated basic rocks 5 e) Regional rocks containing particles of valuable mineral 5 4. Weathering and Release Processes 5 a) Ground water 5 b) Temperature change 6 c) Plant growth 6 d) Surface erosion 6 5. Stream Processes Related to Placers 6 6. Concentration of Valuable Minerals 7 a) Bedrock concentrations 8 b) Types of bedrock .. 8 c) Pay streaks .. .. 8 7. Preservation of the Deposit 9 a) Abandonment '9 b) Regional uplift 9 c) Burial ... 9 PART Il - TYPES OF PLACERS 1. Residual Placers 13 2. Eluvial Placers 13 3. Stream Placers 14 a) Gulch placers 14 b) Creek placers 14 c) River deposits 14 d) Gravel plain deposits 15 4. -
Bibliography of U. S. Geological Survey Reports on Uranium and Thorium 1942 Through May 1958
t Bibliography of U. S. Geological Survey Reports On Uranium and Thorium 1942 Through May 1958 GEOLOGICAL SURVEY BULLETIN 1107-A This compilation was done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission Bibliography of U. S. Geological Survey Reports On Uranium and Thorium 1942 Through May 1958 By PAUL E. SOISTER and DORA R. CONKLIN CONTRIBUTIONS TO THE GEOLOGY OF URANIUM GEOLOGICAL SURVEY BULLETIN 1107-A This compilation was done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY THOMAS B. NOLAN, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 50 cents (paper cover) CONTENTS Index No. Page Introduction _.__________________________ 1 Reports and authors listed________________ 1 Method of listing reports_________________ 1 Explanation of area and subject index_.______ 2 Acknowledgments .. __ 3 Availability of reports__.________________ 3 Depositories of U.S. Geological Survey open-file reports ________________________ 4 Depository libraries of U.S. Atomic Energy Com mission reports in the United States __._ 6 Depository libraries of U.S. Atomic Energy Com mission reports outside the United States__ 9 Reports ____________-__________________ 11 U.S. Geological Survey publications.. _ 1-760 11 Bulletins ._______________________ 1-112 11 Circulars _.._ ..____ _-___ ._.___.._ 200-297 20 Professional papers .__.. _..._...._-____.___ 300-398 25 Maps and reports -__-___._.________ 400-760 33 Coal investigations maps .