European Patent Specification

Total Page:16

File Type:pdf, Size:1020Kb

European Patent Specification (19) TZZ Z_T (11) EP 2 445 506 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 45/06 (2006.01) A61K 31/7048 (2006.01) 31.12.2014 Bulletin 2015/01 (86) International application number: (21) Application number: 10742574.6 PCT/IB2010/001713 (22) Date of filing: 23.06.2010 (87) International publication number: WO 2010/150100 (29.12.2010 Gazette 2010/52) (54) THE USE OF SPINOSYNS AND SPINOSYN COMPOSITIONS AGAINST DISEASES CAUSED BY PROTOZOANS, VIRAL INFECTIONS AND CANCER DIE VERWENDUNG VON SPINOSYN UND SPINOSYN ENTHALTENDEN ZUBEREITUNGEN ZUR BEHANDLUNG VON PROTOZOEN VERURSACHTEN ERKRANKUNGEN, VON VIRALEN INFEKTIONEN UND VON KREBS. UTLISATION DE SPINOSYNES OU DU PREPARATION CONTENANT DE SPINOSYNE POUR COMBATTRE LES INFECTION À PROTOZOAIRES, LES INFECTIONS VIRALS ET LE CANCER. (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB WO-A1-01/12156 WO-A1-2005/112950 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO WO-A2-2009/118663 PL PT RO SE SI SK SM TR • STEBBINS K E ET AL: "Spinosad insecticide: (30) Priority: 24.06.2009 US 220059 P Subchronic and chronic toxicity and lack of carcinogenicity in CD-1 mice" TOXICOLOGICAL (43) Date of publication of application: SCIENCES, vol. 65, no. 2, February 2002 02.05.2012 Bulletin 2012/18 (2002-02), pages 276-287, XP002603459 ISSN: 1096-6080 (73) Proprietors: • DEAMICIS CARL V ET AL: "Physical and • Entarco SA biological properties of the spinosyns: novel 145 64 Kifissia (GR) macrolide pest-control agents from • Kritikou, Christine fermentation" ACS SYMPOSIUM SERIES, 145 64 Kifissia (GR) AMERICAN CHEMICAL SOCIETY/OXFORD UNIVERSITY PRESS, US, vol. 658, 1 January 1997 (72) Inventors: (1997-01-01), pages 144-154, XP009125573 ISSN: • KRITIKOU, Christine 0097-6156 GR-145 64 Kifissia (GR) • SHIN E -HYUN ET AL: "Insecticide • SALIBA, Kevin, J. susceptibilities of Anopheles sinensis (Diptera: Canberra, ACT 2617 (AU) Culicidae) larvae from Paju- shi,Korea." KOREAN JOURNAL OF ENTOMOLOGY, vol. 33, no. 1, (74) Representative: Pohlman, Sandra M. March 2003 (2003-03), pages 33-37, XP009139544 df-mp Dörries Frank-Molnia & Pohlman ISSN: 1011-9493 Patentanwälte Rechtsanwälte PartG mbB Theatinerstrasse 16 80333 München (DE) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 445 506 B1 Printed by Jouve, 75001 PARIS (FR) EP 2 445 506 B1 Description [0001] The present invention relates to the use of spinosyns and spinosyn compositions as pharmaceuticals for the prophylaxis (prevention) and treatment of protozoan infections and/or disorders relating to a protozoan infection,such 5 as for example malaria and leishmania, viral infections such as for example Herpes Simplex virus and Influenza virus andneoplastic disorders. Advantageously,compositions ofthe invention inhibit protozoan and virus growthand neoplastic cell viability and proliferation with only minimal or no disruption or harm to the host which may be an animal or human. [0002] Protozoa are singled-celled eukaryotic (i.e., possessing a well-defined nucleus) organisms that can infect hu- mans and animals. They are among the simplest of all living organisms. All protozoa possess at least one nucleus, and 10 many species are multinucleate. Parasitic protozoa feed in a variety of ways. Many live in the nutrient-rich medium of the body fluids-e.g., the blood or cells of their host. Plasmodium, for example, engulfs portions of the red blood cells or liver cells in which they live. [0003] Some clinically important representatives include the genus Plasmodium spp., Leishmania spp., Toxoplasma gondii, Babesia spp., Cryptosporidium spp., Sarcocystis spp., Coccldea spp., Naegleria spp.,Giardia lamblia, Cyclospora 