Photometric Properties of Ceres from Telescopic Observations using Dawn Framing Camera Color Filters Vishnu Reddy Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Email:
[email protected] Jian-Yang Li Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Bruce L. Gary Hereford Arizona Observatory, Hereford, Arizona, USA Juan A. Sanchez Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Robert D. Stephens Center for Solar System Studies, Landers, California, USA Ralph Megna Riverside Astronomical Society, Riverside, California, USA Daniel Coley Center for Solar System Studies, Landers, California, USA Andreas Nathues Max-Planck Institute for Solar System Research, Goettingen, Germany Lucille Le Corre Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Martin Hoffmann Max-Planck Institute for Solar System Research, Goettingen, Germany Pages: 40 Figures: 9 Tables: 5 1 Proposed Running Head: Ceres Photometry Dawn Editorial correspondence to: Vishnu Reddy Planetary Science Institute 1700 East Fort Lowell Road, Suite 106 Tucson 85719 (808) 342-8932 (voice)
[email protected] 2 Abstract The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres’ phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength.