Immunity Parasitic Infection
Total Page:16
File Type:pdf, Size:1020Kb
BLUE BOX RULES ARE FOR PROOF STAGE ONLY. DELETE BEFORE FINAL PRINTING. Editor LAMB IMMUNITY TO PARASITIC INFECTION PARASITIC IMMUNITY TO INFECTION Editor TRACEY J LAMB, Emory University School of Medicine, USA Parasitic infections remain a significant cause of morbidity and mortality in the world today. Often endemic in developing countries, many parasitic diseases are neglected in terms of research IMMUNITY funding and much remains to be understood about parasites and the interactions they have with the immune system. This book examines current knowledge about immune responses to parasitic TO infections affecting humans, including interactions that occur during co-infections, and how immune responses may be manipulated to develop therapeutic interventions against parasitic infection. For easy reference, the most commonly studied parasites are examined in individual chapters written by investigators at the forefront of their field. An overview of the immune system, as well as introductions PARASITIC to protozoan and helminth parasites, is included to guide background reading. A historical perspective of the field of immunoparasitology acknowledges the contributions of investigators who have been instrumental in developing this field of research. INFECTION • Written by investigators at the forefront of the field • Includes a glossary of terms for easy reference • Illustrated in full-colour throughout • Features separate sections on co-infection, applied parasitology and the development of vaccines against parasitic infections This book will be invaluable to advanced undergraduates and masters students as well as PhD students who are beginning their graduate research project in an area of immunoparasitology. A companion website with additional resources Editor TRACEY J LAMB is available at www.wiley.com/go/lamb/immunity Cover design by Dan Jubb Immunity to Parasitic Infection Immunity to Parasitic Infection Edited by Tracey J. Lamb Emory University School of Medicine, USA A John Wiley & Sons, Ltd., Publication This edition first published 2012©2012 by John Wiley & Sons, Ltd Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specific method, diagnosis, or treatment by physicians for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organisation or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organisation or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom. Library of Congress Cataloging-in-Publication Data Immunity to parasitic infection / edited by Tracey Lamb. p.;cm. Includes bibliographical references and index. ISBN 978-0-470-97247-2 (hardback) – ISBN 978-0-470-97248-9 (pbk.) I. Lamb, Tracey. [DNLM: 1. Parasitic Diseases–immunology. 2. Immune System–physiology. 3. Immunity–physiology. 4. Parasitic Diseases–therapy. WC 695] 616.96071–dc23 2012023208 A catalogue record for this book is available from the British Library. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Cover designer: Dan Jubb Set in, India First Impression 2012 Contents List of Contributors xiii Introduction: Immunoparasitology: The Making of a Modern Immunological science 1 Alan Sher Section 1 1 Notes on the Immune System 15 Tracey J. Lamb 1.1 The immune system 15 1.2 Innate immune processes 17 1.3 The complement cascade 19 1.4 Innate recognition 20 1.5 Pattern recognition receptors 21 1.6 Innate immune cells 23 1.7 Communication in the immune system 31 1.8 Adaptive immunity 31 1.9 The role of the MHC in the immune response 34 1.10 T cell activation and cellular-mediated immunity 36 1.11 B cells and the humoral response 43 1.12 Cell trafficking around the body 49 1.13 Cellular immune effector mechanisms 50 1.14 Hypersensitivity reactions 52 References for further reading 54 Section 2 2 Introduction to Protozoan Infections 61 David B. Guiliano and Tracey J. Lamb 2.1 The protozoa 61 2.2 Amoebozoa 62 2.3 Excavata 67 2.4 Harosa 75 2.5 Protozoa that are now fungi 81 2.6 Taxonomy and the evolution of the parasitic protozoa 82 2.7 Genomic and post genomic exploration of protozoan biology 83 vi Contents 2.8 Summary 87 2.9 General information on protozoa 88 References for further reading 88 3 Apicomplexa: Malaria 91 Tracey J. Lamb and Francis M. Ndung’u 3.1 Malaria 91 3.2 Recognition of malaria parasites 94 3.3 Innate effector mechanisms 95 3.4 Adaptive immunity 98 3.5 Memory responses 101 3.6 Immune evasion 101 3.7 Immunopathology 103 References for further reading 105 4 Apicomplexa: Toxoplasma gondii 107 Emma Wilson 4.1 Introduction 107 4.2 Life cycle and pathogenesis 107 4.3 Innate immune responses 111 4.4 Evasion strategies 113 4.5 Adaptive immune responses 115 4.6 CNS infection 117 4.7 Conclusions 118 References for further reading 118 5 Apicomplexa: Cryptosporidium 121 JanR.MeadandMichaelJ.Arrowood 5.1 Life cycle 122 5.2 Clinical presentation 123 5.3 General immune responses in cryptosporidiosis 124 5.4 Innate effector mechanisms 125 5.5 Adaptive immunity 127 5.6 Memory responses 131 5.7 Antigens eliciting the immune response 132 5.8 Immune evasion 132 5.9 Immunopathology in the gut and intestinal tract 134 References for further reading 134 6 Diplomonadida: Giardia 139 Steven Singer 6.1 The life cycle and pathogenesis of Giardia infection 139 6.2 Recognition of Giardia by the immune system 141 6.3 Innate effector mechanisms against Giardia 142 6.4 Adaptive immunity against Giardia 143 6.5 Memory responses 145 6.6 Antigens eliciting the immune response 146 6.7 Immune evasion 147 Contents vii 6.8 Immunopathology 148 6.9 Summary 150 References for further reading 150 7 Kinetoplastids: Leishmania 153 Ingrid Muller¨ and Pascale Kropf 7.1 The pathogenesis of Leishmania infection 153 7.2 Life cycle 154 7.3 Parasite transmission and avoidance of immune responses 155 7.4 Innate effector mechanisms: the role of neutrophils in Leishmania infection 157 7.5 Adaptive immunity: lessons from L. major infections of mice 158 7.6 Arginase promotes Leishmania parasite growth 162 7.7 Memory responses 163 References for further reading 164 8 Kinetoplastids: Trypanosomes 165 Jeremy Sternberg 8.1 The African trypanosomes (Trypanosoma brucei ssp.) 165 8.2 Pathogenesis of sleeping sickness 167 8.3 Variant surface glycoprotein – the key to trypanosome-host interactions 168 8.4 The humoral response to African trypanosomes 172 8.5 T cell responses in African trypanosome infections 173 8.6 Innate defence mechanisms: trypanosome lytic factor 173 8.7 Immunopathology and VSG 174 8.8 Summary 175 References for further reading 176 9 Kinetoplastids: Trypanosoma cruzi (Chagas disease) 179 Rick Tarleton 9.1 Life cycle and transmission 180 9.2 Immune control and disease 181 9.3 Innate recognition of T.