15 cayetanensis, Isospora belli,Trichomonas vaginalis and Trypanosoma spp. [0004] Protozoa cause serious diseases in humans and animals. For example, protozoans belonging to the infraking- dom Excavata and phylums Euglenozoa, Percolozoa, Metamonada,(Cavalier-Smith, "The Neomuranorigin of Archae- bacteria; The Negibacterial Root of the Universal Tree and Bacterial Megaclassification." International Journal of Sys- fematic and Evolutionary Microbiology, 52: 7-76, 2002,) may cause trypanosomiasis, primary amoebic meningoencepha- 20 litis (caused by naegleria fowleri protozoan), leishmaniasis, and trichomoniasis. Protozoan belonging to the phylum apicomplexa, Id., may cause malaria, babesiosis, cryptosporidiosis, toxoplasmosis, Isosporiasis, cyclosporiasis, sar- cosporidiosis, coccidiosis. [0005] Trypanosomiasis, a neglected tropical disease (NTD) according to WHO, is the name of several diseases in vertebrates, caused by parasitic protozoan trypanosomes. Trypanosoma brucei, a parasitic protist species that belongs 25 to the genus Trypanosoma, phylum Euglenozoa, infrakingdom Excavata, causes African trypanosomiasis in humans and nagana in animals in Africa. There are 3 sub-species of T. brucei: T. b. brucei, T. b. gambiense and T. b. rhodesiense. These obligate parasites have two hosts - an insect vector and mammalian host. Because of the large difference between these hosts, the trypanosome undergoes complex changes during its life cycle to facilitate its survival in the insect gut and the mammalian bloodstream. Glycolysis is essential to the parasitic protozoan Trypanosoma brucei. The first step 30 in this metabolic pathway is mediated by hexokinase. More than 66 million women, men, and children in 36 countries of sub-Saharan Africa suffer from trypanosomiasis. The other human form of trypanosomiasis, called Chagas disease, causes 21,000 deaths per year mainly in Latin America. There is an urgent need for the development of new drug therapies as current treatments can prove fatal to the patient. [0006] Toxoplasmosis is among the most common parasitic diseases of man. Serosurveys suggest prevalence rates 35 as high as 70-90% in many areas of both the developing and developed world. Between 10-45% of Americans become infected at some point in their lives. Toxoplasma gondii is the causative agent in toxoplasmosis. In contrast to the mild clinical symptoms of infection seen in a healthy individual with an intact immune system, hosts with weakened, or otherwise compromised, immune systems can have serious clinical effects from toxoplasma infection. [0007] Leishmaniasis, a neglected tropical disease (NTD) according to WHO, is a life-threatening disease caused by 40 Leishmania spp. that is a major health problem in much of the world, including Brazil, China, East Africa, India and areas of the Middle East. The disease is also endemic in the Mediterranean region, including southern France, Italy, Greece, Spain, Portugal and North Africa. An estimated 10-15 million people are infected, and 400,000 new cases occur each year. Leishmania organisms are intracellular protozoan parasites of macrophages that cause a wide range of clinical diseases in humans and domestic animals, primarily dogs. In some infections, the parasite may lie dormant for many 45 years. In other cases, the host may develop one of a variety of forms of leishmaniasis. Visceral leishmaniasis, also called kala-azar, is produced by several subspecies of L. donovani. This form of the disease is systemic, primarily affecting the liver, spleen, bone marrow, and other viscera. The disease is usually fatal if not treated. Cutaneous leishmaniasis, the most common form, causes a sore at the bite site which heals in a few months to a year, leaving