The Lunar Opposition Surge: Observations by Clementine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observational Constraints on Surface Characteristics of Comet Nuclei
Observational Constraints on Surface Characteristics of Comet Nuclei Humberto Campins ([email protected] u) Lunar and Planetary Laboratory, University of Arizona Yanga Fernandez University of Hawai'i Abstract. Direct observations of the nuclear surfaces of comets have b een dicult; however a growing number of studies are overcoming observational challenges and yielding new information on cometary surfaces. In this review, we fo cus on recent determi- nations of the alb edos, re ectances, and thermal inertias of comet nuclei. There is not much diversity in the geometric alb edo of the comet nuclei observed so far (a range of 0.025 to 0.06). There is a greater diversity of alb edos among the Centaurs, and the sample of prop erly observed TNOs (2) is still to o small. Based on their alb edos and Tisserand invariants, Fernandez et al. (2001) estimate that ab out 5% of the near-Earth asteroids have a cometary origin, and place an upp er limit of 10%. The agreement between this estimate and two other indep endent metho ds provide the strongest constraint to date on the fraction of ob jects that comets contribute to the p opulation of near-Earth asteroids. There is a diversity of visible colors among comets, extinct comet candidates, Centaurs and TNOs. Comet nuclei are clearly not as red as the reddest Centaurs and TNOs. What Jewitt (2002) calls ultra-red matter seems to be absent from the surfaces of comet nuclei. Rotationally resolved observations of b oth colors and alb edos are needed to disentangle the e ects of rotational variability from other intrinsic qualities. -
Modeling Super-Earth Atmospheres in Preparation for Upcoming Extremely Large Telescopes
Modeling Super-Earth Atmospheres In Preparation for Upcoming Extremely Large Telescopes Maggie Thompson1 Jonathan Fortney1, Andy Skemer1, Tyler Robinson2, Theodora Karalidi1, Steph Sallum1 1University of California, Santa Cruz, CA; 2Northern Arizona University, Flagstaff, AZ ExoPAG 19 January 6, 2019 Seattle, Washington Image Credit: NASA Ames/JPL-Caltech/T. Pyle Roadmap Research Goals & Current Atmosphere Modeling Selecting Super-Earths for State of Super-Earth Tool (Past & Present) Follow-Up Observations Detection Preliminary Assessment of Future Observatories for Conclusions & Upcoming Instruments’ Super-Earths Future Work Capabilities for Super-Earths M. Thompson — ExoPAG 19 01/06/19 Research Goals • Extend previous modeling tool to simulate super-Earth planet atmospheres around M, K and G stars • Apply modified code to explore the parameter space of actual and synthetic super-Earths to select most suitable set of confirmed exoplanets for follow-up observations with JWST and next-generation ground-based telescopes • Inform the design of advanced instruments such as the Planetary Systems Imager (PSI), a proposed second-generation instrument for TMT/GMT M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (1) Neptune Mass Range of Interest Earth Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (2) A Approximate Habitable Zone Host Star Spectral Type F G K M Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Atmosphere Modeling Tool Evolution of Atmosphere Model • Solar System Planets & Moons ~ 1980’s (e.g., McKay et al. 1989) • Brown Dwarfs ~ 2000’s (e.g., Burrows et al. 2001) • Hot Jupiters & Other Giant Exoplanets ~ 2000’s (e.g., Fortney et al. -
Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy
Barucci et al.: Surface Characteristics of TNOs and Centaurs 647 Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy M. A. Barucci and A. Doressoundiram Observatoire de Paris D. P. Cruikshank NASA Ames Research Center The external region of the solar system contains a vast population of small icy bodies, be- lieved to be remnants from the accretion of the planets. The transneptunian objects (TNOs) and Centaurs (located between Jupiter and Neptune) are probably made of the most primitive and thermally unprocessed materials of the known solar system. Although the study of these objects has rapidly evolved in the past few years, especially from dynamical and theoretical points of view, studies of the physical and chemical properties of the TNO population are still limited by the faintness of these objects. The basic properties of these objects, including infor- mation on their dimensions and rotation periods, are presented, with emphasis on their diver- sity and the possible characteristics of their surfaces. 