Climate Classification Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Link Between the Double-Intertropical Convergence Zone Problem and Cloud Biases Over the Southern Ocean
Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean Yen-Ting Hwang1 and Dargan M. W. Frierson Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640 Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved February 15, 2013 (received for review August 2, 2012) The double-Intertropical Convergence Zone (ITCZ) problem, in which climate models show that the bias can be reduced by changing excessive precipitation is produced in the Southern Hemisphere aspects of the convection scheme (e.g., refs. 7–9) or changing the tropics, which resembles a Southern Hemisphere counterpart to the surface wind stress formulation (e.g., ref. 10). Given the complex strong Northern Hemisphere ITCZ, is perhaps the most significant feedback processes in the tropics, it is challenging to understand and most persistent bias of global climate models. In this study, we the mechanisms by which the sensitivity experiments listed above look to the extratropics for possible causes of the double-ITCZ improve tropical precipitation. problem by performing a global energetic analysis with historical Recent work in general circulation theory has suggested that simulations from a suite of global climate models and comparing one should not only look within the tropics for features that affect with satellite observations of the Earth’s energy budget. Our results tropical precipitation. A set of idealized experiments showed that show that models with more energy flux into the Southern heating a global climate model exclusively in the extratropics can Hemisphere atmosphere (at the top of the atmosphere and at the lead to tropical rainfall shifts from one side of the tropics to the surface) tend to have a stronger double-ITCZ bias, consistent with other (11). -
Info for Ankara Applicants
Information for Applicants and Reassignments to the Department of Defense Education Activity’s Ankara Elementary/High School in Ankara, Turkey Ankara Turkey is an UNACCOMPANIED DUTY LOCATION Is Ankara a good fit for you? When deciding, please consider that only the DoDEA employee is authorized to be in Turkey as part of this assignment, you are NOT permitted to have your dependents (family members) with you. This location offers an annual Renewal Agreement for Transportation, allowing employees the opportunity to travel back to the United States (US) to visit family. About Ankara, Turkey Ankara is the capital of Turkey, located in the central part of Anatolia with a population of about 4.5 million, it is Turkey's second-largest city after Istanbul. Ankara has a stable government and economy, it is on this strength, its NATO alliance, and its fairly well-developed infrastructure, it has become a leader in the region. Turkish is the official language; though English is widely understood and is used by some businesses. Islam is the predominant religion of Turkey although places of worship for other faiths exist in the city. Ankara has a continental climate with cold, snowy winters due to its inland location and elevation, and hot, dry summers. Monthly mean temperatures range from 0⁰C (32⁰F) in January to 23⁰C (74⁰F) in July. Ankara E/HS School Community Ankara school opened its doors in 1950 with a staff of 8 servicing a student body of 150 Kindergarten through 9th grade servicing children of US military families. In 1964, the present school buildings, located on a Turkish Military base in Ankara, were dedicated to former U.S. -
General Atmospheric Circulation of the Tropics
General Atmospheric Circulation of the Tropics By Herbert Riehl Department of Atmospheric Science Colorado State University Fort Collins, Colorado CURRENT PROBLEMS IN RESEi\RCII The General Atmospheric Circulation of the Tropics by Herbert Riehl Colorado State University In science. ,ve are always interested in a well-ordered simple package whenever such a package appears to be in the offing. There has been widespread belief that the general circulation of the tropics meets these requirements. The weather observations which have been gathered in increasing volume in the upper air over the tropics during the last 15 years" ho\vever, have thrown doubt on the validity of such a simple view. They appear to call for a more complex ap proach to an ultimate understanding of the tropical atmospheric ma chineryand of the interaction between tropical and temperate latitudes. The question no\v is: must we really accept an increased order of difficulty, or can the evidence of the new observations be reconciled with the older approach? If so, chances at arriving at a definite solu tion of the tropical general circulation problem within the next decade would be greatly enhanced.. In one respect the story has not changed; the tropics are a heat source for the atmosphere of higher latitudes. This fact, in broad terms. has been appreciated for centuries. Further, circumnaviga tion of the oceans by sailing vessels led to recognition of a second fact; the tropics also are the source of momentum for the westerly winds prevalent especially in temperate latitudes. Essentially half. of the globe has winds from east at the surface (fig. -
Köppen-Geiger Climate Classification and Bioclimatic