an unpleasant looking scar. This form can progress to any of the other three forms. Diffuse cutaneous leishmaniasis produces wide- 50 spread skin lesions which resemble leprosy and is particularly difficult to treat. Mucocutaneous leishmaniasis begins with skin ulcers which spread causing tissue damage, particularly to the nose and mouth. [0008] There are 20 species of Leishmania that infect humans, including L. donovani, L. chagasi, L. infantum, L. major, L. amazonensis, L. braziliensis, L. panamensis, L. mexicana, L. tropica, and L. guyanensis. [0009] The life cycles of members of the genus involve a vertebrate host and a vector (a sand fly) that transmits the 55 parasite between vertebrate hosts. Leishmaniasis is transmitted by the bite of female phlebotomine sandflies. The sandflies inject the infective stage, metacyclic promastigotes, during blood meals. Metacyclic promastigotes that reach the puncture wound are phagocytized by macrophages and transform into amastigotes. Amastigotes multiply in infected cells and affect different tissues, depending, in part, on whichLeishmania species is involved. These differing tissue 2 EP 2 445 506 B1 specificities cause the differing clinical manifestations of the various forms of leishmaniasis. Sandflies become infected during blood meals on an infected host when they ingest macrophages infected with amastigotes. In the sandfly’s midgut, the parasites differentiate into promastigotes, which multiply, differentiate into metacyclic promastigotes and migrate to the proboscis. 5 [0010] Leishmaniasis is considered to be one of the opportunist diseases of AIDS. Approximately 1500 cases of HIV/Leishmania co-infection are counted in the south of Europe which represents
Recommended publications
  • Immunity Parasitic Infection
    BLUE BOX RULES ARE FOR PROOF STAGE ONLY. DELETE BEFORE FINAL PRINTING. Editor LAMB IMMUNITY TO PARASITIC INFECTION PARASITIC IMMUNITY TO INFECTION Editor TRACEY J LAMB, Emory University School of Medicine, USA Parasitic infections remain a significant cause of morbidity and mortality in the world today. Often endemic in developing countries, many parasitic diseases are neglected in terms of research IMMUNITY funding and much remains to be understood about parasites and the interactions they have with the immune system. This book examines current knowledge about immune responses to parasitic TO infections affecting humans, including interactions that occur during co-infections, and how immune responses may be manipulated to develop therapeutic interventions against parasitic infection. For easy reference, the most commonly studied parasites are examined in individual chapters written by investigators at the forefront of their field. An overview of the immune system, as well as introductions PARASITIC to protozoan and helminth parasites, is included to guide background reading. A historical perspective of the field of immunoparasitology acknowledges the contributions of investigators who have been instrumental in developing this field of research. INFECTION • Written by investigators at the forefront of the field • Includes a glossary of terms for easy reference • Illustrated in full-colour throughout • Features separate sections on co-infection, applied parasitology and the development of vaccines against parasitic infections This book will be invaluable to advanced undergraduates and masters students as well as PhD students who are beginning their graduate research project in an area of immunoparasitology. A companion website with additional resources Editor TRACEY J LAMB is available at www.wiley.com/go/lamb/immunity Cover design by Dan Jubb Immunity to Parasitic Infection Immunity to Parasitic Infection Edited by Tracey J.