1. INTRODUCTION cally with even the largest telescopes. The physical char- acteristics of Centaurs and TNOs are still in a rather early Transneptunian objects (TNOs), also known as Kuiper stage of investigation. Advances in instrumentation on tele- belt objects (KBOs) and Edgeworth-Kuiper belt objects scopes of 6- to 10-m aperture have enabled spectroscopic (EKBOs), are presumed to be remnants of the solar nebula studies of an increasing number of these objects, and signifi- that have survived over the age of the solar system. The cant progress is slowly being made. connection of the short-period comets (P < 200 yr) of low We describe here photometric and spectroscopic studies orbital inclination and the transneptunian population of pri- of TNOs and the emerging results. -
Planet Positions: 1 Planet Positions
Planet Positions: 1 Planet Positions As the planets orbit the Sun, they move around the celestial sphere, staying close to the plane of the ecliptic. As seen from the Earth, the angle between the Sun and a planet -- called the elongation -- constantly changes. We can identify a few special configurations of the planets -- those positions where the elongation is particularly noteworthy. The inferior planets -- those which orbit closer INFERIOR PLANETS to the Sun than Earth does -- have configurations as shown: SC At both superior conjunction (SC) and inferior conjunction (IC), the planet is in line with the Earth and Sun and has an elongation of 0°. At greatest elongation, the planet reaches its IC maximum separation from the Sun, a value GEE GWE dependent on the size of the planet's orbit. At greatest eastern elongation (GEE), the planet lies east of the Sun and trails it across the sky, while at greatest western elongation (GWE), the planet lies west of the Sun, leading it across the sky. Best viewing for inferior planets is generally at greatest elongation, when the planet is as far from SUPERIOR PLANETS the Sun as it can get and thus in the darkest sky possible. C The superior planets -- those orbiting outside of Earth's orbit -- have configurations as shown: A planet at conjunction (C) is lined up with the Sun and has an elongation of 0°, while a planet at opposition (O) lies in the opposite direction from the Sun, at an elongation of 180°. EQ WQ Planets at quadrature have elongations of 90°. -
(101955) Bennu from OSIRIS-Rex Imaging and Thermal Analysis
ARTICLES https://doi.org/10.1038/s41550-019-0731-1 Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis D. N. DellaGiustina 1,26*, J. P. Emery 2,26*, D. R. Golish1, B. Rozitis3, C. A. Bennett1, K. N. Burke 1, R.-L. Ballouz 1, K. J. Becker 1, P. R. Christensen4, C. Y. Drouet d’Aubigny1, V. E. Hamilton 5, D. C. Reuter6, B. Rizk 1, A. A. Simon6, E. Asphaug1, J. L. Bandfield 7, O. S. Barnouin 8, M. A. Barucci 9, E. B. Bierhaus10, R. P. Binzel11, W. F. Bottke5, N. E. Bowles12, H. Campins13, B. C. Clark7, B. E. Clark14, H. C. Connolly Jr. 15, M. G. Daly 16, J. de Leon 17, M. Delbo’18, J. D. P. Deshapriya9, C. M. Elder19, S. Fornasier9, C. W. Hergenrother1, E. S. Howell1, E. R. Jawin20, H. H. Kaplan5, T. R. Kareta 1, L. Le Corre 21, J.-Y. Li21, J. Licandro17, L. F. Lim6, P. Michel 18, J. Molaro21, M. C. Nolan 1, M. Pajola 22, M. Popescu 17, J. L. Rizos Garcia 17, A. Ryan18, S. R. Schwartz 1, N. Shultz1, M. A. Siegler21, P. H. Smith1, E. Tatsumi23, C. A. Thomas24, K. J. Walsh 5, C. W. V. Wolner1, X.-D. Zou21, D. S. Lauretta 1 and The OSIRIS-REx Team25 Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the for- mation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo. -
(155140) 2005 UD and (3200) Phaethon*
The Planetary Science Journal, 1:15 (15pp), 2020 June https://doi.org/10.3847/PSJ/ab8e45 © 2020. The Author(s). Published by the American Astronomical Society. New Evidence for a Physical Link between Asteroids (155140) 2005 UD and (3200) Phaethon* Maxime Devogèle1 , Eric MacLennan2, Annika Gustafsson3 , Nicholas Moskovitz1 , Joey Chatelain4, Galin Borisov5,6, Shinsuke Abe7, Tomoko Arai8, Grigori Fedorets2,9, Marin Ferrais10,11,12, Mikael Granvik2,13 , Emmanuel Jehin10, Lauri Siltala2,14, Mikko Pöntinen2, Michael Mommert1 , David Polishook15, Brian Skiff1, Paolo Tanga16, and Fumi Yoshida8 1 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ 86001, USA; [email protected] 2 Department of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland 3 Department of Astronomy & Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011, USA 4 Las Cumbres Observatory, CA, USA 5 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, UK 6 Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussèe Blvd., Sofia