Discussions https://doi.org/10.5194/essd-2021-53 Earth System Preprint. Discussion started: 24 March 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data A 1-km global dataset of historical (1979-2017) and future (2020-2100) Köppen-Geiger climate classification and bioclimatic variables Diyang Cui1, Shunlin Liang1, Dongdong Wang1, Zheng Liu1 1Department of Geographical Sciences, University of Maryland, College Park, 20740, USA 5 Correspondence to: Shunlin Liang([email protected]) Abstract. The Köppen-Geiger climate classification scheme provides an effective and ecologically meaningful way to characterize climatic conditions and has been widely applied in climate change studies. The Köppen-Geiger climate maps currently available are limited by relatively low spatial resolution, poor accuracy, and noncomparable time periods. Comprehensive 10 assessment of climate change impacts requires a more accurate depiction of fine-grained climatic conditions and continuous long-term time coverage. Here, we present a series of improved 1-km Köppen-Geiger climate classification maps for ten historical periods in 1979-2017 and four future periods in 2020-2099 under RCP2.6, 4.5, 6.0, and 8.5. The historical maps are derived from multiple downscaled observational datasets and the future maps are derived from an ensemble of bias-corrected downscaled CMIP5 projections. In addition to climate classification maps, we calculate 12 bioclimatic variables at 1-km 15 resolution, providing detailed descriptions of annual averages, seasonality, and stressful conditions of climates. The new maps offer higher classification accuracy and demonstrate the ability to capture recent and future projected changes in spatial distributions of climate zones. -
Extreme Precipitation in the Tropics Is Closely Associated with Long-Lived Convective Systems ✉ Rémy Roca 1 & Thomas Fiolleau 1
ARTICLE https://doi.org/10.1038/s43247-020-00015-4 OPEN Extreme precipitation in the tropics is closely associated with long-lived convective systems ✉ Rémy Roca 1 & Thomas Fiolleau 1 Water and energy cycles are linked to global warming through the water vapor feedback and heavy precipitation events are expected to intensify as the climate warms. For the mid- latitudes, extreme precipitation theory has been successful in explaining the observations, 1234567890():,; however, studies of responses in the tropics have diverged. Here we present an analysis of satellite-derived observations of daily accumulated precipitation and of the characteristics of convective systems throughout the tropics to investigate the relationship between the organization of mesoscale convective systems and extreme precipitation in the tropics. We find that 40% of the days with more than 250 mm precipitation over land are associated with convective systems that last more than 24 hours, although those systems only represent 5% of mesoscale convective systems overall. We conclude that long-lived mesoscale convective systems that are well organized contribute disproportionally to extreme tropical precipitation. 1 Laboratoire d’Études en Géophysique et Océanographie Spatiales (Université de Toulouse III, CNRS, CNES, IRD), Toulouse, France. ✉ email: [email protected] COMMUNICATIONS EARTH & ENVIRONMENT | (2020) 1:18 | https://doi.org/10.1038/s43247-020-00015-4 | www.nature.com/commsenv 1 ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-020-00015-4 ater and energy cycles are intimately linked to global The characteristics of extreme precipitating storms in the tro- Wwarming through the water vapor feedback1. Specifi- pics remain mostly qualitative, lacking in key aspects of the life cally, as temperature increases, the concentration of cycle of organized convection. -
Specific Climate Classification for Mediterranean Hydrology
Hydrol. Earth Syst. Sci., 24, 4503–4521, 2020 https://doi.org/10.5194/hess-24-4503-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios Antoine Allam1,2, Roger Moussa2, Wajdi Najem1, and Claude Bocquillon1 1CREEN, Saint-Joseph University, Beirut, 1107 2050, Lebanon 2LISAH, Univ. Montpellier, INRAE, IRD, SupAgro, Montpellier, France Correspondence: Antoine Allam ([email protected]) Received: 18 February 2020 – Discussion started: 25 March 2020 Accepted: 27 July 2020 – Published: 16 September 2020 Abstract. The Mediterranean region is one of the most sen- the 2070–2100 period served to assess the climate change sitive regions to anthropogenic and climatic changes, mostly impact on this classification by superimposing the projected affecting its water resources and related practices. With mul- changes on the baseline grid-based classification. RCP sce- tiple studies raising serious concerns about climate shifts and narios increase the seasonality index Is by C80 % and the aridity expansion in the region, this one aims to establish aridity index IArid by C60 % in the north and IArid by C10 % a new high-resolution classification for hydrology purposes without Is change in the south, hence causing the wet sea- based on Mediterranean-specific climate indices. This clas- son shortening and river regime modification with the migra- sification is useful in following up on hydrological (water tion north of moderate and extreme winter regimes instead resource management, floods, droughts, etc.) and ecohydro- of early spring regimes. The ALADIN and CCLM regional logical applications such as Mediterranean agriculture. -
Climate Classification Revisited: from Köppen to Trewartha