    [Show full text]
  • Artemisinin Resistance: Current Status and Scenarios for Containment
    REVIEWS Artemisinin resistance: current status and scenarios for containment Arjen M. Dondorp*‡, Shunmay Yeung*§, Lisa White*‡, Chea Nguon§, Nicholas P.J. Day*‡, Duong Socheat§|| and Lorenz von Seidlein*¶ Abstract | Artemisinin combination therapies are the first-line treatments for uncomplicated Plasmodium falciparum malaria in most malaria-endemic countries. Recently, partial artemisinin-resistant P. falciparum malaria has emerged on the Cambodia–Thailand border. Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years, and the availability of substandard artemisinins, have probably been the main driving force in the selection of the resistant phenotype in the region. A multifaceted containment programme has recently been launched, including early diagnosis and appropriate treatment, decreasing drug pressure, optimising vector control, targeting the mobile population, strengthening management and surveillance systems, and operational research. Mathematical modelling can be a useful tool to evaluate possible strategies for containment. Parenteral In nearly all countries in which malaria is endemic, antimalarial properties (artemisinin) was identified, and Administered by injection. artemisinin combination therapies (ACT) are now the several more potent derivatives were synthesized, includ- recommended first-line therapy for uncomplicated ing artesunate, artemether and dihydroartemisinin11 Plasmodium falciparum malaria, a policy endorsed by (FIG. 1). Artemisinin derivatives have an excellent safety the WHO1. This change in policy followed a period profile in the treatment of malaria, a rapid onset of action of increasing failure rates with chloroquine and later and are active against the broadest range of stages in the sulphadoxine–pyrimethamine treatment, which arose life cycle of Plasmodium spp. compared with other anti- from the development of resistant P.
    [Show full text]
  • Intestinal Protozoan Parasites in Northern India – Investigations on Transmission Routes
    Intestinal protozoan parasites in Northern India – investigations on transmission routes Philosophiae Doctor (PhD) Thesis Kjersti Selstad Utaaker Department of Food Safety and Infection Biology Faculty of Veterinary Medicine Norwegian University of Life Sciences Adamstuen (2017) Thesis number 2018:10 ISSN 1894-6402 ISBN 978-82-575-1750-2 1 2 To Jenny, Vilmer, Viljar and Ivo. “India can do it. People of India can do it.” – PM Modi on Swachh Bharat Abhiyan 3 4 Contents Acknowledgements ................................................................................................................................. 7 Abbreviations ........................................................................................................................................ 10 List of research papers .......................................................................................................................... 12 List of additional papers ........................................................................................................................ 14 Summary ............................................................................................................................................... 15 Sammendrag (Norwegian summary) .................................................................................................... 18 सारा車श (Hindi summary) ......................................................................................................................... 21 1. Introduction ..................................................................................................................................
    [Show full text]
  • The Stem Cell Revolution Revealing Protozoan Parasites' Secrets And
    Review The Stem Cell Revolution Revealing Protozoan Parasites’ Secrets and Paving the Way towards Vaccine Development Alena Pance The Wellcome Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, UK; [email protected] Abstract: Protozoan infections are leading causes of morbidity and mortality in humans and some of the most important neglected diseases in the world. Despite relentless efforts devoted to vaccine and drug development, adequate tools to treat and prevent most of these diseases are still lacking. One of the greatest hurdles is the lack of understanding of host–parasite interactions. This gap in our knowledge comes from the fact that these parasites have complex life cycles, during which they infect a variety of specific cell types that are difficult to access or model in vitro. Even in those cases when host cells are readily available, these are generally terminally differentiated and difficult or impossible to manipulate genetically, which prevents assessing the role of human factors in these diseases. The advent of stem cell technology has opened exciting new possibilities to advance our knowledge in this field. The capacity to culture Embryonic Stem Cells, derive Induced Pluripotent Stem Cells from people and the development of protocols for differentiation into an ever-increasing variety of cell types and organoids, together with advances in genome editing, represent a huge resource to finally crack the mysteries protozoan parasites hold and unveil novel targets for prevention and treatment. Keywords: protozoan parasites; stem cells; induced pluripotent stem cells; organoids; vaccines; treatments Citation: Pance, A. The Stem Cell Revolution Revealing Protozoan 1. Introduction Parasites’ Secrets and Paving the Way towards Vaccine Development.