BG-1784, Bulgaria 7 Aerospace Engineering, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 2748501, Japan 8 Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Japan 9 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK 10 Space sciences, Technologies & Astrophysics Research (STAR) Institute University of Liège Allée du 6 Août 19, B-4000 Liège, Belgium 11 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille, France 12 Space sciences, Technologies, France 13 Division of Space Technology, LuleåUniversity of Technology, Box 848, SE-98128 Kiruna, Sweden 14 Nordic Optical Telescope, Apartado 474, E-38700 S/C de La Palma, Santa Cruz de Tenerife, Spain 15 Faculty of Physics, Weizmann Institute of Science, 234 Herzl St. -
The Subsurface Habitability of Small, Icy Exomoons J
A&A 636, A50 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937035 & © ESO 2020 Astrophysics The subsurface habitability of small, icy exomoons J. N. K. Y. Tjoa1,?, M. Mueller1,2,3, and F. F. S. van der Tak1,2 1 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands Received 1 November 2019 / Accepted 8 March 2020 ABSTRACT Context. Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. Aims. We intend to investigate under what thermal and orbital circumstances small, icy moons may sustain subsurface oceans and thus be “subsurface habitable”. We pay specific attention to tidal heating, which may keep a moon liquid far beyond the conservative habitable zone. Methods. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat. -
The Opposition and Tilt Effects of Saturn's Rings from HST Observations
The opposition and tilt effects of Saturn’s rings from HST observations Heikki Salo, Richard G. French To cite this version: Heikki Salo, Richard G. French. The opposition and tilt effects of Saturn’s rings from HST observa- tions. Icarus, Elsevier, 2010, 210 (2), pp.785. 10.1016/j.icarus.2010.07.002. hal-00693815 HAL Id: hal-00693815 https://hal.archives-ouvertes.fr/hal-00693815 Submitted on 3 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript The opposition and tilt effects of Saturn’s rings from HST observations Heikki Salo, Richard G. French PII: S0019-1035(10)00274-5 DOI: 10.1016/j.icarus.2010.07.002 Reference: YICAR 9498 To appear in: Icarus Received Date: 30 March 2009 Revised Date: 2 July 2010 Accepted Date: 2 July 2010 Please cite this article as: Salo, H., French, R.G., The opposition and tilt effects of Saturn’s rings from HST observations, Icarus (2010), doi: 10.1016/j.icarus.2010.07.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. -
Summer ASTRONOMICAL CALENDAR
2020 Buhl Planetarium & Observatory ASTRONOMICAL CALENDAR Summer JUNE 2020 1 Mon M13 globular cluster well-placed for observation (Use telescope in Hercules) 3 Wed Mercury at highest point in evening sky (Look west-northwest at sunset) 5 Fri Full Moon (Strawberry Moon) 9 Tues Moon within 3 degrees of both Jupiter and Saturn (Look south before dawn) 13 Sat Moon within 3 degrees of Mars (Look southeast before dawn) Moon at last quarter phase 20 Sat Summer solstice 21 Sun New Moon 27 Sat Bootid meteor shower peak (Best displays soon after dusk) 28 Sun Moon at first quarter phase JULY 2020 5 Sun Full Moon (Buck Moon) Penumbral lunar eclipse (Look south midnight into Monday) Moon within 2 degrees of Jupiter (Look south midnight into Monday) 6 Mon Moon within 3 degrees of Saturn (Look southwest before dawn) 8 Wed Venus at greatest brightness (Look east at dawn) 11 Sat Moon within 2 degrees of Mars (Look south before dawn) 12 Sun Moon at last quarter phase 14 Tues Jupiter at opposition (Look south midnight into Wednesday) 17 Fri Moon just over 3 degrees from Venus (Look east before dawn) 20 Mon New Moon; Saturn at opposition (Look south midnight into Tuesday) 27 Mon Moon at first quarter phase 28 Tues Piscis Austrinid meteor shower peak (Best displays before dawn) 29 Wed Southern Delta Aquariid and Alpha Capricornid meteor showers peak AUGUST 2020 1 Sat Moon within 2 degrees of Jupiter (Look southeast after dusk) 2 Sun Moon within 3 degrees of Saturn (Look southeast after dusk) 3 Mon Full Moon (Sturgeon Moon) 9 Sun Conjunction of the Moon and -
Historical Events Around US Neptune Cycles US Neptune: 22°25’ Virgo Greg Knell