Vol. 59: 1–13, 2014 CLIMATE RESEARCH Published February 4 doi: 10.3354/cr01204 Clim Res FREEREE ACCESSCCESS Climate classification revisited: from Köppen to Trewartha Michal Belda*, Eva Holtanová, Tomáš Halenka, Jaroslava Kalvová Charles University in Prague, Dept. of Meteorology and Environment Protection, 18200 Prague, Czech Republic ABSTRACT: The analysis of climate patterns can be performed separately for each climatic vari- able or the data can be aggregated, for example, by using a climate classification. These classifi- cations usually correspond to vegetation distribution, in the sense that each climate type is domi- nated by one vegetation zone or eco-region. Thus, climatic classifications also represent a con - venient tool for the validation of climate models and for the analysis of simulated future climate changes. Basic concepts are presented by applying climate classification to the global Climate Research Unit (CRU) TS 3.1 global dataset. We focus on definitions of climate types according to the Köppen-Trewartha climate classification (KTC) with special attention given to the distinction between wet and dry climates. The distribution of KTC types is compared with the original Köp- pen classification (KCC) for the period 1961−1990. In addition, we provide an analysis of the time development of the distribution of KTC types throughout the 20th century. There are observable changes identified in some subtypes, especially semi-arid, savanna and tundra. KEY WORDS: Köppen-Trewartha · Köppen · Climate classification · Observed climate change · CRU TS 3.10.01 dataset · Patton’s dryness criteria Resale or republication not permitted without written consent of the publisher 1. INTRODUCTION The first quantitative classification of Earth’s cli- mate was developed by Wladimir Köppen in 1900 Climate monitoring is mostly based either directly (Kottek et al. -
Tropical Horticulture: Lecture 4
Tropical Horticulture: Lecture 4 Lecture 4 The Köppen Classification of Climates The climatic classifications of the greatest agricultural value are those based on the interactions of temperature and precipitation. The most widely known and used system was devised by the Austrian geographer Wladimir Köppen. It is based on temperature, precipitation, seasonal characteristics, and the fact that natural vegetation is the best available expression of the climate of a region. A distinctive feature of the Köppen system is its use of symbolic terms to designate climatic types. The various climates are described by a code consisting of letters, each of which has a precise meaning. Köppen identified five basic climates: A = Tropical rainy B = Dry C = Humid, mild-winter temperate D = Humid, severe-winter temperate E = Polar Each basic climate is subdivided to describe different subclimates, denoted by a combination of capital and small letters. The capital letters S (steppe) and W (desert) subdivide the B, or dry, climates. Similarly T (tundra) and F (icecap) subdivide the E, or polar, climates. Small letters further differentiate climates. 1 Tropical Horticulture: Lecture 4 Critics have expressed the opinion that the Köppen classification is based on too few kinds of data, and that boundaries between the various climatic regions are too arbitrary. But in spite of these objections this system has gained widespread recognition and use. Its simplicity and general adherence to vegetational zones has made it the basis for many revisions and other classifications. -
Climate & Weather Continental Climate with Four Distinct
SOUTH KOREA - COUNTRY FACT SHEET GENERAL INFORMATION Climate & Weather Continental climate with four Time Zone GMT + 9 hours. distinct seasons. Language Korean Currency Won (KRW). Religion Buddhism, Protestantism, International 82 Catholicism, etc. Dialing Code Population About 50 million. Internet Domain .kr Political System Democracy. Emergency 112(Police) Numbers 119(Fire&Medical) Electricity 220 Voltage. Capital City Seoul. What documents Passport & Proof of Please confirm Monthly directly into a Bank required to open employment (after 3days of how salaries are Account. a local Bank arrival). paid? (eg monthly Account? directly into a Can this be done Bank Account) prior to arrival? 1 GENERAL INFORMATION Culture/Business Culture The traditional Confucian social structure is still prevalent. Age and seniority are important and juniors are expected to follow and obey their elders. It is also considered as an important manner at business. Therefore, people often ask you your age and sometimes your marital status to find out their position. These questions are not meant to intrude on one`s privacy. Health care/medical Hospitals and clinics in Korea are generally equipped with the latest treatment medical equipment, and the quality of medical service is quite high as well. Normally, hospitals open from 9 AM to 6 PM, but some hospitals operate a 24-hr emergency medical center offering advice and assistance over the phone and free interpretation service. Education As of May, 2015, there are 56 international schools in Korea: 21 in Seoul, 7 in Gyeonggi-do, 6 in Busan, 4 in Jeju island, and the rest in other provinces or cities. English is the main language in most international schools in Korea, and U.S style curricula are taught. -
Climate Change 2020