    [Show full text]
  • Evolution of Plasmodium Falciparum Drug Resistance: Implications for the Development and Containment of Artemisinin Resistance
    Jpn. J. Infect. Dis., 65, 465-475, 2012 Invited Review Evolution of Plasmodium falciparum drug resistance: implications for the development and containment of artemisinin resistance Toshihiro Mita1,2* and Kazuyuki Tanabe3,4 1Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421; 2Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, Tokyo 162-8666; and 3Laboratory of Malariology and 4Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan (Received March 15, 2012) CONTENTS: 1. Introduction 5. Artemisinin combination therapies (ACTs) and 2. Life cycle of P. falciparum resistance to artemisinins 3. Mechanisms of P. falciparum resistance to conven- 5–1. Artemisinin derivatives tional antimalarial drugs 5–2. ACTs 3–1. Chloroquine 5–3. Resistance and reduced susceptibility to arte- 3–2. Pyrimethamine and sulfadoxine misinins 4. Geographical spread of resistance to conventional 6. The Thailand-Cambodia border and the contain- antimalarial drugs ment of artemisinin resistance 4–1. Chloroquine 6–1. Thailand-Cambodia border: epicenter of drug 4–2. Pyrimethamine resistance 4–3. Sulfadoxine 6–2. Resistance and the Greater Mekong 6–3. Implications for the containment of artemisi- nin resistance 7. Concluding remarks SUMMARY: Malaria is a protozoan disease transmitted by the bite of the Anopheles mosquito. Among five species that can infect humans, Plasmodium falciparum is responsible for the most severe human malaria. Resistance of P. falciparum to chloroquine and pyrimethamine/sulfadoxine, conventionally used antimalarial drugs, is already widely distributed in many endemic areas. As a result, artemisinin- based combination therapies have been rapidly and widely adopted as first-line antimalarial treatments since the mid-2000s.
    [Show full text]
  • Malaria Medicines Landscape
    2015 Malaria Medicines Landscape MARCH 2015 UNITAID Secretariat World Health Organization Avenue Appia 20 CH-1211 Geneva 27 Switzerland T +41 22 791 55 03 F +41 22 791 48 90 [email protected] www.unitaid.org UNITAID is hosted and administered by the World Health Organization © 2015 World Health Organization (Acting as the host organization for the Secretariat of UNITAID) The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind either expressed or implied. The responsibility and use of the material lie with the reader. In no event shall the World Health Organization be liable for damages arising from its use. This report was prepared by Katerina Galluzzo and Alexandra Cameron with support from UNITAID. All reasonable precautions have been taken by the author to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader.
    [Show full text]
  • WHO Guidelines for the Treatment of Malaria
    GTMcover-production.pdf 11.1.2006 7:10:05 GUIDELINES FOR THE TREATMENT O F M A L A R I A GUIDELINES FOR THE TREATMENT OF MALARIA Guidelines for the treatment of malaria Guidelines for the treatment of malaria WHO Library Cataloguing-in-Publication Data Guidelines for the treatment of malaria/World Health Organization. Running title: WHO guidelines for the treatment of malaria. 1. Malaria – drug therapy. 2. Malaria – diagnosis. 3. Antimalarials – administration and dosage. 4. Drug therapy, Combination. 5. Guidelines. I. Title. II. Title: WHO guidelines for the treatment of malaria. ISBN 92 4 154694 8 (NLM classification: WC 770) ISBN 978 92 4 154694 2 WHO/HTM/MAL/2006.1108 © World Health Organization, 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20, avenue Appia, 1211 Geneva 27, Switzerland (tel. +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Protozoal-Related Mortalities in Endangered Hawaiian Monk Seals Neomonachus Schauinslandi