Historical Events around US Neptune Cycles US Neptune: 22°25’ Virgo Greg Knell As we are in the midst of the United States’ Second Neptune Opposition, I initiated this research to consider the historical threads of this nation’s Neptunian narrative throughout its past 245 years. That this Neptune Opposition arrived to usher in the US’ First Pluto Return and its Fifth Chiron Return emphasized its prominence. Upon delving into this work, however, I came of the opinion that to isolate Neptune and its cycle would not do justice to what I sense is its place and purpose in the greater scheme of all relevant planetary cycles. Given that one Uranus cycle is roughly half of a Neptune cycle, Uranus Oppositions and Returns coincide with Neptune Squares, Oppositions, and Returns. Since its inception, the United States has had six Neptunian Timeline events: one return, two oppositions, and three squares. Among these, Pluto’s Timeline events have coincided four times. Given Pluto’s erratic orbit, this was by no means guaranteed. Pluto’s opposition occurred almost two-thirds through its entire orbit – in 1935, not even 100 years ago – instead of at the half way point of slightly before the turn of the Twentieth Century. This timing provides a clue as to the purpose, the plan, and the mission of these planetary cycles at this particular point in history. While it would be possible to isolate Neptune, perhaps, or any of the other cycles, I choose not to do so, as I do not believe that inquiry is worthy of individual pursuit for my purposes here. -
Limb Polarization of Uranus and Neptune I
A&A 452, 657–668 (2006) Astronomy DOI: 10.1051/0004-6361:20053273 & c ESO 2006 Astrophysics Limb polarization of Uranus and Neptune I. Imaging polarimetry and comparison with analytic models H. M. Schmid1, F. Joos1, and D. Tschan1,2 1 Institut für Astronomie, ETH Zürich, 8092 Zürich, Switzerland e-mail: [email protected] 2 Alte Kantonsschule Aarau, Bahnhofstrasse 91, 5001 Aarau, Switzerland Received 20 April 2005 / Accepted 10 January 2006 ABSTRACT Imaging polarimetry of Uranus and Neptune in the R, i,andz bands are presented. In all observations a radial limb polarization on the order of 1% was detected with a position angle perpendicular to the limb. The polarization is higher in both planets for the shorter wavelength bands. As a first approximation, the polarization seems to be equally strong along the entire limb. This is unlike Jupiter and Saturn, where significant limb polarization is only observed at the poles. We determined flux-weighted averages of the limb polarization and radial limb polarization profiles, and investigated the degradation and cancellation effects in the polarization signal due to the seeing-limited spatial resolution of our observations. Taking this into account we derived corrected values for the limb polarization in Uranus and Neptune. The results are compared with analytic models for Rayleigh scattering atmospheres for the semi-infinite case and finite layers with ground albedo. The comparison shows that the detected polarization is compatible with expectations. This indicates that limb-polarization measurements offer a powerful diagnostic tool for investigating the properties of scattering particles in the upper atmospheres of Uranus and Neptune, in particular if more sophisticated numerical modeling of the limb polarization becomes available. -
Extended Mission Orbit #2 (XMO2, ~1500 Km Altitude)
Carol A. Raymond Deputy Principal Investigator SBAG 17 Jet Propulsion Laboratory, Caltech 13 Jun 2017 • Spacecraft and instruments are healthy and data return has been excellent to date • Primary mission ended on June 30 2016. All mission objectives and Level-1 requirements were met. • Extended mission at Ceres ends June 30 2017. All mission objectives and Level-1 requirements were met. • Primary mission data archive complete pending ongoing review; extended mission archive is up to date • NASA is considering options for continued operations beyond June 2017 2 • Loss of third reaction wheel on April 23rd limits Dawn’s lifetime – but otherwise does not affect the mission – dependent on hydrazine jets for attitude control – Lifetime decreases with orbit altitude • Dawn is currently in a ~20000x50000 km eccentric orbit • Recently performed opposition observation • Four special journal issues in work: – Icarus: Geological Mapping (in revision) – Icarus: Mineralogical Mapping (submitted) – MAPS: Composition/Crosscutting (in submission) – Icarus: Occator Crater (in progress) – Interest in a special issue on ground ice: contact Britney Schmidt if you would like to participate 3 Ceres Extended Mission Timeline Start of End of End of Extended Mission Extended Mission Project Operations Operations XM1 Science Plan Extended Mission Orbit #1 (XMO1, ~385 km altitude) • Obtain IR spectra of high-priority targets (VIR) ✓ • Expand high-resolution color imaging (FC) ✓ • Improve elemental mapping (GRaND) ✓ • Expand high-resolution surface coverage for topography