Continental AG - Climate Change 2020 C0. Introduction C0.1 (C0.1) Give a general description and introduction to your organization. As of December 31, 2019 the Continental Corporation consists of 581 companies, including non-controlled companies in addition to the parent company Continental AG. The Continental team is made up of 241,458 employees at a total of 595 locations in 59 countries and markets. The postal addresses of companies under our control are defined as locations. Continental has been divided into the group sectors Automotive Technologies, Rubber Technologies and Powertrain Technologies since January 1, 2020. These sectors comprise five business areas with 23 business units. A business area or business unit is classified according to technologies, product groups and services. The business areas and business units have overall responsibility for their business, including their results. Overall responsibility for managing the company is borne by the Executive Board of Continental Aktiengesellschaft (AG). Each business area is represented by one Executive Board member. An exception is the Powertrain business area, which has had its own management since January 1, 2019, following its transformation into an independent legal entity. To ensure a unified business strategy in the Automotive Technologies group sector, the Automotive Board was established on April 1, 2019, with a member of the Executive Board as “spokesman.” The new board is intended to speed up decision-making processes and generate synergies from the closer ties between the Autonomous Mobility and Safety business area and the Vehicle Networking and Information business area. With the exception of Corporate Purchasing, the central functions of Continental AG are represented by the chairman of the Executive Board, the chief financial officer and the Executive Board member responsible for Human Relations. -
Assessing Stack Ventilation Strategies in the Continental Climate of Beijing Using CFD Simulations
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Central Archive at the University of Reading Assessing stack ventilation strategies in the continental climate of Beijing using CFD simulations Emmanuel A Essah a,b, Runming Yao b, Alan Short c a Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, China b School of Construction Management and Engineering, University of Reading,Whiteknights, PO Box 219, Reading RG6 6AW, UK c Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB21PX,UK Abstract The performance of a stack ventilated building compared with two other building designs have been predicted numerically for ventilation and thermal comfort effects in a typical climate of Beijing, China. The buildings were configured based on natural ventilation. Using actual building sizes, Computational Fluid Dynamics (CFD) models were developed, simulated and analysed in Fluent, an ANSYS platform. This paper describes the general design consideration that has been incorporated, the ventilation strategies and the variation in meshing and boundary conditions. The predicted results show that the ventilation flow rates are important parameters to ensure fresh air supply. A Predicted Mean Vote (PMV) model based on ISO-7730 (2005) and the Predicted Percentage Dissatisfied (PPD) indices were simulated using Custom Field Functions (CFF) in the fluent design interface for transition seasons of Beijing. The results showed -
Evaluation of Precipitation Climatology Derived from TRMM Multi-Satellite Precipitation Analysis (TMPA) Monthly Product Over Land with Two Gauged-Based Products
Climate 2015, 3, 964-982; doi:10.3390/cli3040964 OPEN ACCESS climate ISSN 2225-1154 www.mdpi.com/journal/climate Article Evaluation of Precipitation Climatology Derived from TRMM Multi-Satellite Precipitation Analysis (TMPA) Monthly Product over Land with Two Gauged-Based Products Zhong Liu Center for Spatial Information Science and Systems (CSISS), George Mason University, 4400 University Drive, Fairfax, VA 22030, USA; E-Mail: [email protected]; Tel.: +1-301-614-5764. Academic Editor: Menglin Susan Jin Received: 3 April 2015 / Accepted: 27 October 2015 / Published: 18 November 2015 Abstract: The NASA/JAXA Tropical Rainfall Measuring Mission (TRMM) has been in operation for over 17 years since 1997. The length of TRMM is far shorter than those from ground observations, raising a question as to whether TRMM derived climatology products are good enough for research and applications. In this study, three climatologies derived from a blended product (the TRMM Multi-Satellite Precipitation Analysis (TMPA) monthly product or 3B43) and gauge-based ground observations (Global Precipitation Climatology Center (GPCC) and Willmott and Matsuura (WM)) are compared over land on a global scale (50° N–50° S) to assess the performance and weaknesses of the TMPA-derived climatology. Results show that the 3B43 climatology matches well with the two gauge-based climatologies in all seasons in terms of spatial distribution, zonal means as well as seasonal variations. However, large variations are found in light rain (<0.5 mm/day) regions such as the Sahara Desert. At high rain rates, large negative biases (3B43 < WM < GPCC) are found in orographically influenced regions such as windward sides of monsoon mountains in JJA, which is associated with underestimation of shallow orographic rain rates in microwave radiometer algorithms and sparse gauge data for bias correction.