    Vol. 121: 85–95, 2016 DISEASES OF AQUATIC ORGANISMS Published September 26 doi: 10.3354/dao03047 Dis Aquat Org Protozoal-related mortalities in endangered Hawaiian monk seals Neomonachus schauinslandi Michelle M. Barbieri1,*, Lizabeth Kashinsky2, David S. Rotstein3, Kathleen M. Colegrove4, Katherine H. Haman5,6,7, Spencer L. Magargal7, Amy R. Sweeny7, Angela C. Kaufman2, Michael E. Grigg7, Charles L. Littnan1 1National Oceanic and Atmospheric Administration, Pacific Islands Fisheries Science Center, Protected Species Division, Hawaiian Monk Seal Research Program, Honolulu, HI 96818, USA 2Joint Institute for Marine and Atmospheric Research, University of Hawai’i at Ma¯ noa, 1000 Pope Road, Marine Sciences Building 312, Honolulu, HI 96822 USA 3Marine Mammal Pathology Services, Olney, MD 20832, USA 4Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Brookfield, IL 60513, USA 5Health and Genetics Program, Washington Department of Fish and Wildlife, Olympia, WA 98501, USA 6Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada 7Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, USA ABSTRACT: Protozoal infections have been widely documented in marine mammals and may cause morbidity and mortality at levels that result in population level effects. The presence and potential impact on the recovery of endangered Hawaiian monk seals Neomonachus schauins- landi by protozoal pathogens was first identified in the carcass of a stranded adult male with dis- seminated toxoplasmosis and a captive monk seal with hepatitis. We report 7 additional cases and 2 suspect cases of protozoal-related mortality in Hawaiian monk seals between 2001 and 2015, including the first record of vertical transmission in this species.
    [Show full text]
  • Predominance of Blastocystis Sp. Infection Among School Children in Peninsular Malaysia
    RESEARCH ARTICLE Predominance of Blastocystis sp. Infection among School Children in Peninsular Malaysia Kalimuthu Nithyamathi1, Samudi Chandramathi2, Suresh Kumar1* 1 Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia * [email protected] a11111 Abstract Background One of the largest cross-sectional study in recent years was carried out to investigate the prevalence of intestinal parasitic infections among urban and rural school children from five OPEN ACCESS states namely Selangor, Perak, Pahang, Kedah and Johor in Peninsula Malaysia. This Citation: Nithyamathi K, Chandramathi S, Kumar S information would be vital for school authorities to influence strategies for providing better (2016) Predominance of Blastocystis sp. Infection health especially in terms of reducing intestinal parasitism. among School Children in Peninsular Malaysia. PLoS ONE 11(2): e0136709. doi:10.1371/journal. pone.0136709 Methods and Principal Findings Editor: Henk D. F. H. Schallig, Royal Tropical A total of 3776 stool cups was distributed to 26 schools throughout the country. 1760 Institute, NETHERLANDS (46.61%) responded. The overall prevalence of intestinal parasitic infection in both rural and Received: August 12, 2014 urban areas was 13.3%, with Blastocystis sp (10.6%) being the most predominant, followed Accepted: August 8, 2015 by Trichuris trichiura (3.4%), Ascaris lumbricoides (1.5%) and hook worm infection (0.9%). Published: February 25, 2016 Only rural school children had helminthic infection. In general Perak had the highest infec- tion (37.2%, total, n = 317), followed by Selangor (10.4%, total, n = 729), Pahang (8.6%, Copyright: © 2016 Nithyamathi et al.
    [Show full text]
  • Prevalence of Intestinal Protozoan Infection Among Patients in Hawassa City Administration Millennium Health Center, Ethiopia
    Journal of Applied Biotechnology & Bioengineering Research Article Open Access Prevalence of intestinal protozoan infection among patients in Hawassa city administration millennium health center, Ethiopia Abstract Volume 5 Issue 4 - 2018 Current retrospective study was carried out from April to May, 2009 E.C. to determine the prevalence of intestinal protozoan parasitic infection in Hawassa city administration Beyene Dobo millennium health center from 2004-2008 E.C. From the study, a total of 89423 peoples of Hawassa University, Ethiopia both males and females were examined for various intestinal protozoan parasitic infection test. From these 39895(44.61%) were positive to intestinal protozoan parasitic infection. Correspondence: Beyene Dobo, Hawassa University, College The study shows that, Entamoeba histolytica and Giardia lambila were the most common of Natural and Computational Sciences, P.O.Box: 05, Hawassa, Ethiopia, Email [email protected] intestinal protozoan parasitic infections among patients. Between these, Entamoeba histolytica was highly prevalent (57.53%) and Giardia lambila was the next prevalent Received: March 30, 2018 | Published: July 17, 2018 (42.47%) intestinal protozoan parasitic infections. With over all age association the most infected age groups were less than 10 years old (22.98%) and the least affected age groups were greater than 50 years old peoples (16.75%). And the most infected sex groups were males (50.98%) and the less infected sex groups were females (49.02%). According to the current study the infection of intestinal protozoan such as: Entamoeba histolytica/dispar and Giardia lambila were highly distributed in Hawassa city administration millennium health center. So, to minimize or inhibit the spread and impact of its infection all community members should get awareness for proportion of personal and environmental hygiene and this should be the responsibility of all individuals.
    [Show full text]
  • New Trends in Anti-Malarial Agents
    Current Medicinal Chemistry, 2002, 9, 1435-1456 1435 New Trends in Anti-Malarial Agents 1,2 3 2 Michel Frédérich* , Jean-Michel Dogné* , Luc Angenot1 and Patrick De Mol 1 Laboratory of Pharmacognosy, Natural and Synthetic Drugs Research Center, University of Liège, CHU Sart- Tilman B36, 4000 Liège, Belgium 2 Laboratory of Medical Microbiology, University of Liège, CHU Sart-Tilman B23, 4000 Liège, Belgium 3 Laboratory of Medicinal Chemistry, Natural and Synthetic Drugs Research Center, University of Liège, CHU Sart-Tilman B36, 4000 Liège, Belgium Abstract: Malaria is the major parasitic infection in many tropical and subtropical regions, leading to more than one million deaths (principally young African children) out of 400 million cases each year (WHO world health report 2000). More than half of the world’s population live in areas where they remain at risk of malaria infection. During last years, the situation has worsened in many ways, mainly due to malarial parasites becoming increasingly resistant to several antimalarial drugs. Furthermore, the control of malaria is becoming more complicated by the parallel spread of resistance of the mosquito vector to currently available insecticides. Discovering new drugs in this field is therefore a health priority. Several new molecules are under investigation. This review describes the classical treatments of malaria and the latest discoveries in antimalarial agents, especially artemisinin and its recent derivatives as well as the novel peroxidic compounds. 1. INTRODUCTION virulence and drug resistance. P. falciparum may cause the conditions known as cerebral malaria, which is often fatal. Malaria is the major parasitic infection in many tropical and subtropical regions, leading to more than one million deaths The life cycle of the malaria parasite is complex [Fig.
    [Show full text]
  • Infection Toxoplasma Gondii Susceptibility During Neutrophil
    CXCR2 Deficiency Confers Impaired Neutrophil Recruitment and Increased Susceptibility During Toxoplasma gondii Infection This information is current as of September 24, 2021. Laura Del Rio, Soumaya Bennouna, Jesus Salinas and Eric Y. Denkers J Immunol 2001; 167:6503-6509; ; doi: 10.4049/jimmunol.167.11.6503 http://www.jimmunol.org/content/167/11/6503 Downloaded from References This article cites 56 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/167/11/6503.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. CXCR2 Deficiency Confers Impaired Neutrophil Recruitment and Increased Susceptibility During Toxoplasma gondii Infection1 Laura Del Rio,† Soumaya Bennouna,* Jesus Salinas,† and Eric Y. Denkers*2 Neutrophil migration to the site of infection is a critical early step in host immunity to microbial pathogens, in which chemokines and their receptors play an important role.
    [Show full text]